Date of Award

Fall 9-2014

Embargo Period


Degree Type


Degree Name

Doctor of Philosophy (PhD)


Mechanical Engineering


Shi-Chune Yao


Chip scale refrigeration system is critical for the development of electronics with the rapid increase of power consumption and substantial reduction of device size, resulting in an emergent demand on novel cooling technologies with a high efficiency for the thermal management. In this thesis, active refrigeration devices based on Stirling cycle and an electrocaloric material, are designed and investigated to achieve a high cooling performance. Firstly, a new Stirling micro-refrigeration system composed of arrays of silicon MEMS cooling elements is designed and evaluated. The cooling elements are fabricated in a stacked array on a silicon wafer. A regenerator is placed between the compression (hot side) and expansion (cold side) diaphragms, which are driven electrostatically. Under operating conditions, the hot and cold diaphragms oscillate sinusoidally and out of phase such that heat is extracted to the expansion space and released from the compression space. A first-order of thermodynamic analysis is performed to study the effect of geometric parameters. Losses due to regenerator non-idealities and chamber heat transfer limitation are estimated. A multiphysics computational approach for analyzing the system performance that considers compressible flow and heat transfer with a large deformable mesh is demonstrated. The optimal regenerator porosity for the best system COP (coefficient of performance) is identified. To overcome the computational complexity brought about by the fine pillar structure in the regenerator, a porous medium model is used to allow for modeling of a full element. The analysis indicates the work recovery of the system and the diaphragm actuation are main challenges for this cooler design.The pressure drop and friction factor of gas flow across circular silicon micro pillar arrays fabricated by deep reactive ion etch (DRIE) process are investigated. A new correlation that considers the coupled effect of pillar spacing and aspect ratio, is proposed to predict the friction factor in a Reynolds v number range of 1-100. Silicon pillars with large artificial roughness amplitudes is also fabricated, and the effect of the roughness is studied in the laminar flow region. The significant reduction of pressure drop and friction factor indicates that a large artificial roughness could be built for pillar arrays in the regenerator to enhance the micro-cooler efficiency. The second option is to develop a fluid-based refrigeration system using an electrocaloric material poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) [P(VDF-TrFE-CFE)] terpolymer. Each cooling element includes two diaphragm actuators fabricated in the plane of a silicon wafer, which drive a heat transfer fluid back and forth across terpolymer layers that are placed between them. Finite element simulations with an assumption of sinusoidal diaphrahm motions are conducted to explore the system performance detailedly, including the effects of the applied electric field, geometric dimensions, operating frequency and externally-applied temperature span. Multiphysics modeling coupled with solid-fluid interaction, heat transfer, electrostatics, porous medium and moving mesh technique is successfully performed to verify the thermal modeling feasibility. The electrocaloric effect in thin films of P(VDF-TrFE-CFE) terpolymer is directly measured by infrared imaging at ambient conditions. At an electric field of 90 V/μm, an adiabatic temperature change of 5.2 °C is obtained and the material performance is stable over a long testing period. These results suggest that application of this terpolymer is promising for micro-scale refrigeration.