Date of Original Version



Conference Proceeding

Rights Management

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract or Description

A human detection algorithm running on an indoor mobile robot has to address challenges including occlusions due to cluttered environments, changing backgrounds due to the robot's motion, and limited on-board computational resources. We introduce a fast human detection algorithm for mobile robots equipped with depth cameras. First, we segment the raw depth image using a graph-based segmentation algorithm. Next, we apply a set of parameterized heuristics to filter and merge the segmented regions to obtain a set of candidates. Finally, we compute a Histogram of Oriented Depth (HOD) descriptor for each candidate, and test for human presence with a linear SVM. We experimentally evaluate our approach on a publicly available dataset of humans in an open area as well as our own dataset of humans in a cluttered cafe environment. Our algorithm performs comparably well on a single CPU core against another HOD-based algorithm that runs on a GPU even when the number of training examples is decreased by half. We discuss the impact of the number of training examples on performance, and demonstrate that our approach is able to detect humans in different postures (e.g. standing, walking, sitting) and with occlusions.





Published In

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2013, 1108-1113.