Title

Constant Density Displays Using Diversity Sampling

Date of Original Version

2003

Type

Conference Proceeding

Rights Management

©20xx IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Abstract or Description

The Informedia Digital Video Library user interface summarizes query results with a collage of representative keyframes. We present a user study in which keyframe occlusion caused difficulties. To use the screen space most efficiently to display images, both occlusion and wasted whitespace should be minimized. Thus optimal choices will tend toward constant density displays. However, previous constant density algorithms are based on global density, which leads to occlusion and empty space if the density is not uniform. We introduce an algorithm that considers the layout of individual objects and avoids occlusion altogether. Efficiency concerns are important for dynamic summaries of the Informedia Digital Video Library, which has hundreds of thousands of shots. Posting multiple queries that take into account parameters of the visualization as well as the original query reduces the amount of work required. This greedy algorithm is then compared to an optimal one. The approach is also applicable to visualizations containing complex graphical objects other than images, such as text, icons, or trees.

Comments

©20xx IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

This document is currently not available here.

Share

COinS