1975

Maximal order of multipoint iterations using n evaluations

H Wozniakowski
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/compsci
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.
MAXIMAL ORDER OF MULTIPOINT ITERATIONS USING n EVALUATIONS*

H. Woźniakowski
Department of Computer Science
Carnegie-Mellon University
(On leave from University of Warsaw)

ABSTRACT

This paper deals with multipoint iterations without memory for the solution of the nonlinear scalar equation \(f^{(m)}(x) = 0, \) \(m \geq 0. \) Let \(p_n(m) \) be the maximal order of iterations which use \(n \) evaluations of the function or its derivatives per step. We prove the Kung and Traub conjecture \(p_n(0) = 2^{n-1} \) for Hermitian information. We show \(p_n(m+1) \geq p_n(m) \) and conjecture \(p_n(m) = 2^{n-1}. \) The problem of the maximal order is connected with Birkhoff interpolation. Under a certain assumption we prove that the Pólya conditions are necessary for maximal order.

1. INTRODUCTION

We consider the problem of solving the nonlinear scalar equation \(f^{(m)}(x) = 0 \) where \(m \) is a nonnegative integer. We solve this problem by multipoint iterations without memory which use \(n \) evaluations of the function or its derivatives per step. For fixed \(n \) we seek an iteration of maximal order of convergence. This problem is connected with Birkhoff interpolation and can be expressed in terms of the incidence matrix \(E_n^k = (e_{ij}) \) where \(e_{ij} = 1 \) if \(f^{(j)}(z_i) \) is computed and

*This work was supported in part by the Office of Naval Research under Contract N0014-67-0314-0010, NR 044-422 and by the National Science Foundation under Grant GJ32111.
\[
\sum_{i=1}^{k} \sum_{j=0}^{\infty} e_{ij} = 0 \text{ otherwise; } z_i \neq z_j, \text{ and } \sum_{i=1}^{k} \sum_{j=0}^{\infty} e_{ij} = n. \]
(Note that the problem of Birkhoff interpolation has been open for 70 years, see Sharma [72].)

Let \(p_n(m) \) be the maximal order of multipoint iterations. For \(m = 0 \), Kung and Traub showed that \(p_n(0) \geq 2^{n-1} \). We show that \(p_n(m+1) \geq p_n(m) \) and conjecture \(p_n(m) = 2^{n-1} \). For \(m = 0 \) we prove the Kung and Traub conjecture for Hermitian information, i.e., if \(f^{(j)}(z_i) \) is computed, then \(f^{(0)}(z_i), \ldots, f^{(j-1)}(z_i) \) are also computed. Under a certain assumption we prove that the Polya conditions are necessary for the maximal order, i.e., the total number of \(f,f',\ldots,f^{(j)} \) evaluations has to be at least \(j+1, j = 0,1,\ldots,n-1 \). We show also that \(p_n(0) \leq n(n+1)^{n-1} \). Some special incidence matrices \(E^k_n \) are considered and maximal orders of iterations based on \(E^k_n \) are discussed.

2. THE \(n \)-EVALUATION PROBLEM

We consider the problem of solving the nonlinear scalar equation

\[
(2.1) \quad f^{(m)}(x) = 0
\]

where \(f: D \subset \mathbb{C} \to \mathbb{C} \), \(\mathbb{C} \) denotes the one dimensional complex space and \(m \) is a nonnegative integer. We assume that there exists a simple zero \(\alpha \) of \(f^{(m)}(\alpha) = 0 \neq f^{(m+1)}(\alpha) \), and that \(f \) is analytic in a neighborhood of \(\alpha \). Let \(\mathcal{S} \) denote a class of such functions.

We solve (2.1) by stationary iteration and assume that \(x_1 \) is a sufficiently close approximation to \(\alpha \). To get the next approximation \(x_2 \) to \(\alpha \) we need some information on \(f \). We assume that this information \(\mathcal{M} = \mathcal{M}(x_1;f) \) is given by some
values of the function and its derivatives at the points z_i defined as follows. Let
\[
\begin{align*}
 z_1 & : f^{(j_1)}(z_1), \ldots, f^{(j_k)}(z_1), \\
 \vdots & \\
 z_k & : f^{(j_1)}(z_k), \ldots, f^{(j_k)}(z_k)
\end{align*}
\]
denote points and numbers of derivatives which are computed where nonnegative integers $\{j_i\}$ satisfy the relations
\[
\begin{align*}
 j_1 & < j_{i+1} \quad \text{for } i=1,2,\ldots,k \quad \text{and } \mu=1,2,\ldots,\mu_i-1, \\
 \mu_1 + \mu_2 + \ldots + \mu_k &= n.
\end{align*}
\]
Furthermore,
\[
\begin{align*}
 z_1 &= x_1 \\
 z_{i+1} &= z_{i+1}(z_1, \ldots, z_i, f^{(j_1)}(z_1), \ldots, f^{(j_k)}(z_1), \ldots, f^{(j_1)}(z_i), \ldots, f^{(j_k)}(z_i)) \quad \text{for } i=1,2,\ldots,k,
\end{align*}
\]
where $z_i \neq z_j$ for $x_1 \neq \alpha$ and $i \neq j$, $i,j = 1,2,\ldots,k$,
\[
x_2 = z_{k+1}.
\]
This means that every z_{i+1} is the function of the previous information computed at z_1, \ldots, z_i and the next approximation $x_2 = z_{k+1}$ depends on n evaluations. Sometimes we shall use the notation $z_i = z_i(x_1)$ or $z_i = z_i(x_1, f)$ to stress the dependence on x_1 and f.

To simplify further notations we define an incidence matrix $E_n^k = (e_{ij})$ of the information \mathcal{M}, $i=1,2,\ldots,k$ and $j=0,1,\ldots$, as follows. Let
if we compute \(f^{(j)}(z_i) \)

\[
e_{ij} = \begin{cases}
1 & \text{if we compute } f^{(j)}(z_i) \\
0 & \text{if we do not compute } f^{(j)}(z_i),
\end{cases}
\]

where

\[
\sum_{j=0}^{\infty} e_{ij} < 0 \quad \text{for } i = 2,3,\ldots,k,
\]

\[
|E_n^k| = \sum_{i=1}^{k} \sum_{j=0}^{\infty} e_{ij} = n, \text{ (thus } k \leq n+1).\]

The condition (2.4) means that at every point \(z_i \), \(i \geq 2 \), we compute at least one derivative. (We consider \(f \) to be the zeroth derivative \(f^{(0)} \).) However we do not, at this point, insist on any information being computed at \(z_1 = x_1 \). We show in Lemma 3.2 that \(f^{(m)} \) must be evaluated at \(x_1 \). The condition (2.5) means that we use exactly \(n \) evaluations. Let

\[
e_n^k = \{(i,j) : e_{ij} = 1, i = 1,2,\ldots,k; j = 0,1,\ldots\}
\]

Hence the information \(\mathcal{M} \) can then be defined in terms of the incidence matrix \(E_n^k \) as follows:

\[
\mathcal{M} = \mathcal{M}(x_1; f) = \{f^{(j)}(z_1) : (i,j) \in e_n^k\}.
\]

The concept of an incidence matrix is used in Birkhoff interpolation, see Sharma [72]. We shall show some connections between the \(n \) evaluation problem and Birkhoff interpolation.

Having the information \(\mathcal{M} \) we define the next approximation \(x_2, x_2 = z_{k+1} \), as \(x_2 = \varphi(x_1; \mathcal{M}(x_1; f)) \) where \(\varphi \) is a given function.

We call \(\varphi \) an iteration function if for every \(f \in \mathcal{G} \), with \(f^{(m)}(\gamma) = 0 \) there exists \(\delta > 0 \) such that for any \(x_1 \),

\[|x_1 - \alpha| \leq \delta, \text{ the sequence} \]
is well-defined and

\begin{equation}
\lim_{d \to \infty} x_d = \alpha,
\end{equation}

\begin{equation}
\alpha = \varphi(\alpha, \mathcal{R}(\alpha; f)).
\end{equation}

Such iterations are called \textit{k-point iteration without memory} since they use exactly \(n \) new evaluations at \(k \) distinct points. If \(k > 1 \) they are called \textit{multipoint iterations} (see Traub [61], [64], and Kung and Traub [74]). Let \(\Phi \) be a class of iterations \(\varphi \) with \(k \geq 1 \).

Since these iterations are stationary and without memory it is sufficient to define how \(x_2 \) is generated from \(x_1 \) and to measure the goodness of \(\varphi \) by examining some properties of \(x_2 - \alpha \) as \(x_1 \) tends to \(\alpha \).

We want to find an iteration for which \(x_2 \) approximates \(\alpha \) as closely as possible, i.e., we seek an iteration with the maximal order. In a previous paper (Wozniakowski [75]) we proved that if a set of iterations \(\Phi \) is not empty then the maximal order of iteration is equal to the order of information. This gives us a powerful technique for proving maximal order. Let us briefly recall what we mean by orders of iteration and information.

We shall say \(\{\tilde{f}(\cdot; x_1)\} \) is equal to \(f \) with respect to \(\mathcal{R} \) (briefly denoted by \(\tilde{f} \mathcal{R} f \)) iff

\begin{enumerate}
\item \(f, \tilde{f}(\cdot; x_1) \in \mathcal{S} \),
\item \(\tilde{f}^{(m)}(\alpha; x_1) = 0 \) and \(f^{(m)}(\alpha) = 0 \) where \(\tilde{\alpha} = \tilde{\alpha}(x_1) \) and \(\lim_{x_1 \to \alpha} \tilde{\alpha}(x_1) = \alpha \),
\end{enumerate}
\(\lim_{x_1 \to \alpha} f(j; x_1) = g(j)(\alpha) \) where \(g(\alpha) = 0 \) and \(g \in \mathfrak{G} \), \(j = 0,1, \ldots \)

(iv) \(\mathfrak{M}(x_1; \tilde{f}) = \mathfrak{M}(x_1; f) \), i.e., \(\tilde{f}(j)(z_i; x_1) = f(j)(z_i) \) for \((i,j) \in \mathbb{E}_n^k \).

The first three conditions mean that \(\tilde{f}(x; x_1) \) is sufficiently regular with respect to \(x \) and tends to a function \(g \), \(g \in \mathfrak{G} \), as \(x_1 \) tends to \(\alpha \). The condition (iv) means that \(\tilde{f} \) and \(f \) have the same information \(\mathfrak{M} \) at the point \(x_1 \). Therefore any iteration \(\varphi \) will produce the same approximation \(x_2 \) for \(\tilde{f} \) and \(f \), \(\varphi(x_1; \mathfrak{M}(x_1; \tilde{f})) = \varphi(x_1; \mathfrak{M}(x_1; f)) \). Since we cannot recognize \(\tilde{f} \) from \(f \) using information (2.7), we should approximate not only the zero \(\alpha \) of \(f \), but at the same time, the zero \(\tilde{\alpha} \) of \(\tilde{f} \). This leads us to the following definitions of orders of iteration and information.

Let \(A \) be a set defined by

\[
A = \{ q \geq 1; \forall f \in \mathfrak{G}, f^{(m)}(\alpha) = 0, \forall \tilde{f} \in \mathfrak{G}, \limsup_{x_1 \to \alpha} \frac{|x_2 - \tilde{\alpha}|}{|x_1 - \alpha|^{q - \epsilon}} = 0, \forall \epsilon > 0 \}\]

A number \(p = p(\varphi) \) is called an order of the iteration \(\varphi \) iff

\[
(2.9) \quad p(\varphi) = \begin{cases} 0 & \text{if } A \text{ is empty}, \\ \sup A & \text{otherwise}. \end{cases}
\]

Using this convention \(p(\varphi) \) always exists; however the only interesting cases are for \(A \neq \emptyset \). Furthermore, let

\[
B = \{ q \geq 1; \forall f \in \mathfrak{G}, f^{(m)}(\alpha) = 0, \forall \tilde{f} \in \mathfrak{G}, \limsup_{x_1 \to \alpha} \frac{|\alpha - \tilde{\alpha}|}{|x_1 - \alpha|^{q - \epsilon}} = 0, \forall \epsilon > 0 \}.
\]

A number \(p = p(\mathfrak{M}) \) (sometimes denoted \(p(E_n^k) \)) is called an order of the information \(\mathfrak{M} \) if
(2.10) \[p(\emptyset) = \begin{cases}
0 & \text{if } B \text{ is empty,} \\
\sup B & \text{otherwise.}
\end{cases} \]

We know that if \(\emptyset \neq \emptyset \) then

(2.11) \[\sup_{\varphi \in \emptyset} p(\varphi) = p(\emptyset) \]

and \(p(\emptyset) = p(I_\emptyset) \) where \(I_\emptyset \) is a generalized interpolatory method. (See Wozniakowski [75].)

We are now in a position to define the \(n \)-evaluation problem (see Kung and Traub [73] and [74]). For fixed \(n \) and \(m \) we wish to find a number \(k = k(n,m) \), points \(z_i = z_i(x_i) \) for \(i = 2, 3, \ldots, k \), an incidence matrix \(E_n^k \), \(|E_n^k| = n \), and an iteration \(\varphi \) which uses \(E_n^k \) (see (2.8)) such that \(p(\varphi) \) is maximal. Due to (2.11) this is equivalent to maximizing the order of information \(\emptyset \), i.e., to find \(E_n^* \) such that

(2.12) \[p_n(m) = \sup_{E_n^k} p(E_n^k), \]

(2.13) \[p(E_n^k) = p_n(m). \]

We recall the Kung and Traub conjecture for \(m = 0 \) (Kung and Traub [74]):

