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Abstract

DPL-82 is a language for composing programs of concurrently-¢xecuting processes. Processes may be all on a
single machine or may be distributed over a set of processors connected to a network. The semantics of the
language is derived from the underlying interprocess communication facility (IPC) and from the dataflow
model of computation. This paper discusses the major concepts of the language, namely nodes, arcs,
connections, lokens, signals, and activations, and presents examples which illustrate the construction of
distributed programs in DPL-82 with internal arcs, external arcs and child arcs. Features for process-to-
processor mapping and dead process restart are mentioned. The paper concludes with some ideas for future
research.
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L INTRODUCTION

The intention of the research leading to DPL-82 was 1o implement a programming language to control a
local network of computers as if they were a single computing engine, There are many schools of thought with
respect to the choice of an underlying mechanism for control and communication in a distributed program.

One important decision is whether the flow of control or the flow of data is cmphasized. The control-flow end

inciudes an Actor language cailed ATOLIA.® The data-flow end of the Spectrum is characterized in the dataflow
concept.5 78 Ap important descriptive method arising from dataflow research is the UCLA SARA Graph
Model of behavior.? Our language, DPL-82, is a dataflow language. A final, important, distinction is whether
control “remains centralized” afier the initial stages of execution of the distributed program. This tends to be
the case in the majority of approaches cited in this paper: the exception that proves the rule is the worm

control program research of Shoch, 10«

DPL-82 derives its emphasis, not from theoretical constructions of language features for parallelism or out of
designs for parallel machines, but from research on operating system mechanisms for interprocess
communication. DPL-82 depends on the the port and message concepts of Rashid’s CMU VAX/UNIX
INICIprocess communication facility (referred to in this paper as the IPC),11 to implement a interprocess
communication path concept called the arc. The are is very similar to Morrison’s datq stream linkage
mechanism,** 13 and the window concept of the Honeywell HXDpP operating system, !4 15 A language very
similar to DPL-82 is Lesser’s pcL.16

There are several veins of distributed processing language rescarch which do not fall dircctly into the
classifications given above, Onc is that of languages written for specific hardware architectures, such as
Dannenberg’s ampr for the CMU CM* processor’’ and Snodgrass’s object-oriented language COLA for the
CMU C.MMP processor, 18 There is much work centered around the ideas of lasking and semaphores, such as
the ADA tasking facility,1? STAROS Task Force?® and CLU guardians.®! Finally we must mention Hoare’s very
popular Ccsp languagc.?‘2 CSP has a process concept and a compact notation for linking the inputs and outputs
of processes, but unlike most of the work arising out of the cxperimental systems-building community,
cmphasizes processes which are very small computattonaily, and binds processcs very tightly to cach other

{(cach process description is written for exactly one named calier, hence there is no possibility for "libraries™ of
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processes which could be "linked™ together to form a distributed program).

n DPL-82 a distributed program is composcd of proccsses exccuting on a number (possibly one) of
machines. Each machine in the network supplies some number of processes. A process is a running core
image, and each computer might store on secondary mcmdry cxecutable core images for some subset of the
different kinds of processes which compose the entire program. The processes are connected with
communication channels supplied by the [PC.* To make a DPL-82 distributed program of sub-program, user
supplied PASCAL code is embedded in a process description which defines the communications interface
(input and output communication paths) for the process being described, subprocéss requirements, and
interconnection of communication paths of subprocess. This description is translated into a complete PASCAL
program for that process which may then be compiled and executed in the DPL-82 runtime environment. The
funtime environment supplies protocols via the IPC for establishing communication paths between
subprocesses and (network transparent) passing of data on those paths, and a facility to allow a DPL-82
distributed program component {process) on one machine to request the loading of a process on another
machine (which process may in turn cause the loading of additional processes, etc). DPL-82 also provides the
ability to pass parameters (o subprocesses at subprocess load-time. For example, the size of various portions
of a distributed program (in terms of number of processes) may be a runtime-computed function of such

parameters.

