Date of Original Version

11-2012

Type

Article

Rights Management

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

Abstract or Description

This paper considers opportunistic primary-secondary spectrum sharing when the primary is a rotating radar. A secondary device is allowed to transmit when its resulting interference will not exceed the radar's tolerable level, in contrast to current approaches that prohibit secondary transmissions if radar signals are detected at any time. We consider the case where an OFDMA based secondary system operates in non-contiguous cells, as might occur with a broadband hotspot service, or a cellular system that uses spectrum shared with radar to supplement its dedicated spectrum. It is shown that even fairly close to a radar, extensive secondary transmissions are possible, although with some interruptions and fluctuations as the radar rotates. For example, at 27% of the distance at which secondary transmissions will not affect the radar, on average, the achievable secondary data rates in down- and upstreams are around 100% and 63% of the one that will be achieved in dedicated spectrum, respectively. Moreover, extensive secondary transmissions are still possible even at different values of key system parameters, including cell radius, transmit power, tolerable interference level, and radar rotating period. By evaluating quality of service, it is found that spectrum shared with radar could be used efficiently for applications such as non-interactive video on demand, peer-to-peer file sharing, file transfers, automatic meter reading, and web browsing, but not for applications such as real-time transfers of small files and VoIP.

DOI

10.1109/JSAC.2012.121106

Share

COinS
 

Published In

IEEE Journal on Selected Areas in Communications, 30, 10, 1900-1910.