
Carnegie Mellon University
Research Showcase

Computer Science Department School of Computer Science

1-1-1982

DPL-82, a language for distributed processing
Lars Warren. Ericson
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/compsci

This Technical Report is brought to you for free and open access by the School of Computer Science at Research Showcase. It has been accepted for
inclusion in Computer Science Department by an authorized administrator of Research Showcase. For more information, please contact research-
showcase@andrew.cmu.edu.

Recommended Citation
Ericson, Lars Warren., "DPL-82, a language for distributed processing" (1982). Computer Science Department. Paper 2444.
http://repository.cmu.edu/compsci/2444

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fcompsci%2F2444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F2444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F2444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F2444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci/2444?utm_source=repository.cmu.edu%2Fcompsci%2F2444&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu
mailto:research-showcase@andrew.cmu.edu

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMÜ-CS-82-129

University Libraries 'O
Carnegie Mellon University
Pittsburgh PA 1 5 2 1 3 - 3 8 9 0 w ~ v>

DPL-82: A LANGUAGE ^ ~
FOR DISTRIBUTED PROCESSING

Lars Warren Ericson
Computer Science Department

Carnegie-Mellon University
Pittsburgh, PA 15213

26 July 1982

To be published in the Proceedings of the IEEE Third International
Conference on Distributed Systems, October, 1982, Ft. Lauderdale, Florida

! 2-

Abstract

DPL-82 is a language for composing programs of concurrently-executing processes. Processes may be all on a
single machine or may be distributed over a set of processors connected to a network. The semantics of the
language is derived from the underlying interprocess communication facility (IPC) and from the dataflow
model of computation. This paper discusses the major concepts of the language, namely nodes, arcs,
connections, tokens, signals, and activations, and presents examples which illustrate the construction of
distributed programs in DPL-82 with internal arcs, external arcs and child arcs. Features for process-to-
processor mapping and dead process restart are mentioned. The paper concludes with some ideas for future
research.

Copyright © 1982 by the Institute of Electrical and Electronic Engineers

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.
3597, monitored by the Air Force Avionics Laboratory under Contract F33615-78-C-1551. The views and
conclusions contained in this document arc those of the author and should not be interpreted as representing
official policies, cither expressed or implied, of the Defense Advanced Research Projects Agency or the US
Government

REFERENCES

Table of Contents
1. INTRODUCTION
2. PARTICULARS O F THE LANGUAGE

2.1. Arcs
2.2. Starting nodes
2.3. Connecting nodes
2.4. Activation conditions

3. SOME EXAMPLES
3.5. Nodes with inputs and outputs
3.6. Cyclic checking of activation conditions

4. FUTURE RESEARCH
5. ACKNOWLEDGEMENTS
REFERENCES

Page ii
DPL-82: A Language for Distributed Processing

List of Figures
Figure 3-1: A node illustrating internal arcs
Figure 3-2: A node illustrating child arcs
Figure 3-3: A network of nodes with external, internal and child arcs

PAGE I

1. INTRODUCTION

The intention of the research leading to DPL-82 was to implement a programming language to control a

local network of computers as if they were a single computing engine. There are many schools of thought with

respect to the choice of an underlying mechanism for control and communication in a distributed program.

One important decision is whether the flow of control or the flow of data is emphasized. The control-flow end

of the spectrum is characterized in the remote procedure call concept. 1 Somewhere in the middle of the

control/data-emphasis spectrum is the MIT Actor model of computation, 2 whose underlying metaphor is the

notation of continuation. Current Actor language implementation research is embodied in Lieberman's

language ACTI , 3 , 4 and research is also being done by Clinger on the denotational semantics of Actors, which

includes an Actor language called ATOLIA. 5 The data-flow end of the spectrum is characterized in the dataflow

concep t . 6 , 7 ' 8 An important descriptive method arising from dataflow research is the UCLA SARA Graph