2. PARTICULARS OF THE LANGUAGE

The processes that make up a DPL-82 distributed program are called nodes. Nodes are nol 0 be construed
as Processers in a network. but rather as processes that those processors provide. A node description consists

of a number of sections:

« The name of the node.

« Declaration of its communication links (arcs): the internal_arcs, external_arcs and
child_arcs sections*™.

o Declaration of (children nodes): the uses section.
« Child startup and initialization parameters: the initialize scction.

» Arc interconncection: the co nnect section which contains arc-to-arc pairs marked by arrows (=>).

*A process cannot tehl whether a given connection is 1o another process in the same machine of 10 4 process on another machine on the
newwork, This is a property of the IPC mechanism. DPL-H2 is, in cffcct, a programming language made out of a set of protocols and
capapilitics dependent on this particular interprocess communication mechanism.

o o eet in this typeface.
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e Startup-time-only computation: the to_instantiate section, and

® activation conditivns; the activate section which controls the handling of tokens, signals and
child processes thereafier,

2.1. Arcs

The communication links between nodes are called arcs. Arcs are implemented with 1pc ports.* A node,
through its Dp1-87 description, may declare a variety of input and Oulpul arcs., Arcs transmit tokens and
signals. A token, modelled after the concept of a token in dataflow networks,® is a typed data object. A signal

is a string. Tokens and signals are communicated by IPC messages.

There are three sorts of arcs:

* An internal arc is a connection between a parent node and a child node. The actual connection is
made by the parent. The parent is the process which starts a given (child) process, whether or not
the parent process is on the same machine as the child process,

* An external arc is a path into or out of a node, which is declared inside that node, but whose
connections are set by the parent of the node.

These three varieties of input and output arcs provide distributed processing analogues to expressions,

unconnccted arcs of the sub-network with child arcs is like a subroutine, Finally, a node with no external arcs
that creates a network of child nodes (and Mmay connect itself to that network with internal arcs) is like a main

program.

2.2. Starting nodes

The initialize Statement Joads a process and provides it with parameters, For example:
(forifrom 105 {inttialize node 'l‘rafﬁcl,ight(i)[i]))

starts up five Trafficlights. The first usc of i (in parentheses) refers to the particular instance of

*A porris like a mailbox, of which a process may own several, lo which data may be sent in the form of messages.

**This aralopy is I‘nisli; apt, given work such as that of Arvind which 1akes cxpressions in a functiona] language and "flatiens” them
into dataflow nelworks,
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TrafficlLight being toaded. The sccond use {in brackets) is a integer-valuced parameter being passed to

that Trafficlight instance.*

One can start a process on another machine with a statcment like:
(initialize node Correlator on_host “CAD-VAX")
which says to load a process whose core image is stored on file name Correlator on the processor whase

symbolic local net address is "CAD-VAX"**

2.3. Connecting nodes

The => statement makes connections between nodes. For example:
(=> phi1osopher[4]:hand fork[§]:handle)

connects philosopher number four's hand to fork number five's handle.

1.4. Activation conditions

The remainder of the node description is taken up by the activation conditions, which allow tokens and
signals to be received and transmitted, and other actions to be taken such as node self-termination and child
node restarting. These may be contingent upon signal and token arrival, timeouts, internal state of a user’s

PASCAL code, and boolean combinations of the above.

The following DPL-82 activation condition-action pair detects the death of a process and restarts it:

((is._dead some_node}{restart some_node ) )

This is a primitive restarting capability, whose only effect is to start a process of the same name and give it
the connections of the dead process*™**. Nothing in the language deals with the queston of restoring the

internal state of a lost process.

