Date of Original Version



Conference Proceeding

Rights Management

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract or Description

Multi-core CPUs with multiple levels of parallelism (i.e. data level, instruction level and task/core level) have become the mainstream CPUs for commodity computing systems. Based on the multi-coreCPUs, in this paper we developed a high performance computing framework for AC contingencycalculation (ACCC) to fully utilize the computing power of commodity systems for online and real time applications. Using Woodbury matrix identity based compensation method, we transform and pack multiple contingency cases of different outages into a fine grained vectorized data parallel programming model. We implement the data parallel programming model using SIMD instruction extension on x86CPUs, therefore, fully taking advantages of the CPU core with SIMD floating point capability. We also implement a thread pool scheduler for ACCC on multi-core CPUs which automatically balances the computing loads across CPU cores to fully utilize the multi-core capability. We test the ACCC solver on the IEEE test systems and on the Polish 3000-bus system using a quad-core Intel Sandy Bridge CPU. The optimized ACCC solver achieves close to linear speedup (SIMD width multiply core numbers) comparing to scalar implementation and is able to solve a complete N-1 line outage AC contingencycalculation of the Polish grid within one second on a commodity CPU. It enables the complete ACCC as a real-time application on commodity computing systems.





Published In

Proceedings of the IEEE PES General Meeting (PES-GM), 1-5.