Date of Original Version



Conference Proceeding

Abstract or Description

Game-theoretic algorithms for physical security have made an impressive realworld impact. These algorithms compute an optimal strategy for the defender to commit to in a Stackelberg game, where the attacker observes the defender’s strategy and best-responds. In order to build the game model, though, the payoffs of potential attackers for various outcomes must be estimated; inaccurate estimates can lead to significant inefficiencies. We design an algorithm that optimizes the defender’s strategy with no prior information, by observing the attacker’s responses to randomized deployments of resources and learning his priorities. In contrast to previous work, our algorithm requires a number of queries that is polynomial in the representation of the game.



Published In

Advances in Neural Information Processing Systems (NIPS), 27.