Date of Original Version



Conference Proceeding

Rights Management

©2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Abstract or Description

Designing a new access method inside a commercial DBMS is cumbersome and expensive. We propose a family of metric access methods that are fast and easy to implement on top of existing access methods, such as sequential scan, R-trees and Slim-trees. The idea is to elect a set of objects as foci, and gauge all other object with their distances from this set. We show how to define the foci set cardinality, how to choose appropriate foci, and how to perform range and nearest-neighbor queries using them, without false dismissals. The foci increase the pruning of distance calculations during the query processing. Furthermore we index the distances from each object to the foci to reduce even triangular inequality comparisons. Experiments on real and synthetic datasets show that our methods match or outperform existing methods. They are up to 10 times faster, and perform up to 10 times fewer distance calculations and disk accesses. In addition, it scale up well, exhibiting sub-linear performance with growing database size





Published In

Data Engineering, 2001. Proceedings. 17th International Conference on, 623-630.