Date of Original Version



Conference Proceeding

Abstract or Description

Melodic similarity is an important concept for music databases, musicological studies, and interactive music systems. Dynamic programming is commonly used to compare melodies, often with a distance function based on pitch differences measured in semitones. This approach computes an “edit distance” as a measure of melodic dissimilarity. The problem can also be viewed in probabilistic terms: What is the probability that a melody is a “mutation” of another melody, given a table of mutation probabilities? We explain this approach and demonstrate how it can be used to search a database of melodies. Our experiments show that the probabilistic model performs better than a typical “edit distance” comparison.