Carnegie Mellon University
Research Showcase

Computer Science Department School of Computer Science

1-1-1982

DPL-82, alanguage for distributed processing

Lars Warren. Ericson
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/compsci

Recommended Citation

Ericson, Lars Warren., "DPL-82, a language for distributed processing” (1982). Computer Science Department. Paper 2444.
http://repository.cmu.edu/compsci/2444

This Technical Report is brought to you for free and open access by the School of Computer Science at Research Showcase. It has been accepted for
inclusion in Computer Science Department by an authorized administrator of Research Showcase. For more information, please contact research-

showcase@andrew.cmu.edu.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fcompsci%2F2444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F2444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F2444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F2444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci/2444?utm_source=repository.cmu.edu%2Fcompsci%2F2444&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu
mailto:research-showcase@andrew.cmu.edu

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-C5-82-129

University Libraries oo
Carnegie Mellon Universsty '
Pittsburgh PA 15213-3890 = ~. '

S 2 =1

DPL-82: ALANGUAGE < =
FOR DISTRIBUTED PROCESSING

Lars Warren Ericson
Computer Science Department
Camegic-Melton University
Pittsburgh, PA 15213

26 July 1982

To be published in the Proceedings of the IEEE Third International
Conference on Distributed Systems, October, 1952, Fi. Lauderdale, Florida

Abstract

DPL-82 is a language for composing programs of concurrently-¢xecuting processes. Processes may be all on a
single machine or may be distributed over a set of processors connected to a network. The semantics of the
language is derived from the underlying interprocess communication facility (IPC) and from the dataflow
model of computation. This paper discusses the major concepts of the language, namely nodes, arcs,
connections, lokens, signals, and activations, and presents examples which illustrate the construction of
distributed programs in DPL-82 with internal arcs, external arcs and child arcs. Features for process-to-
processor mapping and dead process restart are mentioned. The paper concludes with some ideas for future
research.

Copyright © 1982 by the Institute of Electrical and Electronic Engineers

This research was sponsored by the Defense Advanced Rescarch Projects Agency (DOD), ARPA Order No.
3597, monitored by the Air Force Avionics Laboratory under Contract F33615-78-C-1551. The views and
conclusions contained in this document are those of the author and should not be interpreted as representing
official policics, cither expressed or implied, of the Defense Advanced Rescarch Projects Agency or the US
Government.

RLEFERENCES

Tabkle of Contents

1. INTRODUCTION
2. PARTICULARS OF THE LANGUAGE

2.1. Arcs

2.2, Starting nodes

2.3. Connecting nodes

2.4. Activation conditions
3. SOME EXAMPLES

3.5. Nodes with inputs and outputs

3.6. Cyclic checking of activation conditions
4. FUTURE RESEARCH
5. ACKNOWLEDGEMENTS
REFERENCES

Page ii ' pPL-82; A Language for Distributed Processing

List of Figures
Figure 3-1: A node illustrating internal arcs 6
Figure 3-2: A node illustrating child arcs
Figure 3-3: A newwork of nodes with external, internal and child arcs 11

L |

PAGE |

L INTRODUCTION

The intention of the research leading to DPL-82 was 1o implement a programming language to control a
local network of computers as if they were a single computing engine, There are many schools of thought with
respect to the choice of an underlying mechanism for control and communication in a distributed program.

One important decision is whether the flow of control or the flow of data is cmphasized. The control-flow end

inciudes an Actor language cailed ATOLIA.® The data-flow end of the Spectrum is characterized in the dataflow
concept.5 78 Ap important descriptive method arising from dataflow research is the UCLA SARA Graph
Model of behavior.? Our language, DPL-82, is a dataflow language. A final, important, distinction is whether
control “remains centralized” afier the initial stages of execution of the distributed program. This tends to be
the case in the majority of approaches cited in this paper: the exception that proves the rule is the worm

control program research of Shoch, 10«

DPL-82 derives its emphasis, not from theoretical constructions of language features for parallelism or out of
designs for parallel machines, but from research on operating system mechanisms for interprocess
communication. DPL-82 depends on the the port and message concepts of Rashid’s CMU VAX/UNIX
INICIprocess communication facility (referred to in this paper as the IPC),11 to implement a interprocess
communication path concept called the arc. The are is very similar to Morrison’s datq stream linkage
mechanism,** 13 and the window concept of the Honeywell HXDpP operating system, !4 15 A language very
similar to DPL-82 is Lesser’s pcL.16