3. SOME EXAMPLES

We will now presenta number of simple nodes 10 illustrate the concepls discussed above. It is important (o
note that these nodes are not very computation-intcnsive, and that the rcal cconomy of this language comcs

with nodes which do more work. Also, we will not, in this paper, present any timing mcasurements for

*We are passing it because we want cach TrafficLight wknow what it's name is with respect o the parent A child node does
not automatically know it’s "name” in DPL-82

“Dannﬂbcrg discusses a design for a more general network operating sysiem mechanism called the BUTLER for remotely allocating
PrOCOSECS.

se#The ability of conneclions 1o survive process death is a property of the IPC mechanism.
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cstablishing connections or passing tokens or signals, and we wil] not consider the problems of optimal
Process-to-processor mapping.  This is partly due to spuce limitations, and partly duc to the fact that the
primary thrust of this research has been to achicve correct mechanisms in terms of functionality and linguistic
expression.  Future rescarch, on a SUCCCSSOT to DPL-82 (DPL-§37), may be concerned with mechanism

optimization and resource allocation issues.*

3.5. Nodes with inputs and outputs

performs the x? function called xsquared, and another node which utilizes xsquared in a simple parallel
computation, which we will cail Plus2xsq. It will present two xs quared nodes with numbers, and sum

and print their results,

(nede xsquared
external_arcs ((integer inx) =» (integer outx))
procedure xsg (inx: integer; var outx: integer);
begin

Writeln("Toto, inx 45 *, inx:1, *17);
outx := dnx * qpx:
end;
activate ((tnkens_avai?ab]e)
(apply xsg to [inx, outx])
(terminate)))

*Nelson and Spector agg worked on low-leve! oplimisations of remote procedure call, an alternative method of structuring
distributed compuiations, Bryant, Chu and Arvind have researched the issucs of distributed computer resource allocation from the

npcr:g(i)r)%fyz\}cm point of view, and the related issuc of the optimal process-lo-processor mapping from the program’s poinl of
view, < <0
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{node plus2xsqg
internal_arcs
((integer resultl resuli?) =>
{integer x1 x2Y})
procedure plusx12 (var x1, x2: integer):

begin xi := 33 x2 := 4; end:
procedure getresults (r1, r: integer):
begin
writeln("The result js ", (r1+r2}):1, R B
end;
uses {uses array[2 max 2] of node xsquared)

initialize
(initialize node xsquared[1])
(initialize node xsquared[2])
connect {=> xl asguared[1]:inx)
{(=> x2 xsquared[2]:inx}
{=> isquared[1]:outx resultl)
(=> xsguared[2]:outx resuit2)
to_instantiate (apply plusxi2 to [x1, x21)
activate ((tokens_avai1ab1e)
(apply getresults
to [resultl, resultz])
(terminate)))

This may be pictured as in Figure 3-1.

[ 3 4
x1 x2
plusx12
e oo ——_— —— |—

Figure 3-1: A nodc illustrating internal arcs
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When executed, Plus2xsq gives the following results:

$ plus2xsg

Toto, inx is 4|
Toto, inax is 31
The result is 25.

The node that started the node that owns a given set of input arcs does not know about these internal arcs.
The only way that information can flow out of the purview of the internal arc owner and‘into the purview of
the node that starts up the owner, is if the internal arc owner connects a child arc to an internal arc (see
below).

We can illustrate the use of child arcs with the node xfourth, which has one input child arc and one
output child arc. xfourth outputs the value of the input raised to the fourth power. xfourth is shown in
Figure 3-2. -

x

resuit

Figure 3-2: A node iNustrating child arcs

The code for xfourth, like a subroutine, hides the implementation of the arithmetic operation as a

subnetwork of concurrently executing nodes. This subnetwork is analogous to the lines of codc that define a

subroutine body.
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{node xfourth
child_arcs ([{integer x) => (integer result})
var root: string; sub: integer:
uses {uses array[2 max 2]
of node newxsguared)

initialize

{initialize node newxsquaredf{1])

{initialize node newxsquared[2])
connect (=> X newxsguared[1]:inx)

{(=> newxsquared[1]:outx

newxsquared[2]:inx)

(=> result newxsguared[2]:outx)
activate ((signal_from parent halt)

{slow signal_to children
[newxsquared[l].newxsquared[Z]]
hatt)

(terminate}))

We can exercise xfou rth with the following node, fourthstream, which reads integers from the
terminal and prints out their fourth powers. When the end of the input stream is reached, fourthstream
terminates after sending a halt signal to xfourth. xfourth will then signal its xs quared subordinates
to halt, and terminate itself. The xsquared nodes will terminate themselves, and the distributed

computation will conclude.

