Date of Original Version



Conference Proceeding

Rights Management

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract or Description

Markov localization and its variants are widely used for localization of mobile robots. These methods assume Markov independence of observations, implying that observations made by a robot correspond to a static map. However, in real human environments, observations include occlusions due to unmapped objects like chairs and tables, and dynamic objects like humans. We introduce an episodic non-Markov localization algorithm that maintains estimates of the belief over the trajectory of the robot while explicitly reasoning about observations and their correlations arising from unmapped static objects, moving objects, as well as objects from the static map. Observations are classified as arising from long-term features, short-term features, or dynamic features, which correspond to mapped objects, unmapped static objects, and unmapped dynamic objects respectively. By detecting time steps along the robot's trajectory where unmapped observations prior to such time steps are unrelated to those afterwards, non-Markov localization limits the history of observations and pose estimates to “episodes” over which the belief is computed. We demonstrate non-Markov localization in challenging real world indoor and outdoor environments over multiple datasets, comparing it with alternative state-of-the-art approaches, showing it to be robust as well as accurate.





Published In

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2014, 3969-3974.