There are several veins of distributed processing language rescarch which do not fall dircctly into the
classifications given above, Onc is that of languages written for specific hardware architectures, such as
Dannenberg’s ampr for the CMU CM* processor’’ and Snodgrass’s object-oriented language COLA for the
CMU C.MMP processor, 18 There is much work centered around the ideas of lasking and semaphores, such as
the ADA tasking facility,1? STAROS Task Force?® and CLU guardians.®! Finally we must mention Hoare’s very
popular Ccsp languagc.?‘2 CSP has a process concept and a compact notation for linking the inputs and outputs
of processes, but unlike most of the work arising out of the cxperimental systems-building community,
cmphasizes processes which are very small computattonaily, and binds processcs very tightly to cach other

{(cach process description is written for exactly one named calier, hence there is no possibility for "libraries™ of

Page?2 D82 A Language for Distributed Processing

processes which could be "linked™ together to form a distributed program).

n DPL-82 a distributed program is composcd of proccsses exccuting on a number (possibly one) of
machines. Each machine in the network supplies some number of processes. A process is a running core
image, and each computer might store on secondary mcmdry cxecutable core images for some subset of the
different kinds of processes which compose the entire program. The processes are connected with
communication channels supplied by the [PC.* To make a DPL-82 distributed program of sub-program, user
supplied PASCAL code is embedded in a process description which defines the communications interface
(input and output communication paths) for the process being described, subprocéss requirements, and
interconnection of communication paths of subprocess. This description is translated into a complete PASCAL
program for that process which may then be compiled and executed in the DPL-82 runtime environment. The
funtime environment supplies protocols via the IPC for establishing communication paths between
subprocesses and (network transparent) passing of data on those paths, and a facility to allow a DPL-82
distributed program component {process) on one machine to request the loading of a process on another
machine (which process may in turn cause the loading of additional processes, etc). DPL-82 also provides the
ability to pass parameters (o subprocesses at subprocess load-time. For example, the size of various portions
of a distributed program (in terms of number of processes) may be a runtime-computed function of such

parameters.

2. PARTICULARS OF THE LANGUAGE

The processes that make up a DPL-82 distributed program are called nodes. Nodes are nol 0 be construed
as Processers in a network. but rather as processes that those processors provide. A node description consists

of a number of sections:

« The name of the node.

« Declaration of its communication links (arcs): the internal_arcs, external_arcs and
child_arcs sections*™.

o Declaration of (children nodes): the uses section.
« Child startup and initialization parameters: the initialize scction.

» Arc interconncection: the co nnect section which contains arc-to-arc pairs marked by arrows (=>).

*A process cannot tehl whether a given connection is 1o another process in the same machine of 10 4 process on another machine on the
newwork, This is a property of the IPC mechanism. DPL-H2 is, in cffcct, a programming language made out of a set of protocols and
capapilitics dependent on this particular interprocess communication mechanism.

o o eet in this typeface.

PARTICULARS O THI 1 ANGUAGE PAGI: 3

e Startup-time-only computation: the to_instantiate section, and

® activation conditivns; the activate section which controls the handling of tokens, signals and
child processes thereafier,

2.1. Arcs

The communication links between nodes are called arcs. Arcs are implemented with 1pc ports.* A node,
through its Dp1-87 description, may declare a variety of input and Oulpul arcs., Arcs transmit tokens and
signals. A token, modelled after the concept of a token in dataflow networks,® is a typed data object. A signal

is a string. Tokens and signals are communicated by IPC messages.

There are three sorts of arcs:

* An internal arc is a connection between a parent node and a child node. The actual connection is
made by the parent. The parent is the process which starts a given (child) process, whether or not
the parent process is on the same machine as the child process,

* An external arc is a path into or out of a node, which is declared inside that node, but whose
connections are set by the parent of the node.

These three varieties of input and output arcs provide distributed processing analogues to expressions,

unconnccted arcs of the sub-network with child arcs is like a subroutine, Finally, a node with no external arcs
that creates a network of child nodes (and Mmay connect itself to that network with internal arcs) is like a main

program.

