Carnegie Mellon University
Browse
Selective Internal Oxidation and Severe Plastic Deformation of Mu.pdf (31.73 MB)

Selective Internal Oxidation and Severe Plastic Deformation of Multiphase Fe-Y Alloys

Download (31.73 MB)
thesis
posted on 2017-08-01, 00:00 authored by Stephen J. Kachur

Oxide dispersion strengthened (ODS) alloys are known for their desirable mechanical properties and unique microstructures. These alloys are characterized by an even dispersion of oxide phase throughout a metallic matrix, and exhibit high strength and enhanced creep properties at elevated temperatures. This makes them ideal candidate materials for use in many structural applications, such as coal-fired power plants or in next generation nuclear reactors. Currently most often produced by mechanical alloying, a powder metallurgy based process that utilizes high energy ball milling, these alloys are difficult and costly to produce. One proposed method for forming ODS alloys without high-energy ball milling is to internally oxidize a bulk alloy before subjecting it to severe plastic deformation to induce an even oxide distribution. This work examines such a processing scheme with a focus on the internal oxidation behavior. Internal oxidation has been shown to occur orders of magnitude faster than expected in multi-phase alloys where a highly reactive oxidizable solute has negligible solubility and diffusivity in other, more-noble, phases. Commonly referred to as in situ oxidation, this accelerated oxidation process has potential for use in a processing scheme for ODS alloys. While in situ oxidation has been observed in many different alloy systems, a comprehensive study of alloy composition and microstructure has not been performed to describe the unusual oxidation rates. This work used Fe-Y binary alloys as model system to study effects of composition and microstructure. These alloys have been shown to exhibit in situ oxidation, and additionally, Y is typically introduced during mechanical alloying to form Y-rich oxides in Fe-based ODS alloys. Alloys with Y content between 1.5 and 15 wt% were prepared using a laboratory scale arc-melting furnace. These alloys were two phase mixtures of Fe and Fe17Y2. First, samples were oxidized between 600 and 800 °C for 2 to 72 hours, using a Rhines pack to maintain low oxygen partial pressures so that in situ oxidation could occur. Oxidation rates were accelerated when compared to traditional theory, and were not well described by a single parabolic rate constant throughout the duration of the experiment. While results agreed with Wagner theory that increased Y content should lead to decreased oxidation rates, this was attributed to a depletion of oxygen supply from the Rhines pack over time. Samples were also subjected to plastic deformation to observe how changes in microstructure influenced kinetics. Connectivity of the oxidizable phase was found to be critical to promoting the fastest rates of oxidation. Oxidation studies where then carried out using thermogravimetric analysis. A gaseous mixture of Ar-H2 was passed through a dew point control unit to vary oxidant partial pressure between 10-25 and 10-20 atm. Flow rate of the gas parallel to the sample surface was also altered. Canonical correlation analysis was then used to analyze and simplify the relationships between input and output variables. This analysis pointed to the importance of quantifying the relationship between the size of formed oxides and changes in oxidation kinetics over time. Where sustained parabolic kinetics were observed, oxides were small throughout the depth of internal oxidation. The effects of oxide size on penetration depth were then numerically modeled and incorporated into existing oxidation theory to show that the observed kinetics could be qualitatively described. After oxidation experiments, severe plastic deformation was applied to both oxidized and unoxidized microstructures using equal channel angular pressing. By manipulating pressing temperature and the number of passes, microstructures were altered to varying degrees of success. No oxide refinement was observed, but increasing temperatures and number of passes allowed for even dispersion of both oxides and Fe17Y2 intermetallic.

History

Date

2017-08-01

Degree Type

  • Dissertation

Department

  • Materials Science and Engineering

Degree Name

  • Doctor of Philosophy (PhD)

Advisor(s)

Bryan A. Webler

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC