Carnegie Mellon University
Browse
Coalescence of Sessile Drops: the Role of Gravity Interfacial Te.pdf (2.9 MB)

Coalescence of Sessile Drops: the Role of Gravity, Interfacial Tension and Surface Wettability

Download (2.9 MB)
thesis
posted on 2016-05-01, 00:00 authored by Ying Zhang

Coalescence of liquid drops is important in many natural and industrial processes, such as raining, inkjet printing and coating applications. The coalescence for sessile drops is more complicated due to the additional interplay between the drops and solid surface. This work examines the impact of gravity, interfacial tensions and wetting properties on both the static and dynamic aspects of the coalescence of sessile drops. In the presence of gravity, seven dimensionless parameters are identified to describe the axisymmetric configuration of a compound sessile drop after coalescence. A stability criterion is established based on the perturbation of Laplacian shape and the stability criterion is numerically evaluated in the zero Bond number limit. Surface Evolver simulations and experiments are performed for compound sessile drops at small and intermediate Bond numbers. Both simulations and experiments agree closely with the zero Bond number analysis, exhibiting a small discrepancy at intermediate Bond number. For the dynamics of sessile drop coalescence, experiments are performed for miscible fluids with similar surface tensions but different densities and viscosities. The coalescence behavior shows three distinctive stages with well separated timescales: an initial stage of fast bridge healing process, an intermediate stage of advective motion for fluids with different densities, and a final stage of diffusion. A dimensional analysis shows that the flow behavior for the advective motion resembles gravity current. A more detailed analytical model based on the lubrication approximation is conducted and demonstrates good qualitative agreement with the advective motion during the sessile drop coalescence.

History

Date

2016-05-01

Degree Type

  • Dissertation

Department

  • Physics

Degree Name

  • Doctor of Philosophy (PhD)

Advisor(s)

Stephen Garoff,Shelley Anna

Usage metrics

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC