On a solution to the cigarette smokers' problem

David Lorge. Parnas

Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/compsci

This Technical Report is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been accepted for inclusion in Computer Science Department by an authorized administrator of Research Showcase @ CMU. For more information, please contact research-showcase@andrew.cmu.edu.
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.
ON A SOLUTION TO THE CIGARETTE SMOKERS' PROBLEM

(without conditional statements)

D. L. Parnas

July, 1972

This work was supported in part by the Naval Research Laboratory under project WF-15-241-601 and in part by the Advanced Research Projects Agency of the Office of the Secretary of Defense (F44620-70-C-0107) and is monitored by the Air Force Office of Scientific Research. This document has been approved for public release and sale; its distribution is unlimited.
ABSTRACT

This report discusses a problem first introduced by Patil [1]. Patil has presented a proof that the problem cannot be solved using the P and V operations introduced by Dijkstra [3] unless conditional statements are used. This report contains a solution to the problem as defined by Patil and shows that Patil's proof overlooks important capabilities for P and V which were used by Dijkstra in his original report. This report also discusses the need for the generalized operators suggested by Patil.
Introduction

In a widely circulated and referenced memorandum [1,2], Suhas Patil has introduced a synchronization problem entitled "The Cigarette Smokers' Problem". He claims that the problem cannot be solved using the P and V primitives introduced by Dijkstra [3] unless conditional statements are also used. He supports that claim with an elaborate proof in terms of Petri Nets. On the basis of that proof, Patil concludes that the P and V primitives are not sufficiently powerful and that more complex operations are needed. In this paper we present a solution to the Cigarette Smokers' Problem, discuss the "flaw" in Patil's proof, and discuss the need for additional operations.

The Problem

To avoid the possibility of misinterpretation of the problem, and because the problem is defined with some quite arbitrary restrictions, we quote the following statement of the problem directly from the paper by Patil [1].
"The Cigarette Smokers' Problem

Three smokers are sitting at a table. One of them has tobacco, another has cigarette papers, and the third one has matches -- each one has a different ingredient required to make and smoke a cigarette but he may not give any ingredient to another. On the table in front of them, two of the three ingredients will be placed, and the smoker who has the necessary third ingredient should pick up the ingredients from the table, make a cigarette and smoke it. Since a new set of ingredients will not be placed on the table until this action is completed, the other smokers who cannot make and smoke a cigarette with the ingredients on the table must not interfere with the fellow who can. Therefore, coordination is needed among the smokers. The actions of the smokers without the coordination are as follows.

X - the smoker with tobacco

α_x: pick up the paper
 pick up the match
 roll the cigarette
 light the cigarette
 smoke the cigarette
 return to α_x

Y - the smoker with paper

α_y: pick up the tobacco
 pick up the match
 roll the cigarette
 light the cigarette
 smoke the cigarette
 return to α_y

Z - the smoker with matches

α_z: pick up the tobacco
 pick up the paper
 roll the cigarette
 light the cigarette
 smoke the cigarette
 return to α_z

To inform the smokers about the ingredients which are placed on the table, three semaphores a, b and c representing tobacco, paper and match respectively, are provided. On placing an ingredient on the table, the corresponding semaphore is incremented by performing a V[] operation. On the smokers' side semaphores X, Y and Z are used to signal that a cigarette has been smoked. The smoker who completes smoking a cigarette performs the operation V[] on the corresponding semaphore.

The smokers' problem is, then, to define some additional semaphores and processes, if necessary, and to introduce necessary P and V statements in these
processes so as to attain the necessary cooperation among themselves required to ensure continued smoking of cigarettes without reaching a deadlock. There is, however, a restriction that the process which supplies the ingredients cannot be changed and that no conditional statements may be used. The first restriction is placed because the smokers are seeking cooperation among themselves and therefore should not change the supplier, and the second restriction is justified because \(P \) and \(V \) primitives were introduced to avoid having to coordinate processes by repeatedly testing a variable until it changes its value, and because the operation of making and smoking a cigarette has no conditional actions. It will be seen that the cigarette smokers' problem has no solution.

