Date of Original Version



Conference Proceeding

Rights Management

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract or Description

The measurement rate of cameras that take spatially multiplexed measurements by using spatial light modulators (SLM) is often limited by the switching speed of the SLMs. This is especially true for single-pixel cameras where the photodetector operates at a rate that is many orders-of-magnitude greater than the SLM. We study the factors that determine the measurement rate for such spatial multiplexing cameras (SMC) and show that increasing the number of pixels in the device improves the measurement rate, but there is an optimum number of pixels (typically, few thousands) beyond which the measurement rate does not increase. This motivates the design of LiSens, a novel imaging architecture, that replaces the photodetector in the single-pixel camera with a 1D linear array or a line-sensor. We illustrate the optical architecture underlying LiSens, build a prototype, and demonstrate results of a range of indoor and outdoor scenes. LiSens delivers on the promise of SMCs: imaging at a megapixel resolution, at video rate, using an inexpensive low-resolution sensor.



Published In

Proceedings of the IEEE International Conference on Computational Photography (ICCP), 2015.