Date of Original Version



Conference Proceeding

Rights Management

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract or Description

Current methods for designing cyber-physical systems lack a unifying framework due to the heterogeneous nature of the constituent models and their respective analysis and verification tools. There is a need for a formal representation of the relationships between the different models. Our approach is to define these relationships at the architectural level, associating with each model a particular view of the overall system base architecture. This architectural framework captures critical structural and semantic information without including all the details of the various modeling formalisms. This paper introduces the use of logical constraints over parameters in the architectural views to represent the conditions under which the specifications verified for each model are true and imply the system-level specification. Interdependencies and connections between the constraints in the architectural views are managed in the base architecture using first-order logic of real arithmetic to ensure consistency and correct reasoning. The approach is illustrated in the context of heterogeneous verification of a leader-follower vehicle scenario.





Published In

Proceedings of the IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), 2011, 2705-2710.