Date of Original Version



Conference Proceeding

Rights Management

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract or Description

This paper identifies non-stationary effects in grid like Network-on-Chip (NoC) traffic and proposes QuaLe, a novel statistical physics-inspired model, that can account for non-stationarity observed in packet arrival processes. Using a wide set of real application traces, we demonstrate the need for a multi-fractal approach and analyze various packet arrival properties accordingly. As a case study, we show the benefits of our multifractal approach in estimating the probability of missing deadlines in packet scheduling for chip multiprocessors (CMPs).





Published In

Proceedings of the ACM/IEEE International Symposium on Networks-on-Chip (NOCS), 2010, 241-248.