2.2. Starting nodes

The initialize Statement Joads a process and provides it with parameters, For example:
(forifrom 105 {inttialize node 'l‘rafﬁcl,ight(i)[i]))

starts up five Trafficlights. The first usc of i (in parentheses) refers to the particular instance of

*A porris like a mailbox, of which a process may own several, lo which data may be sent in the form of messages.

**This aralopy is I‘nisli; apt, given work such as that of Arvind which 1akes cxpressions in a functiona] language and "flatiens” them
into dataflow nelworks,

Page 4 fpL-g2; A Language tor Distributed Processing

TrafficlLight being toaded. The sccond use {in brackets) is a integer-valuced parameter being passed to

that Trafficlight instance.*

One can start a process on another machine with a statcment like:
(initialize node Correlator on_host “CAD-VAX")
which says to load a process whose core image is stored on file name Correlator on the processor whase

symbolic local net address is "CAD-VAX"**

2.3. Connecting nodes

The => statement makes connections between nodes. For example:
(=> phi1osopher[4]:hand fork[§]:handle)

connects philosopher number four's hand to fork number five's handle.

1.4. Activation conditions

The remainder of the node description is taken up by the activation conditions, which allow tokens and
signals to be received and transmitted, and other actions to be taken such as node self-termination and child
node restarting. These may be contingent upon signal and token arrival, timeouts, internal state of a user’s

PASCAL code, and boolean combinations of the above.

The following DPL-82 activation condition-action pair detects the death of a process and restarts it:

((is._dead some_node}{restart some_node))

This is a primitive restarting capability, whose only effect is to start a process of the same name and give it
the connections of the dead process*™**. Nothing in the language deals with the queston of restoring the

internal state of a lost process.

3. SOME EXAMPLES

We will now presenta number of simple nodes 10 illustrate the concepls discussed above. It is important (o
note that these nodes are not very computation-intcnsive, and that the rcal cconomy of this language comcs

with nodes which do more work. Also, we will not, in this paper, present any timing mcasurements for

*We are passing it because we want cach TrafficLight wknow what it's name is with respect o the parent A child node does
not automatically know it’s "name” in DPL-82

“Dannﬂbcrg discusses a design for a more general network operating sysiem mechanism called the BUTLER for remotely allocating
PrOCOSECS.

se#The ability of conneclions 1o survive process death is a property of the IPC mechanism.

af

SOME EXAMPLES PAGI: S

cstablishing connections or passing tokens or signals, and we wil] not consider the problems of optimal
Process-to-processor mapping. This is partly due to spuce limitations, and partly duc to the fact that the
primary thrust of this research has been to achicve correct mechanisms in terms of functionality and linguistic
expression. Future rescarch, on a SUCCCSSOT to DPL-82 (DPL-§37), may be concerned with mechanism

optimization and resource allocation issues.*

3.5. Nodes with inputs and outputs

performs the x? function called xsquared, and another node which utilizes xsquared in a simple parallel
computation, which we will cail Plus2xsq. It will present two xs quared nodes with numbers, and sum

and print their results,

(nede xsquared
external_arcs ((integer inx) =» (integer outx))
procedure xsg (inx: integer; var outx: integer);
begin

Writeln("Toto, inx 45 *, inx:1, *17);
outx := dnx * qpx:
end;
activate ((tnkens_avai?ab]e)
(apply xsg to [inx, outx])
(terminate)))

*Nelson and Spector agg worked on low-leve! oplimisations of remote procedure call, an alternative method of structuring
distributed compuiations, Bryant, Chu and Arvind have researched the issucs of distributed computer resource allocation from the

npcr:g(i)r)%fyz\}cm point of view, and the related issuc of the optimal process-lo-processor mapping from the program’s poinl of
view, < <0

Pugc b npi-82: A Language for Distributed Processing

{node plus2xsqg
internal_arcs
((integer resultl resuli?) =>
{integer x1 x2Y})
procedure plusx12 (var x1, x2: integer):

begin xi := 33 x2 := 4; end:
procedure getresults (r1, r: integer):
begin
writeln("The result js ", (r1+r2}):1, R B
end;
uses {uses array[2 max 2] of node xsquared)

initialize
(initialize node xsquared[1])
(initialize node xsquared[2])
connect {=> xl asguared[1]:inx)
{(=> x2 xsquared[2]:inx}
{=> isquared[1]:outx resultl)
(=> xsguared[2]:outx resuit2)
to_instantiate (apply plusxi2 to [x1, x21)
activate ((tokens_avai1ab1e)
(apply getresults
to [resultl, resultz])
(terminate)))

This may be pictured as in Figure 3-1.

