Date of Original Version




Rights Management

This is the author’s version of a work that was accepted for publication. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version is available at

Abstract or Description

We propose a framework to generate alternative mixed-integer nonlinear programming formulations for disjunctive convex programs that lead to stronger relaxations. We extend the concept of “basic steps” defined for disjunctive linear programs to the nonlinear case. A basic step is an operation that takes a disjunctive set to another with fewer number of conjuncts. We show that the strength of the relaxations increases as the number of conjuncts decreases, leading to a hierarchy of relaxations. We prove that the tightest of these relaxations, allows in theory the solution of the disjunctive convex program as a nonlinear programming problem. We present a methodology to guide the generation of strong relaxations without incurring an exponential increase of the size of the reformulated mixed-integer program. Finally, we apply the theory developed to improve the computational efficiency of solution methods for nonlinear convex generalized disjunctive programs (GDP). This methodology is validated through a set of numerical examples.





Published In

European Journal of Operational Research, 218, 1, 38-47.