Date of Original Version

7-2014

Type

Conference Proceeding

Rights Management

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-18615-3_43

Abstract or Description

Robot localization and mapping algorithms commonly represent the world as a static map. In reality, human environments consist of many movable objects like doors, chairs and tables. Recognizing that such environment often have a large number of instances of a small number of types of objects, we propose an alternative approach, Model-Instance Object Mapping that reasons about the models of objects distinctly from their different instances. Observations classified as short-term features by Episodic non-Markov Localization are clustered to detect object instances. For each object instance, an occupancy grid is constructed, and compared to every other object instance to build a directed similarity graph. Common object models are discovered as strongly connected components of the graph, and their models as well as distribution of instances saved as the final Model-Instance Object Map. By keeping track of the poses of observed instances of object models, Model-Instance Object Maps learn the most probable locations for commonly observed object models. We present results of Model-Instance Object Mapping over the course of a month in our indoor office environment, and highlight the common object models thus learnt in an unsupervised manner.

DOI

10.1007/978-3-319-18615-3_43

Share

COinS
 

Published In

Lecture Notes in Computer Science, 8892, 525-536.