Date of Award

Spring 3-2016

Embargo Period

2-22-2017

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Machine Learning

Advisor(s)

J. Zico Kolter

Abstract

Convex optimization has developed a wide variety of useful tools critical to many applications in machine learning. However, unlike linear and quadratic programming, general convex solvers have not yet reached sufficient maturity to fully decouple the convex programming model from the numerical algorithms required for implementation. Especially as datasets grow in size, there is a significant gap in speed and scalability between general solvers and specialized algorithms. This thesis addresses this gap with a new model for convex programming based on an intermediate representation of convex problems as a sum of functions with efficient proximal operators. This representation serves two purposes: 1) many problems can be expressed in terms of functions with simple proximal operators, and 2) the proximal operator form serves as a general interface to any specialized algorithm that can incorporate additional `2-regularization. On a single CPU core, numerical results demonstrate that the prox-affine form results in significantly faster algorithms than existing general solvers based on conic forms. In addition, splitting problems into separable sums is attractive from the perspective of distributing solver work amongst multiple cores and machines. We apply large-scale convex programming to several problems arising from building the next-generation, information-enabled electrical grid. In these problems (as is common in many domains) large, high-dimensional datasets present opportunities for novel data-driven solutions. We present approaches based on convex models for several problems: probabilistic forecasting of electricity generation and demand, preventing failures in microgrids and source separation for whole-home energy disaggregation.

Share

COinS