(2.14) \[p_n(0) = 2^{n-1}. \]

They showed two different matrices \(E_n^k, n \geq 2 \), for which the order of iteration is equal to \(2^{n-1} \) (see Section 3), so we know that

(2.15) \[p_n(0) \geq 2^{n-1}. \]

We now show a relationship among the \(p_n(m) \) for different \(m \).
Lemma 2.1

Let $\phi = \phi(\mathcal{M})$ be an iteration of order p for the problem $f^{(m)}(x) = 0$ which uses n evaluations per step. Then there exists an iteration $\phi^* = \phi^*(\mathcal{M}^*)$ for the problem $f^{(m+1)}(x) = 0$ which also uses n evaluations and has the same order p.

Proof

Let $E^k_n = (e_{ij})$ be the incidence matrix of \mathcal{M} and $\mathcal{M}^*_n = (e^*_{ij})$ be defined by

$$
e^*_{ij} = \begin{cases} 1 & \text{if } e_{i,j-1} = 1 \\ 0 & \text{otherwise.} \end{cases}$$

Let \mathcal{M}^* be information with the incidence matrix E^*_n based on the points $z_i = z_i(x_i), i = 2, \ldots, k$, from \mathcal{M}. For any f_1 from \mathcal{M}^*, $f_1^{(m+1)}(\alpha) = 0 \neq f_1^{(m+2)}(\alpha)$, define

$$f(x) = f'_1(x).$$

Thus, $f \in \mathcal{M}^*$, $f^{(m)}(\alpha) = 0 \neq f^{(m+1)}(\alpha)$, and $f^{(j)}(x) \equiv f_1^{(j+1)}(x)$.

Hence

$$\mathcal{M}^*(x_1; f_1) = \mathcal{M}(x_1; f).$$

Let us define ϕ^* by

$$\phi^*(x_1; \mathcal{M}^*(x_1; f_1)) = \phi(x_1, \mathcal{M}(x_1; f)).$$

Since f_1 is arbitrary it easily follows that $p(\phi^*) = p(\phi)$. \hfill \blacksquare

From Lemma 2.1 and (2.15) we immediately get

Corollary 2.2

$$p_n^{(m)}(m) \geq p_n^{(m-1)}(m-1) \geq 2^{n-1}$$

for any $m \geq 1$. \hfill \blacksquare

Although Corollary 2.2 states that $p_n^{(m)}$ is at least $p_n^{(m-1)}$ we propose
Conjecture 2.3
\[p_n(m) = 2^{n-1} \quad \forall \, m \geq 0, \, n \geq 1. \]

3. EXISTENCE OF ITERATIONS

Recall that \(\Phi \) is a class of iterations defined by (2.8). In this section we show what we have to assume on the information \(\Phi \) to be sure that \(\Phi \) is not empty. We shall prove that \(\Phi = \emptyset \) if any of the following three conditions hold:

1. If \(z_i(x) \) does not converge to \(\alpha \).
2. If we do not compute \(f^{(m)}(x) \), i.e., \(e_{m} = 0 \).
3. If \(n = 1 \) under the assumption on sufficiently regularity of \(\varphi \) as a function of \(x \).

We prove this in the following Lemmas.

Lemma 3.1

Let \(\varphi \) be an iteration which uses the information \(\Phi \).

Then for any \(f \in \Phi, f^{(m)}(\alpha) = 0 \),

\[\lim_{x_i \to \alpha} z_i(x; f) = \alpha \quad \text{for} \quad i = 1, 2, \ldots, k+1. \]

Proof

Suppose on the contrary that there exist \(f \in \Phi, f(\alpha) = 0 \), an index \(i, 2 \leq i \leq k \), a number \(\varepsilon > 0 \) and a sequence \(\{x_j\} \)
such that

\[\lim_{j \to \infty} x_j = \alpha \quad \text{and} \quad |z_i(x_j) - \alpha| \geq \varepsilon \quad \text{for} \quad j \geq j_0. \]

Let \(J = \{x : |x-\alpha| < \varepsilon\} \). Define \(f_1 : J \to \mathbb{C} \) such that

\[f_1(x) = f(x) \quad \text{for} \quad x \in J. \]

Since \(f_1 \in \Phi \) there exists \(\delta_1 > 0 \) such that any \(x_1, |x_1 - \alpha| \leq \delta_1 \) is a good initial approximation.
Setting \(x_1 = x_j \), for large \(j \), where \(|x_j - \alpha| \leq \delta_1\), we get \(z_i(x_j) \notin J \) and \(\mathcal{M}(x_1; f_1) \) is not well defined which contradicts (2.8a).

