Date of Original Version

5-2010

Type

Conference Proceeding

Rights Management

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract or Description

Building upon previous work that demonstrates the effectiveness of WiFi localization information per se, in this paper we contribute a mobile robot that autonomously navigates in indoor environments using WiFi sensory data. We model the world as a WiFi signature map with geometric constraints and introduce a continuous perceptual model of the environment generated from the discrete graph-based WiFi signal strength sampling. We contribute our WiFi localization algorithm which continuously uses the perceptual model to update the robot location in conjunction with its odometry data. We then briefly introduce a navigation approach that robustly uses the WiFi location estimates. We present the results of our exhaustive tests of the WiFi localization independently and in conjunction with the navigation of our custom-built mobile robot in extensive long autonomous runs.

DOI

10.1109/ROBOT.2010.5509842

Share

COinS
 

Published In

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2010, 4379-4384.