Model of behavior.9 Our language, DPL-82, is a dataflow language. A final, important, distinction is whether

control "remains centralized" after the initial stages of execution of the distributed program. This tends to be

the case in the majority of approaches cited in this paper; the exception that proves the rule is the worm

control program research of Shoch. 1 0*

DPL-82 derives its emphasis, not from theoretical constructions of language features for parallelism or out of

designs for parallel machines, but from research on operating system mechanisms for interprocess

communication. DPL-82 depends on the the port and message concepts of Rashid's CMU VAX/UNIX

interprocess communication facility (referred to in this paper as the IPC), 1 1 to implement a interprocess

communication path concept called the arc. The arc is very similar to Morrison's data stream linkage

mechanism}1'13 and the window concept of the Honeywell HXDP operating sys tem. 1 4 , 1 5 A language very

similar to DPL-82 is Lesser's PCL. 1 6

There are several veins of distributed processing language research which do not fall directly into the

classifications given above. One is that of languages written for specific hardware architectures, such as

Danncnbcrg's AMPL for the CMU CM* processor 1 7 and Snodgrass's object-oriented language COLA for the

CMU C.MMP processor. ITicre is much work centered around the ideas of tasking and semaphores, such as

the ADA tasking facility,1 9 STAROS Task Force 2 0 and CLU guardians?1 Finally we must mention Hoare's very

popular CSP language. CSP has a process concept and a compact notation for linking the inputs and outputs

of processes, but unlike most of the work arising out of the experimental systems-building community,

emphasizes processes which are very small computationally, and binds processes very tightly to each other

(each process description is written for exactly one named caller, hence there is no possibility for "libraries" of

•Unfortunately that research, which was an experimental exercise in distributed system building, has not, to our knowledge, been
abstracted into a set of high-level "worm control structures" that could be compactly integrated into a language.

Page 2 DPL-82: A Language for Distributed Processing

processes which could be "linked" together to form a distributed program).

In DPL-82 a distributed program is composed of processes executing on a number (possibly one) of

machines. Each machine in the network supplies some number of processes. A process is a running core

image, and each computer might store on secondary memory executable core images for some subset of the

different kinds of processes which compose the entire program. The processes are connected with

communication channels supplied by the IPC* To make a DPL-82 distributed program or sub-program, user

supplied PASCAL code is embedded in a process description which defines the communications interface

(input and output communication paths) for the process being described, subprocess requirements, and

interconnection of communication paths of subprocess. This description is translated into a complete PASCAL

program for that process which may then be compiled and executed in the DPL-82 runtime environment. The

runtime environment supplies protocols via the IPC for establishing communication paths between

subprocesses and (network transparent) passing of data on those paths, and a facility to allow a DPL-82

distributed program component (process) on one machine to request the loading of a process on another

machine (which process may in turn cause the loading of additional processes, etc), DPL-82 also provides the

ability to pass parameters to subprocesses at subprocess load-time. For example, the size of various portions

of a distributed program (in terms of number of processes) may be a runtime-computed function of such

parameters.

2. PARTICULARS OF THE LANGUAGE

The processes that make up a DPL-82 distributed program are called nodes. Nodes are not to be construed

as processors in a network, but rather as processes that those processors provide. A node description consists

of a number of sections:

• The name of the node.

• Declaration of its communication links (arcs): the i n t e r n a l _ a r c s , e x t e r n a l _ a r c s and

c h i 1 d _ a r c s sections**.

• Declaration of (children nodes): the u s e s section.

• Child startup and initialization parameters: the i n i t i a l i z e section.

• Arc interconnection: the c o n n e c t section which contains arc-to-arc pairs marked by arrows (=>).

PARTICULARS 01 "HIE 1 ANGUAGE PAGE 3

• Startup-time-only computation: the t o _ i n s t a n t i a t e section, and

• activation conditions: the a c t i v a t e section which controls the handling of tokens, signals and
child processes thereafter.

2.1. Arcs

The communication links between nodes are called arcs. Arcs are implemented with IPC ports.* A node,

through its DPL-82 description, may declare a variety of input and output arcs. Arcs transmit tokens and

signals. A token, modelled after the concept of a token in dataflow networks,6 is a typed data object. A signal

is a string. Tokens and signals are communicated by IPC messages.

There are three sorts of arcs:

• An internal arc is a connection between a parent node and a child node. The actual connection is
made by the parent. The parent is the process which starts a given (child) process, whether or not
the parent process is on the same machine as the child process.

• An external arc is a path into or out of a node, which is declared inside that node, but whose
connections are set by the parent of the node.