[3 4
x1 x2
plusx12
e oo ——_— —— |—

Figure 3-1: A nodc illustrating internal arcs

SOME LXAMPLES PAGET

When executed, Plus2xsq gives the following results:

$ plus2xsg

Toto, inx is 4|
Toto, inax is 31
The result is 25.

The node that started the node that owns a given set of input arcs does not know about these internal arcs.
The only way that information can flow out of the purview of the internal arc owner and‘into the purview of
the node that starts up the owner, is if the internal arc owner connects a child arc to an internal arc (see
below).

We can illustrate the use of child arcs with the node xfourth, which has one input child arc and one
output child arc. xfourth outputs the value of the input raised to the fourth power. xfourth is shown in
Figure 3-2. -

x

resuit

Figure 3-2: A node iNustrating child arcs

The code for xfourth, like a subroutine, hides the implementation of the arithmetic operation as a

subnetwork of concurrently executing nodes. This subnetwork is analogous to the lines of codc that define a

subroutine body.

Page 8 pp1-82: A Language for Distributed Processing

{node xfourth
child_arcs ([{integer x) => (integer result})
var root: string; sub: integer:
uses {uses array[2 max 2]
of node newxsguared)

initialize

{initialize node newxsquaredf{1])

{initialize node newxsquared[2])
connect (=> X newxsguared[1]:inx)

{(=> newxsquared[1]:outx

newxsquared[2]:inx)

(=> result newxsguared[2]:outx)
activate ((signal_from parent halt)

{slow signal_to children
[newxsquared[l].newxsquared[Z]]
hatt)

(terminate}))

We can exercise xfou rth with the following node, fourthstream, which reads integers from the
terminal and prints out their fourth powers. When the end of the input stream is reached, fourthstream
terminates after sending a halt signal to xfourth. xfourth will then signal its xs quared subordinates
to halt, and terminate itself. The xsquared nodes will terminate themselves, and the distributed

computation will conclude.

The definition of xsquared must be modified slightly to catch the signal. We will call the new version
newxsquared. newxsquared also does not terminate after the first set of input tokens, but rather cycles

indefinitely until the halt signial has been received.

3.6. Cyclic checking of activation conditions

The concept of ¢ycling is very important. The dcfault action of the node is to wait for |PC messages which
represent tokens or signals. then evaluate the activation conditions. which usually refer to token of signal
arrival events. However note that in fourthstream the first activation condition refers to @ side-effect
generated by the next activation conditions. This side-effect emanates from the input_stream procedure,
and signals that the cnd of input has been reached. The creation of the side-cffect is dependent on the user's
typein, and not on MEssage events (although it strictly follows the last result token arrival). Hence the
detection of the side-cffect docs not involve waiting for a message cvent. If we chose the default action of

waiting forever for a message event. then the first activation condition would never be tested.

The solution chosen here is to modify the amount of time we arc willing to wait for message cvents. This

time is chosen so that we don't needlessly check the activation conditions while actually waiting for mcssages,

SOME EXAMPLES PAGL

and so that we don't wait too tong, when we aren’t expecting messages, to get around to checking the
non-message-cvent-related activation conditions, When the user s Lyping in numbers, fourthstream
might caich a "timeout” or two before receiving the Tesponse, but this is harmless, When the user types in the.
number -1, indicating end-of-input, the variable EQS is changed to true. The node will wait at most 500

milliseconds, when EOS condition is true, to signal "end of computation” and terminate,*

{node newxsguared
external_arcs ((integer inx) => (integer outx))
Procedure xsq (inx: integer; var outx: integer)
begin outx := inx » inx; end:
activate ((tokens_avai'lab]e)

(apply xsqg to [inx, outx]))
((signal_from parent halt)(terminate)))

