Date of Original Version

6-2012

Type

Conference Proceeding

Journal Title

Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

First Page

677

Last Page

687

Rights Management

Copyright 2012 ACL

Abstract or Description

We present novel methods to construct compact natural language lexicons within a graphbased semi-supervised learning framework, an attractive platform suited for propagating soft labels onto new natural language types from seed data. To achieve compactness, we induce sparse measures at graph vertices by incorporating sparsity-inducing penalties in Gaussian and entropic pairwise Markov networks constructed from labeled and unlabeled data. Sparse measures are desirable for high-dimensional multi-class learning problems such as the induction of labels on natural language types, which typically associate with only a few labels. Compared to standard graph-based learning methods, for two lexicon expansion problems, our approach produces significantly smaller lexicons and obtains better predictive performance.

Creative Commons License

Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Share

COinS
 

Published In

Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 677-687.