• A child arc is declared by a child node, and is connected to a sibling of the child by the parent
node, but is then subsequently reconnected by the child to one of its children. Tokens or signals
subsequently passing along this connection do not go to the child, but go directly to the child's
child from the originator of the arc or signal.

These three varieties of input and output arcs provide distributed processing analogues to expressions,

subroutines and main programs in uniprocessing languages. A computational process with external arcs is

like an expression.** A child process which configures a sub-network of interconnected nodes and associates

unconnected arcs of the sub-network with child arcs is like a subroutine. Finally, a node with no external arcs

that creates a network of child nodes (and may connect itself to that network with internal arcs) is like a main

program.

2.2. Starting nodes

The i n i t i a l i z e statement loads a process and provides it with parameters. For example:

(for i from 1 to 5 (initialize node TrafficLight(i)[i]))

starts up five T r a f f i c L i g h t s . The first use of i (in parentheses) refers to the particular instance of

*A port is like a mailbox, of which a process may own several, to which data may be sent in the form of messages.

••This analogy is fairly apt, given work such as that of Arvind which takes expressions in a functional language and "flattens" them into dataflow networks.

Page 4 DPL-82: A Language for Distributed Processing

5 is with respect to the parent A child node does
* We are passing it because we want each TrafficLight to know what its name i

not automatically know it's "name" in DPL-82.

**Oann£nbcrg discusses a design for a more general network operating system mechanism called the BUTLER for remotely allocating

processes.
***Thc ability of connections to survive process death is a property of the IPC mechanism.

Tra f f i cLi g h t being loaded. The second use (in brackets) is a integer-valued parameter being passed to

that T r a f f i c L i g h t instance.*

One can start a process on another machine with a statement like:

(initialize node Correlator on_host "CAD-VAX")

which says to load a process whose core image is stored on file name Correlator on the processor whose

symbolic local net address is "CAD-VAX".**

2.3. Connecting nodes

The => statement makes connections between nodes. For example:

(=> philosopher[4]:hand fork[5]:handle)

connects philosopher number four's hand to fork number five's handle.

2.4. Activation conditions

The remainder of the node description is taken up by the activation conditions, which allow tokens and

signals to be received and transmitted, and other actions to be taken such as node self-termination and child

node restarting. These may be contingent upon signal and token arrival, timeouts, internal state of a user's

PASCAL code, and boolean combinations of the above.

The following DPL-82 activation condition-action pair detects the death of a process and restarts it:

((is_dead some_node)(restart some_node))

This is a primitive restarting capability, whose only effect is to start a process of the same name and give it

the connections of the dead process***. Nothing in the language deals with the question of restoring the

internal state of a lost process.

3. SOME EXAMPLES

We will now present a number of simple nodes to illustrate the concepts discussed above. It is important to

note that these nodes are not very computation-intensive, and that the real economy of this language comes

with nodes which do more work. Also, we will not, in this paper, present any timing measurements for

SOME EXAMPLES

PAGE 5

establishing connections or passing tokens or signals, and we will not consider the problems of optimal

proccss-to-proccssor mapping. This is partly due to space limitations, and partly due to the fact that the

primary thrust of this research has been to achieve correct mechanisms in terms of functionality and linguistic

expression. Future research, on a successor to DPL-82 (DPL-83?), may be concerned with mechanism

optimization and resource allocation issues.*

3.5. Nodes with inputs and outputs

The simplest kind of interesting node must communicate with and start other concurrently processing

nodes in order to perform a computation. To do this, the node must declare input and output arcs and must

include in its description specific commands for starting up other nodes. Let us concieve of a node which

performs the x 2 function called xsquared, and another node which utilizes xsquared in a simple parallel

computation, which we will call p l u s 2 x s q . It will present two xsquared nodes with numbers, and sum

and print their results.

