Date of Original Version

11-14-2013

Type

Conference Proceeding

Rights Management

© ACM, 2014. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published at http://doi.acm.org/10.1145/2591796.2591849

Abstract or Description

We prove that any graph excluding Kr as a minor has can be partitioned into clusters of diameter at most Δ while removing at most O(r/Δ) fraction of the edges. This improves over the results of Fakcharoenphol and Talwar, who building on the work of Klein, Plotkin and Rao gave a partitioning that required to remove O(r2/Δ) fraction of the edges. Our result is obtained by a new approach that relates the topological properties (excluding a minor) of a graph to its geometric properties (the induced shortest path metric). Specifically, we show that techniques used by Andreae in his investigation of the cops and robbers game on graphs excluding a fixed minor, can be used to construct padded decompositions of the metrics induced by such graphs. In particular, we get probabilistic partitions with padding parameter O(r) and strong-diameter partitions with padding parameter O(r2) for Kr-free graphs, O(k) for treewidth-k graphs, and O(log g) for graphs with genus g.

DOI

10.1145/2591796.2591849

Share

COinS
 

Published In

Proceedings of the ACM Symposium on Theory of Computing (STOC), 2014, 79-88.