Date of Original Version



Conference Proceeding

Rights Management

© ACM, 2014. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published at

Abstract or Description

We prove that any graph excluding Kr as a minor has can be partitioned into clusters of diameter at most Δ while removing at most O(r/Δ) fraction of the edges. This improves over the results of Fakcharoenphol and Talwar, who building on the work of Klein, Plotkin and Rao gave a partitioning that required to remove O(r2/Δ) fraction of the edges. Our result is obtained by a new approach that relates the topological properties (excluding a minor) of a graph to its geometric properties (the induced shortest path metric). Specifically, we show that techniques used by Andreae in his investigation of the cops and robbers game on graphs excluding a fixed minor, can be used to construct padded decompositions of the metrics induced by such graphs. In particular, we get probabilistic partitions with padding parameter O(r) and strong-diameter partitions with padding parameter O(r2) for Kr-free graphs, O(k) for treewidth-k graphs, and O(log g) for graphs with genus g.





Published In

Proceedings of the ACM Symposium on Theory of Computing (STOC), 2014, 79-88.