Lemma 3.2

Let \(\mathcal{M} \) be any information with the incidence matrix \(E_n^k \).
If \(\mathfrak{A} \neq \emptyset \) then \(e_{1m} = 1 \), (i.e. we have to compute \(f^{(m)}(x_1) \)).

Compare Theorem 4.1 in Kung and Traub [73] which proves this result for \(m = 0 \).

Proof

Let \(\mathfrak{A} \in \mathcal{F} \) and suppose on the contrary that \(e_{1m} = 0 \). Let \(f \) be any function from \(\mathcal{F} \), \(f^{(m)}(\alpha) = 0 \). Let \(x_1 \) be sufficiently close approximations to \(\alpha \), \(x_1 \neq \alpha \). From (2.2) we get

\[
\delta = \min_{2 \leq i \leq k} |z_i(x_1) - x_1| > 0.
\]

Define

\[
f_1(x) = \begin{cases}
 f^{(m)}(x_1) - \frac{f(x)}{m!} (x-x_1)^m & \text{for } |x-x_1| < \delta \\
 f(x) & \text{otherwise}
\end{cases}
\]

Note that \(f_1 \in \mathcal{F} \), \(f^{(m)}_1(x_1) = 0 \), and

\[
\begin{align*}
 f_1^{(j)}(x_1) &= f^{(j)}(x_1) \quad \text{for } j \neq m \\
 f_1^{(j)}(z_i) &= f^{(j)}(z_i) \quad \text{for any } j \text{ and } i = 2, \ldots, k.
\end{align*}
\]

Since we do not compute \(f^{(m)}(x_1) \) then

\[
\mathcal{M}(x_1; f_1) = \mathcal{M}(x_1; f).
\]

But \(x_1 \) is the zero of \(f_1 \) and due to (2.8c) it follows

\[
x_2 = \varphi(x_1; \mathcal{M}(x_1; f)) = \varphi(x_1; \mathcal{M}(x_1; f_1)) = x_1.
\]
Thus, \(x_d = x_1 \) and \(\lim_{d \to} x_d \neq \alpha \) which contradicts (2.8b).

An iteration function \(\phi \) can be treated as a function of \(x, \phi(x) = \phi(x; M(x; f)) \) for \(x \) close to \(\alpha \). We shall prove that if \(\phi \) is sufficiently regular then the number of evaluations \(n \) has to be at least two.

Lemma 3.3

If an iteration \(\phi \) is a sufficiently smooth function of \(x \) then \(n \geq 2 \).

Proof

It is enough to prove Lemma 3.3 for the real case. Assume on the contrary that \(n = 1 \). From Lemma 3.2 it follows that this unique piece of information is given by \(f^{(m)}(x_1) \). Let

\[
\phi(x; f^{(m)}(x)) = x + g(x, f^{(m)}(x)).
\]

From (2.8b) it follows

\[
g(\alpha, 0) = 0 \quad \forall \alpha \text{ such that } f^{(m)}(\alpha) = 0, f \in \mathcal{J}
\]

From this and the regularity of \(\phi \) we can express \(g(x, y) \)

\[
g(x, y) = y^k h(x, y)
\]

for an integer \(k \geq 1 \) where \(h(x, 0) \neq 0 \) and \(h(x) = h(x, f(x)) \) is a continuous function for \(x \) close to \(\alpha \).

Let \(h(\alpha) \neq 0 \) and for simplicity we assume that \(h(\alpha) > 0 \). (If \(h(\alpha) < 0 \) then the proof is analogous.) Let \(f \in \mathcal{J} \) be a polynomial of degree \(m+1 \) and \(f^{(m+1)}(x) = 1, f(\alpha) = 0 \). There exists \(\delta = \delta(f) > 0 \) such that for any \(x \), \(|x - \alpha| < \delta \) the sequence \(x_{d+1} = \phi(x_d, f^{(m)}(x_d)) = x_d + \left[f^{(m)}(x_d) \right]^k h(x_d) \) is well defined for any \(d \) and converges to \(\alpha \) (see (2.8)). For
If \(e_d \) is close but different from \(\alpha \), then \(e_d \neq 0 \) for any \(d \). Since \(\lim e_d = 0 \), then for any \(d \), there exists \(d \geq d_1 \) such that \(|e_{d+1}| < |e_d| \), i.e.

\[
(3.3) \quad |1 + e^{k-1}_d h(x_d)| < 1.
\]

We consider two cases.

Case I. Let \(k \) be odd. Then for large \(d \) we have

\[
ed^{k-1}_d h(x_d) = e^{k-1}_d h(\alpha) > 0
\]

which contradicts (3.3).