(node xsquared
externa1_arcs ((integer inx) •> (integer outx))
procedure xsq (inx: integer; var outx: integer);
begin

Write*ln("Toto, inx is inx.l, " ! ") ;
outx :» inx * inx;

end ;
activate ((tokens_avai1 able)

(apply xsq to [inx, outxj)
(terminate)))

r*w9- ~ * - - — - - 'zi

Page 6
.-82: A Language for Distributed Processing

integer)

(rl+r2):l, " . ") ;

(node plus2xsq
internal_arcs

((integer resulti result2) =>
(integer xl x2))

procedure plusxl2 (var xl, x2:
begin xl := 3; x2 := 4; end;
procedure getresults (rl, r2: integer);
begin

writeln(MThe result is
end ;
uses (uses array[2 max 2] of node xsquared)
initialize

(initialize node xsquared[l])
(initialize node xsquared[2])

connect (=> xl xsquared[1] : inx)
(=> x2 xsquared[2]:inx)
(=> xsquared[l]:outx resulti)
(=> xsquared[2]:outx result2)

to_instantiate (apply plusxl2 to [xl,
activate ((tokens_available)

(apply getresults
to [resulti, result2])

(terminate)))

x2])

This may be pictured as in Figure 3-

Figurc > 1 : A node illustrating internal arcs

SOME EXAMPLES
PAGE 7

$ p1us2xsq
Toto, inx is 4!
Toto, inx is 3!
The result is 25.

The node that started the node that owns a given set of input arcs does not know about these internal arcs.
The only way that information can flow out of the purview of the internal arc owner and into the purview of
the node that starts up the owner, is if the internal arc owner connects a child arc to an internal arc (see
below).

We can illustrate the use of child arcs with the node xf ourth, which has one input child arc and one
output child arc. xf ou rth outputs the value of the input raised to the fourth power, xf ou rth is shown in
Figure 3-2.

Figure 3-2: A node illustrating child arcs

TTe code for l i k o a suoroudne. hides taptaca-o. of U,e anfcmedc operadoa as a

When executed, pi u s 2 x s q gives the following results:

Page 8
DPL-82: A Language for Distributed Processing

(node xfourth
child_arcs
var
uses

((integer x) => (integer result))
root: string; sub: integer;
(uses array[2 max 2]

of node newxsquared)
initialize

(initialize node newxsquared[l])
(initialize node newxsquared[2])

connect (=> x newxsquared[l]:inx)
(=> newxsquared[l]:outx

newxsquared[2]:inx)
(=> result newxsquared[2]:outx)

activate ((signal_from parent halt)
(slow signal_to children

[newxsquared[l],newxsquared[2]]
halt)

(terminate)))

We can exercise xf ourth with the following node, f ourthstream, which reads integers from the

terminal and prints out their fourth powers. When the end of the input stream is reached, fourthstream
terminates after sending a halt signal to xf ourth. xf ourth will then signal its xsquared subordinates

to halt, and terminate itself. The xsquared nodes will terminate themselves, and the distributed

computation will conclude.

The definition of xsquared must be modified slightly to catch the signal. We will call the new version

newxsquared. newxsquared also does not terminate after the first set of input tokens, but rather cycles

indefinitely until the hal t signal has been received

3.6. Cyclic checking of activation conditions

The concept of cycling is very important. The default action of the node is to wait for IPC messages which

represent tokens or signals, then evaluate the activation conditions, which usually refer to token or signal

arrival events. However note that in fourthstream the first activation condition refers to a side-effect

generated by the next activation conditions. This side-effect emanates from the input_st ream procedure,

and signals that the end of input has been reached. The creation of the side-effect is dependent on the user's

typein, and not on message events (although it strictly follows the last resul t token arrival). Hence the

detection of the side-effect docs not involve waiting for a message event. If we chose the default action of

waiting forever for a message event, then the first activation condition would never be tested.

The solution chosen here is to modify the amount of time we arc willing to wait for message events. This

time is chosen so that we don't needlessly check the activation conditions while actually waiting for messages,

SOME EXAMPLES

PA GII9

and so that we don't wait too long, when we aren't expecting messages, to get around to checking the

non-mcssagc-evcnt-rclated activation conditions. When the user is typing in numbers, f o u r t h s t r e a m

might catch a "timeout" or two before receiving the response, but this is harmless. When the user types in the

number - 1 , indicating end-of-input, the variable EOS is changed to t r u e . The node will wait at most 500

milliseconds, when EOS condition is true, to signal "end of computation" and terminate.*

e x t e r n a l . a r c s ((i n t e g e r i n x) *> (i n t e a e r o u t x n
p r o c e d u r e x sq (i n x : i n t e g e r v a r L X T n t e g e •
b e g i n outx : - i n x • i n x ; end- i nteger) f

a c t i v a t e ((t o k e n s _ a v a i 1 a b l e)