The definition of xsquared must be modified slightly to catch the signal. We will call the new version
newxsquared. newxsquared also does not terminate after the first set of input tokens, but rather cycles

indefinitely until the halt signial has been received.

3.6. Cyclic checking of activation conditions

The concept of ¢ycling is very important. The dcfault action of the node is to wait for |PC messages which
represent tokens or signals. then evaluate the activation conditions. which usually refer to token of signal
arrival events. However note that in fourthstream the first activation condition refers to @ side-effect
generated by the next activation conditions. This side-effect emanates from the input_stream procedure,
and signals that the cnd of input has been reached. The creation of the side-cffect is dependent on the user's
typein, and not on MEssage events (although it strictly follows the last result token arrival). Hence the
detection of the side-cffect docs not involve waiting for a message cvent. If we chose the default action of

waiting forever for a message event. then the first activation condition would never be tested.

The solution chosen here is to modify the amount of time we arc willing to wait for message cvents. This

time is chosen so that we don't needlessly check the activation conditions while actually waiting for mcssages,
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and so that we don't wait too tong, when we aren’t expecting messages, to get around to checking the
non-message-cvent-related activation conditions, When the user s Lyping in numbers, fourthstream
might caich a "timeout” or two before receiving the Tesponse, but this is harmless, When the user types in the.
number -1, indicating end-of-input, the variable EQS is changed to true. The node will wait at most 500

milliseconds, when EOS condition is true, to signal "end of computation” and terminate,*

{node newxsguared
external_arcs ((integer inx) => (integer outx))
Procedure xsq (inx: integer; var outx: integer)
begin outx := inx » inx; end:
activate ((tokens_avai'lab]e)

(apply xsqg to [inx, outx]))
((signal_from parent halt)(terminate)))
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{node fourthstream
internal_arcs ({integer result
var EQS: boolean:
function input_stream {var x1: integer):boolean;
begin write{">")i readIn(x1):

if (x1 = -1)
then begin EOS

} => (integer )}

s=true;

input_stream := falise;
end

else input_stream := frue;
end:
procedure init_stream (var x: integer):
var toss: boolean:
begin EQOS := FALSE:

toss = jnput_stream(x);
end;
procedure outpui_stream (result: integer):
begin

writeln("The result is = result:l, ")
end;
uses (uses node xfourth)
initialize (initialize node xfourth)
connect {(=> x xfourth:x)

(=> xfourth:re
to_instantiate {apply ini
cycle_time_is (= 500)
activate {{+ EOS)

{s1ow signal_to children
[xfourth] halt)
(terminate))
((tokens,avaiTab1e)
(apply output_stream to [resuit])
{test input_stream 17 [x]: [N

sult result)
t_stream to [x])

We have now used child, external and internal arcs. four thstrea

Figure 3-3. The following is a sample of how it behaves:

m’s execution network is pictured in

$ fourthstream

> 2

The result is 16.
> 5

The result is 625.
> =1

$
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output
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output /
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\
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r output stream

fourthstream

Figure 3-3: A network of nodes with external, internal and child arcs

4. FUTURE RESEARCH

We intend to implement abstractions of the features of this language in Edinburgh ML,% an interpreted,
typed functional language designed for research in denotational semantics, ¥ as 2 first step toward the
development of a power-domain based>! semantics of the underlying IPC facility and the conceptual features
of the language,

whose instruction set s optimized towards message-passing and distributed programs whose underlying
control construct is the continuation. - The notion of a continuation is to be found in Actor semantics,? the

notion of the RTRANSFER in remote procedure call,! and in denotational semantics, 32

The concept of constraint networks may find a home in the distributed processing context with datafiow-

like languages, such as a Successor to DPI-82, which are extended to include the notion of bi-dircctional arcs
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