Date of Original Version




Rights Management

This is the author’s version of a work that was accepted for publication. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version is available at

Abstract or Description

This work addresses the scheduling of continuous single stage multiproduct plants with parallel units and shared storage tanks. Processing tasks are energy intensive and we consider time-dependent electricity pricing and availability together with multiple intermediate due dates, handled as hard constraints. A new discrete-time aggregate formulation is proposed to rapidly plan the production levels. It is combined with a continuous-time model for detailed scheduling as the essential part of a rolling-horizon algorithm. Their computational performance is compared to traditional discrete and continuous-time full-space formulations with all models relying on the Resource-Task Network (RTN) process representation. The results show that the new models and algorithm can generate global optimal schedules much more efficiently than their counterparts in problems involving unlimited power availability. Under restricted power, the aggregate model underestimates the electricity cost, which may cause the rolling-horizon approach to converge to a suboptimal solution, becoming the discrete-time model a better approach.





Published In

Computers and Chemical Engineering, 35, 2, 372-387.