Date of Original Version



Conference Proceeding

Journal Title

Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

First Page


Last Page


Rights Management

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract or Description

Previous work on dialogue act classification have primarily focused on dense generative and discriminative models. However, since the automatic speech recognition (ASR) outputs are often noisy, dense models might generate biased estimates and overfit to the training data. In this paper, we study sparse modeling approaches to improve dialogue act classification, since the sparse models maintain a compact feature space, which is robust to noise. To test this, we investigate various element-wise frequentist shrinkage models such as lasso, ridge, and elastic net, as well as structured sparsity models and a hierarchical sparsity model that embed the dependency structure and interaction among local features. In our experiments on a real-world dataset, when augmenting N-best word and phone level ASR hypotheses with confusion network features, our best sparse log-linear model obtains a relative improvement of 19.7% over a rule-based baseline, a 3.7% significant improvement over a traditional non-sparse log-linear model, and outperforms a state-of-the-art SVM model by 2.2%.





Published In

Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 8317-8321.