Page 10 DEL-§2 A

anguage for Distributed Processing

{node fourthstream
internal_arcs ({integer result
var EQS: boolean:
function input_stream {var x1: integer):boolean;
begin write{">")i readIn(x1):

if (x1 = -1)
then begin EOS

} => (integer)}

s=true;

input_stream := falise;
end

else input_stream := frue;
end:
procedure init_stream (var x: integer):
var toss: boolean:
begin EQOS := FALSE:

toss = jnput_stream(x);
end;
procedure outpui_stream (result: integer):
begin

writeln("The result is = result:l, ")
end;
uses (uses node xfourth)
initialize (initialize node xfourth)
connect {(=> x xfourth:x)

(=> xfourth:re
to_instantiate {apply ini
cycle_time_is (= 500)
activate {{+ EOS)

{s1ow signal_to children
[xfourth] halt)
(terminate))
((tokens,avaiTab1e)
(apply output_stream to [resuit])
{test input_stream 17 [x]: [N

sult result)
t_stream to [x])

We have now used child, external and internal arcs. four thstrea

Figure 3-3. The following is a sample of how it behaves:

m’s execution network is pictured in

$ fourthstream

> 2

The result is 16.
> 5

The result is 625.
> =1

$

FUTURL RESTARCH PAGE 11

output
- T — ___' external
input stream are
X -+ -,

input l_ [
chiid - -
arc

P X

input
external output
arcs external
‘\ arcs
\ Y >
output /

[\
/

\

child
arc 4
— result x
>V input
internal

'_ - T arc
result <—L —
r output stream

fourthstream

Figure 3-3: A network of nodes with external, internal and child arcs

4. FUTURE RESEARCH

We intend to implement abstractions of the features of this language in Edinburgh ML,% an interpreted,
typed functional language designed for research in denotational semantics, ¥ as 2 first step toward the
development of a power-domain based>! semantics of the underlying IPC facility and the conceptual features
of the language,

whose instruction set s optimized towards message-passing and distributed programs whose underlying
control construct is the continuation. - The notion of a continuation is to be found in Actor semantics,? the

notion of the RTRANSFER in remote procedure call,! and in denotational semantics, 32

The concept of constraint networks may find a home in the distributed processing context with datafiow-

like languages, such as a Successor to DPI-82, which are extended to include the notion of bi-dircctional arcs

Page 12 P82 A Language tor Distributed Processing

5. ACKNOWLEDGEMENTS

The author is indebied to Prof. Raj Reddy for providing him with funding and rescarch facitities to do this,
work. Professors Richard Rashid and IDana Scott have provided an cnormious amount of support,
encouragement and constructive criticism. Conversations with David Hornig, Roger Dannenberg, and other
members of CMU’s distributed systems and distributed sensor network communities have also been very
helpful. Jeff Shrager has tirelessly reviewed many drafts of this paper: please give him a teddy bear if you
find him.

" REFERENCES
1. Nelson, Bruce Jay, Remote Procedure Call, PhD dissertation, CMU CSD, May 1981.

2. Hewitt, C., “Viewing Control Structures as Patterns of Passing Messages,” Artificial Intelligence, Vol.
%, No. 3, January, 1977.

3 Lieberman, Henry, A Preview of Act 1,” Al Memo 625, MIT Al Laboratory, April 1981

4, Lieberman, Henry, “Thinking About Lots Of Things At Once Without Getting Confused: Parallelism
in Act1,” Al Memo 626, MIT Al Laboratory, May 1981,

5. Clinger, William Douglas, Foundations of Actor Semantics, PhD dissertation, MIT, May 1981.
6. Dennis, Jack B., “Data Flow Supercomputers,” JEEE Computer, November, 1980.

1. Dennis, Jack B., et al, “Research Directions in Computer Architecture,” MIT LCS Tech
Report TM-114, MIT, September 1978.

8. Gurd, John and Ian Watson, “Data Driven System for High Speed Paratlel Computing,” Computer
Design, June-July, 1980.

9. Ruggiero, W.. et. all.. “Analysis of data flow models using the SARA graph model of behavior,”
Proceedings of the AFIPS National Computer Conference, 1979.

10. Shoch, J. F.and J.A. Hupp, “Notes on the Worm programs -- somc carly experience with a distributed
computation,” Tech. report sS1.-80-3, Xerox PARC, September 1980.