To give a precise statement of the problem, we will present below the processes involved. The set of processes in the enclosed area when taken together, represent the agent who puts the ingredients on the table. It should be recalled that semaphores \(a, b, \) and \(c \) represent tobacco, paper and match respectively, and the action of putting these ingredients on the table is represented by \(V[] \) operation on the corresponding semaphores. Among the processes representing the agent, such actions are performed by the processes \(R_a, R_b \) and \(R_c \) which represent the three possible actions of the agent. Initially semaphore \(s \) is 1 and the processes \(R_a, R_b \) and \(R_c \) compete to perform \(P[s] \), and the process which succeeds puts the ingredients on the table by performing \(V[] \) on two of the semaphores. Processes \(\beta_x, \beta_y \) and \(\beta_z \) detect the completion of smoking of a cigarette; \(\beta_x \) performs \(V[s] \) when smoker \(X \) indicates completion of smoking the cigarette by performing \(V[X] \). The semaphore \(s \) serves to signal that it is time for the agent to place a new set of ingredients on the table.

On the smokers' side an attempt is made to represent their actions by means of the processes \(X, Y \) and \(Z \). These processes, however, do not correctly represent their activity because of the possibility of a deadlock. For example, in one case, tobacco and paper are placed on the table, and process \(Y \) may perform \(P[a] \) before process \(Z \), the process which was supposed to perform \(P[a] \), and thereby create a deadlock in which no process is able to proceed.
The smokers' problem is to define additional semaphores and processes and to introduce appropriate P and V statements so as to make them deadlock free. No alteration may, however, be made to the processes defining the agent."

End of Quotation
The Solution (processes and semaphores additional to the agent)

Semaphore mutex; (initially 1)
Integer t; (initially 0)
Semaphore array S[1:6]; (initially 0)

<table>
<thead>
<tr>
<th>δ_a</th>
<th>δ_b</th>
<th>δ_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(a); P(mutex); t ← t + 1; V(S[t]); V(mutex); go to δ_a;</td>
<td>P(b); P(mutex); t ← t + 2; V(S[t]); V(mutex); go to δ_b;</td>
<td>P(c); P(mutex); t ← t + 4; V(S[t]); V(mutex); go to δ_c;</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>bc</td>
<td>ac</td>
<td>ab</td>
</tr>
<tr>
<td>δ_a: P(S[6]); t ← 0; V(X); go to δ_a;</td>
<td>δ_b: P(S[5]); t ← 0; V(Y); go to δ_b;</td>
<td>δ_c: P(S[3]); t ← 0; V(Z); go to δ_c;</td>
</tr>
</tbody>
</table>

Optional: if overflow is a problem

δ_1: P(S[1]); go to δ_1;
δ_2: P(S[2]); go to δ_2;
δ_3: P(S[4]); go to δ_3;
Comments

The last three processes are superfluous unless one worries about the ill-defined problem of semaphore overflow. The solution works by simulating a six branch case statement using a semaphore array and simple arithmetic operations. The solution is simpler than the solution given by Patil using conditionals.

On Patil's Proof

Patil [1] gives a method of representing cooperating processes as Petri nets. The scheme does not appear to be adequate when semaphore arrays are considered. Patil states that "the 'transition' representing the instruction P[S] has an additional arc from the place corresponding to semaphore S and from the transition corresponding to the instruction V[S], there is an additional arc to the place corresponding to the semaphore S." Every element of a semaphore array must be represented by its own place. The transitions corresponding to P and V operations may now place markers in any one (but only one) of these places. Patil's description of the action of a Petri net states that a transition places markers on all of its output places.

It appears then that Patil has used (but not stated) an assumption that there are no semaphore arrays. Since these arrays appeared in the earliest literature on the subject [3], the limitations reported by Patil are limitations of his primi-
tives, but they are not limitations on the primitives described by Dijkstra.

On a Complication Arising from the Introduction of Semaphore Arrays

The use of semaphore arrays does introduce one minor complication which has not been discussed in the literature. In a call of the form "P(S[E])" (where E represents an arbitrary integer valued expression), the evaluation of E must take place only once and before execution of the body of "P". The evaluation is not considered a part of the "primitive" P. (In other words, we must be able to consider the state of the system during evaluation of the expression, whereas we have no information about the state of the system during the execution of a "Primitive" such as "P" or "V". Those interested in programming languages might be intrigued by the fact that the classical parameter passing modes found in ALGOL 60 are inadequate for this purpose. Were we to want to write an appropriate "P" algorithm in ALGOL 60, it would require use of the format P(s,E) where s is a semaphore array. Only in this way could we call E by value while being able to refer to s by name. We consider this minor difficulty to be a quirk in the design of ALGOL 60 rather than any limitation on the concept of the semaphore.
On the Yet Unsolved Problem

It is not the purpose of this paper to suggest that there are no limitations to the capabilities of Dijkstra's semaphore primitives. Our only conclusion is that the limitation reported by Patil is not a limitation of the semaphore as introduced by Dijkstra. There may well be other limitations of the semaphore operations. While we disagree with the result presented by Patil, we applaud his goal of a precise and substantial evaluation of the Dijkstra primitives.

