Date of Original Version



Conference Proceeding

Rights Management

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract or Description

The capacity and cost-per-bit of DRAM have historically scaled to satisfy the needs of increasingly large and complex computer systems. However, DRAM latency has remained almost constant, making memory latency the performance bottleneck in today's systems. We observe that the high accesslatency is not intrinsic to DRAM, but a trade-off made to decrease cost-per-bit. To mitigate the high area overhead of DRAM sensing structures, commodity DRAMs connect many DRAM cells to each sense-amplifier through a wire called a bitline. These bitlines have a high parasitic capacitance due to their long length, and this bitline capacitance is the dominant source of DRAM latency. Specialized low-latency DRAMs use shorter bitlines with fewer cells, but have a higher cost-per-bit due to greater sense-amplifier area overhead. In this work, we introduce Tiered-Latency DRAM (TL-DRAM), which achieves both low latency and low cost-per-bit. In TL-DRAM, each long bitline is split into two shorter segments by an isolation transistor, allowing one segment to be accessed with the latency of a short-bitline DRAM without incurring high cost-per-bit. We propose mechanisms that use the low-latencysegment as a hardware-managed or software-managed cache. Evaluations show that our proposed mechanisms improve both performance and energy-efficiency for both single-core and multi-programmed workloads.





Published In

Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2013, 615-626.