Date of Original Version




Rights Management

© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract or Description

In this correspondence, we present an algorithm for distributed sensor localization with noisy distance measurements (DILAND) that extends and makes the DLRE more robust. DLRE is a distributed sensor localization algorithm in Rm (m≥1) introduced in \cite{usman_loctsp:08}. DILAND operates when (i) the communication among the sensors is noisy; (ii) the communication links in the network may fail with a non-zero probability; and (iii) the measurements performed to compute distances among the sensors are corrupted with noise. The sensors (which do not know their locations) lie in the convex hull of at least m+1 anchors (nodes that know their own locations.) Under minimal assumptions on the connectivity and triangulation of each sensor in the network, this correspondence shows that, under the broad random phenomena described above, DILAND converges almost surely (a.s.) to the exact sensor locations.





Published In

IEEE Transactions on Signal Processing, 58, 3, 1940-1947.