Case II. Let \(k \) be even. We prove that \(h \) does not change sign for \(x \in \alpha - \delta, \alpha + \delta \). If so, then by the continuity of \(h \), there exists \(x \) such that \(h(x) = 0 \) and \(0 < |x - \alpha| < \delta \). Setting \(x_1 = x \), we get \(x_d = x \) which contradicts (3.3). Thus \(h(x) \geq h_0 > 0 \) for \(|x - \alpha| \leq \delta \). Define \(f_1 : [\alpha - \delta, \alpha + \delta] \rightarrow \mathbb{R} \) such that \(f_1(x) = f(x) \). Since \(f_1 \) also belongs to \(\mathcal{F} \), \(f_1^{(m)}(\alpha) = 0 \), there exists \(\delta_1 > 0 \) such that \(x_{d+1} = \varphi(x_d; \mathcal{M}(x_d; f_1)) \) is well defined whenever \(|x_1 - \alpha| \leq \delta_1 \). Let \(x_1 > \alpha \). Keeping in mind that \(\mathcal{M}(x_d; f_1) = \mathcal{M}(x_d; f) \), from (3.2) we get

\[
ed^{k-1}_d h(x_d) \geq (1 + e^{k-1}_d h_0)e_d \geq (1 + e^{k-1}_d h_0)e_d.
\]

Hence, there exists an index \(d \) such that \(e_{d+1} > \delta \), and since \(f_1(x_{d+1}) \) is not defined we get a contradiction with (2.8a). \(\blacksquare \)
4. HERMITIAN INFORMATION

In this section we deal with a special case of the n-evaluation problem when the information \(\mathcal{T} \) is hermitian.

Definition 4.1

\(\mathcal{T} \) is called hermitian information if the incidence matrix \(E_n^k \) (which is now called hermitian) satisfies

\[
e_{ij} = 1 = e_{i0} = e_{i1} = \ldots = e_{i,j-1} = 1 \quad \forall (i,j) \in E_n^k
\]

This means that if \(f^{(j)}(z_i) \) is computed then \(f^{(0)}(z_i), \ldots, f^{(j-1)}(z_i) \) are also computed.

Let \(s_i \) denote the number of evaluations at \(z_i \), i.e.,

\[
e_{i,s_i-1} = 1 \quad \text{and} \quad e_{i,s_i} = 0.
\]

(4.1) \(s_1 + s_2 + \ldots + s_k = n \) where \(s_i \geq 1 \) for \(i = 1, 2, \ldots, k \).

For given \(n \) and \(k \) we want to find \(s_i \) and \(z_i \), \(i = 1, 2, \ldots, k \), to maximize the order of information. Let \(p_n(m,H) \) be the maximal order of hermitian information. Note that

\[
p_n(m) \geq p_n(m,H).
\]

First we shall discuss a property of hermitian informations for the problem \(f(x) = 0 \), i.e., \(m = 0 \).

Theorem 4.1 \((m = 0) \)

The order \(p(E_n^k) \) of the hermitian information \(\mathcal{T} \) with the incidence matrix \(E_n^k \) satisfies

\[
(4.2) \quad p(E_n^k) \leq s_1 \prod_{i=2}^{k} (s_i + 1).
\]

Proof

It is easy to verify that if \(\tilde{f} = f \) then
(4.3) \[\tilde{f}(x; x_1) = f(x) + G(x; x_1) \prod_{i=1}^{k} (x-z_i)^{s_i} \]

for an analytic function G. Since \(\tilde{f}'(\alpha; x_1) \) tends to \(g'(\alpha) \neq 0 \) then setting \(x = \alpha \) in (4.3) we get

(4.4) \[(\alpha - \bar{\alpha}) = \frac{G(\alpha; x_1)}{g'(\alpha)}(1 + o(1)) \prod_{i=1}^{k} (\alpha-z_i)^{s_i}. \]

Define \(q_i \) by

\[\frac{\alpha-z_i}{q_i - \varepsilon} \rightarrow 0 \quad \text{and} \quad \frac{\alpha-z_i}{q_i + \varepsilon} \rightarrow +\infty, \forall \varepsilon > 0 \]

where \(e_1 \equiv x_1 - \alpha \). Since \(z_i = z_i(x_1) \) tends to \(\alpha \) (see Lemma 3.1) then \(q_i \) exists and \(q_i \geq 0 \) for \(i = 1, 2, \ldots, k \). Note that \(q_1 = 1 \).

