Date of Original Version

4-14-2010

Type

Conference Proceeding

PubMed ID

20694187

Rights Management

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract or Description

We present a methodology for the automatic identification and delineation of germ-layer components in H&E stained images of teratomas derived from human and nonhuman primate embryonic stem cells. A knowledge and understanding of the biology of these cells may lead to advances in tissue regeneration and repair, the treatment of genetic and developmental syndromes, and drug testing and discovery. As a teratoma is a chaotic organization of tissues derived from the three primary embryonic germ layers, H&E teratoma images often present multiple tissues, each of having complex and unpredictable positions, shapes, and appearance with respect to each individual tissue as well as with respect to other tissues. While visual identification of these tissues is time-consuming, it is surprisingly accurate, indicating that there exist enough visual cues to accomplish the task. We propose automatic identification and delineation of these tissues by mimicking these visual cues. We use pixel-based classification, resulting in an encouraging range of classification accuracies from 74.9% to 93.2% for 2- to 5-tissue classification experiments at different scales.

DOI

10.1109/ISBI.2010.5490168

Share

COinS
 

Published In

Proceedings of IEEE International Symposium on Biomedical Engineering, 2010, 1041-1044.