Date of Award

Winter 12-2014

Embargo Period


Degree Type


Degree Name

Doctor of Philosophy (PhD)


Mechanical Engineering


O. Burak Ozdoganlar


Application of mechanical micromachining for fabricating complex three-dimensional (3D) micro-scale features and small parts on a broad range of materials has increased significantly in the recent years. In particular, mechanical micromachining finds applications in manufacturing of biomedical devices, tribological surfaces, energy storage/conversion systems, and aerospace components. Effectively addressing the dual requirements for high accuracy and high throughput for micromachining applications necessitates understanding and controlling of dynamic behavior of micromachining system, including positioning stage, spindle, and the (micro-) tool, as well as their coupling with the mechanics of the material removal process. The dynamic behavior of the tool-collet-spindle-machine assembly, as reflected at the cutting edges of a micro-tool, often determines the achievable process productivity and quality. However, the common modeling techniques (such as beam based approaches) used in macro-scale to model the dynamics of cutting tools, cannot be used to accurately and efficiently in micro-scale case. Furthermore, classical modal testing techniques poses significant challenges in terms of excitation and measurement requirements, and thus, new experimental techniques are needed to determine the speed-dependent modal characteristics of miniature ultra-high-speed (UHS) spindles that are used during micromachining. The overarching objective of this thesis is to address the aforementioned issues by developing new modeling and experimental techniques to accurately predict and analyze the dynamics of micro-scale cutting tools and miniature ultra-high-speed spindles, including rotational effects arising from the ultra high rotational speeds utilized during micromachining, which are central to understanding the process stability. Accurate prediction of the dynamics of micromachining requires (1) accurate and numerically-efficient analytical approach to model the rotational dynamics of realistic micro-tool geometries that will capture non-symmetric bending and coupled torsional/axial dynamics including the rotational/ gyroscopic effects; and (2) new experimental approaches to accurately determine the speed-dependent dynamics of ultra-high-speed spindles. The dynamic models of cutting tools and ultra-high-speed spindles developed in this work can be coupled together with a mechanistic micromachining model to investigate the process stability of mechanical micromachining. To achieve the overarching research objective,first, a new three-dimensional spectral- Tchebychev approach is developed to accurately and efficiently predict the dynamics of (micro) cutting tools. In modeling the cutting tools, considering the efficiently and accuracy of the solution, a unified modeling approach is used. In this approach, the shank/taper/extension sections, vibrational behavior of which exhibit no coupling between different textural motion, of the cutting tools are modeled using one-dimensional (1D) spectral-Tchebychev (ST) approach; whereas the fluted section (that exhibits coupled vibrational behavior) is modeled using the developed 3D-ST approach. To obtain the dynamic model for the entire cutting tool, a component mode synthesis approach is used to `assemble' the dynamic models. Due to the high rotational speeds needed to attain high material removal rate while using micro tools, the gyroscopic/rotational effects should be included in predicting the dynamic response at any position along the cutting edges of a micro-tool during its operation. Thus, as a second step, the developed solution approach is improved to include the effects arising from the high rotational speeds. The convergence, accuracy, and efficiency of the presented solution technique is investigated through several case studies. It is shown that the presented modeling approach enables high-fidelity dynamic models for (micro-scale) cutting-tools. Third, to accurately model the dynamics of miniature UHS spindles, that critically affect the tool-tip motions, a new experimental (modal testing) methodology is developed. To address the deficiency of traditional dynamic excitation techniques in providing the required bandwidth, repeatability, and impact force magnitudes for accurately capturing the dynamics of rotating UHS spindles, a new impact excitation system (IES) is designed and constructed. The developed system enables repeatable and high-bandwidth modal testing of (miniature and compliant) structures, while controlling the applied impact forces on the structure. Having developed the IES, and established the experimental methodology, the speed-dependent dynamics of an air bearing miniature spindle is characterized. Finally, to show the broad impact of the develop modeling approach, a macro-scale endmill is modeled using the presented modeling technique and coupled to the dynamics of a (macro-scale) spindle, that is obtained experimentally, to predict the tool-point dynamics. Specific contributions of this thesis research include: (1) a new 3D modeling approach that can accurately and efficiently capture the dynamics of pretwisted structures including gyroscopic effects, (2) a novel IES for repeatable, high-bandwidth modal testing of miniature and compliant structures, (3) an experimental methodology to characterize and understand the (speed-dependent) dynamics of miniature UHS spindles.