Let \(p_1 = q_1 = 1 \) and

(4.5) \[p_{j+1} = \sum_{i=1}^{j} q_i s_i, \quad j = 1, 2, \ldots, k. \]

From (4.4) we get

(4.6) \[\frac{\alpha - \bar{\alpha}}{p_{k+1} - \varepsilon} = \frac{G(\alpha; x_1)}{g'(\alpha)}(1 + o(1)) \prod_{i=1}^{k} \left(\frac{\alpha-z_i}{q_i - \delta} \right)^{s_i} \rightarrow 0, \forall \varepsilon > 0, \]

where \(\delta = \varepsilon/n \). For \(G(\alpha; x_1) \equiv \text{const} \neq 0 \) we get

(4.7) \[\frac{\alpha - \bar{\alpha}}{p_{k+1} + \varepsilon} \rightarrow \infty, \forall \varepsilon > 0. \]

Now we shall prove that there exists a function \(f \) such that
(4.8) $q_i \leq p_i$ for $i = 1, 2, \ldots, k$.

Let f be any function such that $f \in \mathfrak{F}$, $f(\alpha) = 0$ and $f(j)(\alpha) \neq 0$ for $j = 1, 2, \ldots$. Since $p_1 = q_1$, the condition (4.8) holds for $i = 1$. Assume by induction that this holds for $i \leq j$. Suppose by the contrary that

$$q_{j+1} > p_{j+1} = \sum_{i=1}^{j} q_i s_i.$$

Define

$$r = \sum_{i=1}^{j} s_i.$$

Case I. Let $r = 1$. This means that $j = 1$, $s_1 = 1$ and $x_2 = z_2(x_1, f(x_1))$ approximates α with order greater than $p_2 = 1$.

Define

$$h(x_1, f(x_1)) = \frac{x_1 - f(x_1) - z_2}{z_2 - x_1} + 1.$$

It is easy to verify that

$$h(x_1, f(x_1)) = f'(\alpha)(1 + o(1)).$$

Case II. Let $r > 1$ and \tilde{f} be the Hermite interpolatory polynomial of degree less than r defined by

$$\tilde{f}(1)(z_i) = f(1)(z_i), \quad i = 1, 2, \ldots, j; \quad l = 0, 1, \ldots, s_i - 1.$$

Let $\tilde{\alpha}$ be the nearest zero of \tilde{f} to $z_1 = x_1$. Then
Note that $\tilde{\alpha}$ is a function of x_1 and information $\mathcal{M}(x_1; f) = \{f^{(i)}(z_i): i = 1, 2, \ldots, j; \, 1 = 0, 1, \ldots, s_i - 1\}$. Recall that $z_{j+1} = z_{j+1}(x_1, \mathcal{M}(x_1; f))$ and $z_{j+1} - \alpha = o(e_{j+1})$. Define

$$
(4.11) \quad h(x_1, \mathcal{M}(x_1; f)) = \frac{\tilde{\alpha} - z_{j+1}}{\prod_{i=1}^{s} (z_{j+1} - z_i)} f'(z_{j+1}).
$$

Thus h is the lefthand side of (4.10) where α is replaced by z_{j+1}. Since z_{j+1} is a better approximation to α than $\tilde{\alpha}$, it is straightforward to verify that

$$
(4.12) \quad h(x_1, \mathcal{M}(x_1; f)) = \frac{f^{(r)}(\alpha)}{r^*} (1 + o(1)).
$$

This means that in both cases using r evaluations of the function and its derivatives given by \mathcal{M} we can approximate the rth normalized derivative. We prove that this is impossible.

Note that h (see (4.9) or (4.11)) is a continuous function of x_1 at $x_1 = \alpha$ and

$$
(4.13) \quad h(\alpha, \mathcal{M}(\alpha; f)) = \frac{f^{(r)}(\alpha)}{r^*}.
$$

Let $f_1(x) = f(x) + (x - \alpha)^r$ and let us apply h to the function f_1. Thus

$$
\quad h(\alpha, \mathcal{M}(\alpha; f)) = h(\alpha, \mathcal{M}(\alpha; f_1)) = \frac{f^{(r)}(\alpha)}{r^*} + 1
$$

which contradicts (4.13).
Hence \(q_{j+1} \leq p_{j+1} \) which proves (4.8). Keeping in mind
\[
p(E_n^k) = p_{k+1}
\] and using (4.5), (4.8) we get
\[
p(E_n^k) = \sum_{i=1}^{k} q_i s_i \leq \sum_{i=1}^{k-1} p_i s_i + p_k s_k \leq (1 + s_k) \sum_{i=1}^{k-1} p_i s_i
\]
\[
\leq s_1 \prod_{i=2}^{k} (s_i + 1)
\]
which proves Theorem 4.1.

