Date of Original Version

1-2010

Type

Article

Rights Management

This is the author’s version of a work that was accepted for publication in. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version is available at http://dx.doi.org/10.1016/j.compchemeng.2010.07.007

Abstract or Description

During the last 15 years, many mathematical models have been developed in order to solve process operation scheduling problems, using discrete or continuous-time representations. In this paper, we present a unified representation and modeling approach for process scheduling problems. Four different time representations are presented with corresponding strengthened formulations that rely on exploiting the non-overlapping graph structure of these problems through maximum cliques and bicliques. These formulations are compared, and applied to single-stage and multi-stage batch scheduling problems, as well as crude-oil operations scheduling problems. We introduce three solution methods that can be used to achieve global optimality or obtain near-optimal solutions depending on the stopping criterion used. Computational results show that the multi-operation sequencing time representation is superior to the others as it allows efficient symmetry-breaking and requires fewer priority-slots, thus leading to smaller model sizes.

DOI

10.1016/j.compchemeng.2010.07.007

Share

COinS
 

Published In

Computers and Chemical Engineering, 35, 6, 1038-1063.