Date of Original Version

7-2007

Type

Conference Proceeding

Abstract or Description

This paper proposes and develops a new graph-based semi-supervised learning method. Different from previous graph-based methods that are based on discriminative models, our method is essentially a generative model in that the class conditional probabilities are estimated by graph propagation and the class priors are estimated by linear regression. Experimental results on various datasets show that the proposed method is superior to existing graph-based semi-supervised learning methods, especially when the labeled subset alone proves insufficient to estimate meaningful class priors.

Share

COinS
 

Published In

Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07). Hyderabad, India. .