(a p p l y xsq t o [i n x , o u t x]))

(<signal_fpom p a r e n t hait)(terminate)))

Page 10
PL-82: A Language for Distributed Processing

(node fourthstream
internal_arcs ((integer result) => (integer x))
var EOS: boolean;
function input_stream (var xl: integer):boolean;
begin write(">"); readln(xl);

if (xl * -1)
then begin EOS :=true;

input__stream := false;
end

else input_stream :- true;
end;
procedure init_stream (var x: integer);
var toss: boolean;
begin EOS := FALSE;

toss := input_stream(x);
end;
procedure output_stream (result: integer);
begin

writeln("The result is resultil. " . ") ;
end;
uses (uses node xfourth)
initialize (initialize node xfourth)
connect (»> x xfourth:x)

(=> xfourth:result result)
to_instantiate (apply init_stream to [x])
cycle_time_is (• 500)
activate ((» EOS)

(slow signal_to children
[xfourth] halt)

(terminate))
((tokens_available)
(apply output_stream to [result])
(test input__stream [] ? [x] : [])))

We have now use, child, and i n ^ a ! arcs. , „ r « . t r . - T . — ne-wo* * pictured ,

Figure 3-3. The following is a sample of how it behaves:

$ fourthstream
> 2
The result is 16.
> 5
The result is 625.
> -1
$

FUTURE RESEARCH

PAGE 11

output
external
arc

input
child

arc

input
external

arcs

Figure 3-3: A network of nodes with external, internal and child arcs

4. FUTURE RESEARCH
We intend to implement abstractions of the features of this language in Edinburgh M L , 2 9 an interpreted,

typed functional language designed for research in denotational semantics, 3 0 as a first step toward the

development of a power-domain based 3 1 semantics of the underlying IPC facility and the conceptual features

of the language.

There are some intriguing possibilities for the design of a microprocessor or microcoding of a processor

whose instruction set is optimized towards message-passing and distributed programs whose underlying

control construct is the continuation. The notion of a continuation is to be found in Actor semantics,2 the

notion of the RTRANSFER in remote procedure call, 1 and in denotational semantics. 3 2

The concept of constraint networks may find a home in the distributed processing context with dataflow

like languages, such as a successor to DPL-82, which are extended to include the notion of bi-directional arcs

(now simulatablc with pairs of input and output arcs) and appropriate relaxation procedures . 3 3 , 3 4

Page 12 DPI.-82: A Language for Distributed Processing

1.

2.

3.

4.

5.

6.

7.

8

10.

11

12.

5. ACKNOWLEDGEMENTS

The author is indebted to Prof. Raj Reddy for providing him with funding and research facilities to do this,

work. Professors Richard Rashid and Dana Scott have provided an enormous amount of support,

encouragement and constructive criticism. Conversations with David Hornig, Roger Dannenberg, and other

members of CMU's distributed systems and distributed sensor network communities have also been very

helpful. Jeff Shrager has tirelessly reviewed many drafts of this paper: please give him a teddy bear if you

find him.

REFERENCES

Nelson, Bruce Jay, Remote Procedure Call, PhD dissertation, CMU CSD, May 1981.

Hewitt, C , "Viewing Control Structures as Patterns of Passing Messages," Artificial Intelligence, Vol.

8, No. 3, January, 1977.

Lieberman, Henry, "A Preview of Act 1," AI Memo 625, MIT AI Laboratory, April 1981.

Lieberman, Henry, "Thinking About Lots Of Things At Once Without Getting Confused: Parallelism

in Act 1," AI Memo 626, MIT AI Laboratory, May 1981.

dinger , William Douglas, Foundations of Actor Semantics, PhD dissertation, MIT, May 1981.

Dennis, Jack B., "Data Flow Supercomputers," IEEE Computer, November, 1980.

Dennis, Jack B., et. al., "Research Directions in Computer Architecture," MIT LCS Tech

Report TM-114, MIT, September 1978.

Gurd, John and Ian Watson, "Data Driven System for High Speed Parallel Computing," Computer

Design, June-July, 1980.

Ruggiero, W., eL al., "Analysis of data flow models using the SARA graph model of behavior,"

Proceedings of the AFIPS National Computer Conference, 1979.
Shoch, J. F. and J.A. Hupp, "Notes on the Worin programs some early experience with a distributed
computation," Tech. report SSL-80-3, Xerox PARC, September 1980.