11. Rashid, Richard F.. “An Inter-Process Communication Facility for UNIX,” Tech.
report CMU-CS-80-124, CMU CSD, February 1980.

12. Morrison, J.P., “Data Strcam Linkage Mechanism.” [BM Systems Journal, Vol. 17, No. 4, 1978.

13. Levine, JR. and J.P. Morrison, “Forum: Data streamn linkage and the UNIX system,” [BM Systems
Journal, Vol. 18, No. 3, 1979.

14. Bocbert, W.E. “The HXDP Exccutive Interim Report.” Tech. report 78SRCS3, Honeyweil Systems &
Rescarch Center, June 1978.

15. Bocbert, W.E. “Concepts and Facilitics of the HXDP Exccutive,” Tech. report 78SRC21, Honcywell
Systems & Research Ctr., March 1978.

REFERENCES PAGIE 13

16.

17.

18.

19.

20.

21,

22,

23,

24,

25.

26.

27.

28.

29.

30.

31

32

3.

Lesser, Victor, Daniel Serrain and Jeff Bonar, “PCL: A Process-Oriented Job Control Language,”
Proceedings of the Ist Inil Conf on Distributed Computing Systems, IEEE, 1979,

Dannenberg, Roger B. "AMPL.: Design, Implementation and Evaluation of A Multiprocessing
Language,” Tech. report, CMU Computer Science Dept, March 1981,

Snodgrass, Richard, “Ap Object-Oriented Command Language,” Tech. report CMU-CS-80-146,
CMU CSD, October 1980,

Department of Defense, Reference Manual for the AD A Programming Language, 1980,

Jones, Anita K. and Karsten Schwans, “TASK Forces: Distributed Software for Solving Problems of
Substantial Size,” Proceedings of 4th IFEE Software Engineering Conference, September 1979, pp.
315-330.

Liskov, Barbara, “Linguistic Support for Distributed Programs: A Status Report,” Memo 201, MIT
LCS Computation Structures Group, October 1980,

Hoare, CAR., “Comrnum'cating Sequential Processes,” ¢ ommunications of the ACM, Vol. 21, No. 8,
1978,

Arvind, “Decomposing a Program for Multipte Procesor Systems,” Proceedings of the 1980
International Conference on Parallel Processing, 1EEE, 1930. .

Dannenberg, Roger B., “The Spice Butler,” Spice Project Internal Working Paper Spice Document
§110, CMU CSD Spice Project, August 1981,

Spector, Alfred Z., “Performing Remote Operations Efficiently on a Local Computer Network,” Tech.
report STANCS-80-850, Stanford University Computer Science Dept., December 1980,

Bryant, RM., and R A, Finkel, “A Stable Distributed Scheduling Algorithm™, University of Wisconsin
Computer Science Dept.

Chu, WW., LJ. Holloway, M. Lan and E. Kemal, “Task Allocation in Distributed Data Processing,”
{EEE Computer, November, 1980.

Gostelow, K., et. al, “Proper Termination of Flow-Of-Control in Programs Involving Concurrent
Processes,™ Proceedings of the 1972 ACM National C omputer Conference, ACM, 1972,

Gordon, M. J.. A.J. Milner and C.P. Wadsworth, Edinburgh LCF, Springer-Vcrlag, Lecture Notes in
Computer Science, Vol 78, 1979,
New York, 1979.

Stoy, Joseph E,, Denotational Semantics: the Scott-Sirachey Approach 1o Programming Language
Theory, MIT Press, Cambridge, Mass,, 1977.

Sethi, Ravi and Adrian Tang, "Constructing Call-by-Value Continuation Scemantics,” Journai of the
ACM, Vol. 27, No. 3. J uly, 1980, pp. 580-597.

Stecle, Guy 1., “The Definition and Implementation of 4 Computer Programming ILanguage Based on

Page 14 pPL-82; A Language for Distributed Processing

MIT Al Laboratory, August 1980.

Constraints,” Tech. report ALFTR-595,
* Tech. report STAN-CS-79-746,

34. Borning, A.. “Thingl.ab: a constraint-oricnted simutation laboratory,”

Stanford University CSD. July 1979.

	Carnegie Mellon University
	Research Showcase
	1-1-1982

	DPL-82, a language for distributed processing
	Lars Warren. Ericson
	Recommended Citation

