Date of Original Version

2-2008

Type

Conference Proceeding

Abstract or Description

This paper presents a new variant of the perceptron algorithm using selective committee averaging (or voting). We apply this agorithm to the problem of learning ranking functions for document retrieval, known as the "Learning to Rank" problem. Most previous algorithms proposed to address this problem focus on minimizing the number of misranked document pairs in the training set. The committee perceptron algorithm improves upon existing solutions by biasing the final solution towards maximizing an arbitrary rank-based performance metrics. This method performs comparably or better than two state-of-the-art rank learning algorithms, and also provides significant training time improvements over those methods, showing over a 45-fold reduction in training time compared to ranking SVM

DOI

10.1145/1341531.1341542

Share

COinS
 

Published In

Proceedings of the international Conference on Web Search and Web Data Mining , 55-64.