Rashid, Richard F., "An Inter-Process Communication Facility for UNIX," Tech.

report CMU-CS-80-124, CMU CSD, February 1980.

12. Morrison, J.P., "Data Stream Linkage Mechanism," IBM Systems Journal, Vol. 17, No. 4,1978.

13. Levine, J.R. and J.P. Morrison, "Forum: Data stream linkage and the UNIX system," IBM Systems

Journal, Vol. 18, No. 3,1979.

14. Bocbert, W.E., "The HXDP Executive Interim Report," Tech. report 78SRC53, Honeywell Systems &

Research Center, June 1978.

15. Bocbert, W. K., "Concepts and Facilities of the HXDP Executive," Tech. report 78SRC21, Honeywell

Systems & Research Ctr., March 1978.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

REFERENCES PAGE 13

16. Lesser, Victor, Daniel Serrain and Jeff Bonar, "PCL: A Process-Oriented Job Control Language,"
Proceedings of the 1st Intl. Cunf. on Distributed Computing Systems, IEEE, 1979.

Dannenberg, Roger B., "AMPL: Design, Implementation and Evaluation of A Multiprocessing
Language," Tech. report CMU Computer Science Dept., March 1981.

Snodgrass, Richard, "An Object-Oriented Command Language," Tech. report CMU-CS-80-146,
CMU CSD, October 1980.

Department of Defense, Reference Manual for the ADA Programming Language, 1980.

Jones, Anita K. and Karsten Schwans, "TASK Forces: Distributed Software for Solving Problems of
Substantial Size," Proceedings of 4th IEEE Software Engineering Conference, September 1979, pp.
315-330.

Liskov, Barbara, "Linguistic Support for Distributed Programs: A Status Report," Memo 201, MIT
LCS Computation Structures Group, October 1980.

Hoare, C.A.R., "Communicating Sequential Processes," Communications of the ACM, Vol. 21, No. 8, 1978.

Arvind, "Decomposing a Program for Multiple Procesor Systems," Proceedings of the 1980
International Conference on Parallel Processing, IEEE, 1980.

Dannenberg, Roger B., "The Spice Butler," Spice Project Internal Working Paper Spice Document
SUO, CMU CSD Spice Project, August 1981.

Spector, Alfred Z., "Performing Remote Operations Efficiendy on a Local Computer Network," Tech.
report STANCS-80-850, Stanford University Computer Science Dept., December 1980.

Bryant, R.M., and R.A. Finkel, "A Stable Distributed Scheduling Algorithm", University of Wisconsin Computer Science Dept.

Chu, W.W., L.J. Holloway, M. Lan and E. Kemal, "Task Allocation in Distributed Data Processing," IEEE Computer, November, 1980.

Gostelow, K., e t al., "Proper Termination of Flow-Of-Control in Programs Involving Concurrent
Processes," Proceedings of the 1972 ACM National Computer Conference, ACM, 1972.

Gordon, M. J., A.J. Milner and C P . Wadsworth, Edinburgh LCF, Springer-Verlag, Lecture Notes in Computer Science, Vol. 78,1979.

Gordon, Michael J.C., The Denotational Description of Programming Languages, Springer-Verlag, New York, 1979.

Stoy, Joseph E., Denotational Semantics: the Scott-Slrachey Approach to Programming Language
Theory, MIT Press, Cambridge, Mass., 1977.

Sethi, Ravi and Adrian lang, "Constructing Call-by-Value Continuation Semantics," Journal of the
ACM, Vol. 27, No. 3, July, 1980, pp. 580-597.

Steele, Guy L., "rITic Definition and Implementation of a Computer Programming Language Based on

p a o C][4 DP1.-82: A Language for Distributed Processing

Constraints," Tech. report AI-TR-595, MIT AI Laboratory, August 1980.

34. Borning, A.. "ThingLab: a constraint-oriented simulation laboratory," Tech. report STAN-CS-79-746,

Stanford University CSD, July 1979.

	Carnegie Mellon University
	Research Showcase
	1-1-1982

	DPL-82, a language for distributed processing
	Lars Warren. Ericson
	Recommended Citation

