Date of Award

Spring 4-2015

Embargo Period

7-7-2016

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Chemical Engineering

Advisor(s)

Ignacio E. Grossmann

Abstract

This dissertation primarily proposes data-driven methods to handle uncertainty in problems related to Enterprise-wide Optimization (EWO). Datadriven methods are characterized by the direct use of data (historical and/or forecast) in the construction of models for the uncertain parameters that naturally arise from real-world applications. Such uncertainty models are then incorporated into the optimization model describing the operations of an enterprise. Before addressing uncertainty in EWO problems, Chapter 2 deals with the integration of deterministic planning and scheduling operations of a network of batch plants. The main contributions of this chapter include the modeling of sequence-dependent changeovers across time periods for a unitspecific general precedence scheduling formulation, the hybrid decomposition scheme using Bilevel and Temporal Lagrangean Decomposition approaches, and the solution of subproblems in parallel. Chapters 3 to 6 propose different data analytics techniques to account for stochasticity in EWO problems. Chapter 3 deals with scenario generation via statistical property matching in the context of stochastic programming. A distribution matching problem is proposed that addresses the under-specification shortcoming of the originally proposed moment matching method. Chapter 4 deals with data-driven individual and joint chance constraints with right-hand side uncertainty. The distributions are estimated with kernel smoothing and are considered to be in a confidence set, which is also considered to contain the true, unknown distributions. The chapter proposes the calculation of the size of the confidence set based on the standard errors estimated from the smoothing process. Chapter 5 proposes the use of quantile regression to model production variability in the context of Sales & Operations Planning. The approach relies on available historical data of actual vs. planned production rates from which the deviation from plan is defined and considered a random variable. Chapter 6 addresses the combined optimal procurement contract selection and pricing problems. Different price-response models, linear and nonlinear, are considered in the latter problem. Results show that setting selling prices in the presence of uncertainty leads to the use of different purchasing contracts.

Share

COinS