It is important, however, that such an investigation not investigate the power of these primitives under artificial restrictions. By artificial we mean restrictions which cannot be justified by practical considerations. In this author's opinion, restrictions prohibiting conditionals or semaphore arrays are artificial.

The justifications given by Patil for eliminating conditional statements are not valid. Some characteristics of the definition of the agent are also artificial. In fact, the agent could be modified to make the problem more difficult by removing the restriction that the agent throws down only two resources and waits until they have been taken before adding more [6]. Although we do not have a solution to that more difficult problem (without conditional statements) we do not conclude that the problem is unsolvable.

Such an investigation is made more difficult because (1) we have no firm definition of the set of problems which we wish
to solve, and (2) in using the PV system we have great freedom in the way that we assign tasks to processes and the way that we assign interpretations to the semaphores in use. Often problems which appear unsolvable are easily solved when additional processes or semaphores are introduced. It would be artificial to rule out such solutions in any investigation of the capabilities of semaphore primitives.

"P" and "V" are deliberately designed so that when there are several processes waiting for a "V" operation on a given semaphore, the choice of the process to be released by a "V" is not specified. This "non-determinism" is advantageous in writing programs where schedulers are subject to change or sometimes likely to be moved to another machine. On the other hand, it makes the solution of "priority problems" such as [4] more difficult. Perhaps some are impossible. The question is still open.

On More Powerful Primitives

Patil's paper ends with the introduction of a more powerful primitive than the "P" and "V" primitives. He suggests that the necessity of such a primitive is supported by the inability of "P" and "V" to solve the smokers' problem. Such proposals are not new -- a similar proposal was motivated by the "insufficiency" of "P" and "V" for problems similar to those solved in [4].

Such arguments are invalid since the problems can be solved. Further, we note that the generalized operation can be programmed in a straightforward way using P and V (and conditionals).
In the author's opinion, the use of the word "primitive" to describe routines which might have been called "monitor routines" or "operating system service calls" suggests that the programs implementing the operations be small and quickly executed. There are obvious practical advantages to placing such restrictions on a code which is the uninterruptable "heart" of an operating system. "P" and "V" have the requisite properties, the generalized operations do not.

There is no doubt that the generalized operations can be useful in describing certain processes. If one wants to describe such processes, one should build the operations, but they need not be built as "primitives". This attitude has been taken by the authors of [5] where some interesting new upper level operations are suggested.

The operations suggested by Patil have been called "parallel" operations because they simulate simultaneous activities on many semaphore variables. They make it easy to describe a single process which does tasks which could have been done by several cooperating sequential processes. Often one finds possibilities for parallel execution within such processes; these possibilities cannot be exploited by a multiprocessor system because one does not assign two processors to the same process simultaneously.* Often, because of the potential parallelism within the process, the program describing the process becomes very complex. In this sense, the generalized operation introduced by Patil and others

*Such a restriction is the operational definition of "process" or "task" in most operating systems.
is akin to the "go to" statement in programming languages. Both add nothing to the set of soluble problems; both make it easier to write programs which should not be written.

Acknowledgement

I am indebted to Wing Hing Huen for helping me to strengthen one of the arguments in this paper. I am also grateful to P. Wodon and P. J. Courtois for helpful comments.

References

This report discusses a problem first introduced by Patil 1. Patil has presented a proof that the problem cannot be solved using the P and V operations introduced by Dijkstra 3 unless conditional statements are used. This report contains a solution to the problem as defined by Patil and shows that Patil's proof overlooks important capabilities for P and V which were used by Dijkstra in his original report. This report also discusses the need for the generalized operators suggested by Patil.
ON A SOLUTION TO THE CIGARETTE SMOKERS' PROBLEM (without conditional statements)

Scientific Final

D. L. Parnas

July, 1972

F44620-70-C-0107

9769

61102F

681304

Approved for public release; distribution unlimited.

Air Force Office of Scientific Rsch (NM)
1400 Wilson Blvd.
Arlington, Va. 22209

This report discusses a problem first introduced by Patil 1. Patil has presented a proof that the problem cannot be solved using the P and V operations introduced by Dijkstra 3 unless conditional statements are used. This report contains a solution to the problem as defined by Patil and shows that Patil's proof overlooks important capabilities for P and V which were used by Dijkstra in his original report. This report also discusses the need for the generalized operators suggested by Patil.