We want to show that a bound in (4.2) is sharp, i.e., there exist points \(z_2, \ldots, z_k \) such that the order of information is equal to \(s_1 \prod_{i=1}^{k} (s_i + 1) \).

Let \(w_\mu \), \(\mu = 1, 2, \ldots, k \), be the Hermite interpolatory polynomial of degree less than \(r_\mu = s_1 + s_2 + \ldots + s_\mu \) defined by
\[
w_\mu^{(j)}(z_i) = f^{(j)}(z_i), \quad i = 1, 2, \ldots, \mu; \quad j = 0, 1, \ldots, s_i - 1.
\]
Let \(\alpha_\mu \) be the nearest zero of \(w_\mu \) to \(z_1 = x_1 \). (If \(s_1 = 1 \) then \(\alpha_1 = x_1 - \beta f(x_1) \) for any nonzero constant \(\beta \).)

Define \(z_{\mu+1} \) as a point such that
\[
z_{\mu+1} = \alpha_\mu + 0(\epsilon_1^\mu), \quad \beta_\mu \geq s_1 \prod_{i=2}^{\mu} (s_i + 1).
\]
From (4.14) it follows
\[
(4.16) \quad \alpha_\mu - \alpha = \begin{cases}
(\beta f'(\alpha) - 1)(\alpha - z_1) + o(\alpha - z_1) & \text{if } r_\mu = 1 \\
\frac{r_\mu}{r_\mu^\mu}\left(f_\mu'(\alpha)\right) \prod_{i=1}^{\mu}(\alpha - z_i^{s_i}) + o\left(\prod_{i=1}^{\mu}(\alpha - z_i^{s_i})\right) & \text{if } r_\mu > 1.
\end{cases}
\]
From (4.15) we get

\[(4.17) \quad z_{\mu+1} - \alpha = 0(e_1^{q_{\mu+1}}), \quad q_{\mu+1} = s_1 \prod_{i=2}^{\mu} (s_i + 1), \]

which proves that the order of information \(\mathfrak{M} \) based on the points \(z_{\mu+1} \) from (4.15) is equal to \(s_1 \prod_{i=2}^{k} (s_i + 1) \).

An iteration which uses this information \(\mathfrak{M} \) and has the maximal order can be defined as follows.

For \(\mu = 1, 2, \ldots, k \)

(i) construct \(w_\mu \) from (4.14) using a divided-difference algorithm,

(ii) apply Newton iteration to the equation \(w_\mu (x) = 0 \) setting

\[y_0 = z_\mu, \]
\[y_{i+1} = y_i - \frac{w'(y_i)}{w(y_i)} y_i, \quad i = 0, 1, \ldots, i_0 - 1, \]
\[z_{\mu+1} = y_{i_0}, \]

where

\[(4.18) \quad i_0 = \lceil \log_2 (s_{\mu+1} + 1) \rceil. \]

(If \(s_1 = 1 \) then \(z_2 = x_1 - \beta f(x_1) \).

Then (4.15) holds and

\[(4.19) \quad z_{k+1} - \alpha = 0(e_1^{q_{k+1}}), \quad q_{k+1} = s_1 \prod_{i=2}^{k} (s_i + 1). \]

Furthermore if \(\beta_\mu > q_{\mu+1} \) in (4.15) then we can specify the constant which appears in the "0" notation in (4.19). Note that \(\beta_\mu > q_{\mu+1} \) if we redefine \(i_0 \) in (4.18) as the smallest integer such that \(i_0 > \log_2 (s_{\mu+1} + 1) \).
Lemma 4.2

Let \(\varphi \) be the iteration defined as above, \(z_{k+1} = \varphi(x_1, \mathcal{M}(x_1; f)) \). If \(\beta > q_{\mu+1} \) for \(\mu = 1, 2, \ldots, k \) then

\[
\lim_{x_1 \to \alpha} \frac{z_{k+1}(x_1) - \alpha}{q_{k+1}} = c_{k+1}
\]

where

\[
c_{\mu+1} = M \left\{ \prod_{j=1}^{\mu-1} s_{j+1} (s_{j+2} + 1) \ldots (s + 1) \right\} \quad \text{for } \mu = 1, 2, \ldots, k
\]

and

\[
M_i = \begin{cases}
(-1)^i \frac{f(i)}{i! f'(\alpha)} & \text{if } i > 1 \\
-\beta f'(\alpha) + 1 & \text{if } i = 1.
\end{cases}
\]

If

\[
K_{i-1}^{-1} \leq \left| \frac{f(i)}{i! f'(\alpha)} \right| \leq K_{i-1}^{-1} \quad \text{for } i = r_1, r_2, \ldots, r_k
\]

then

\[
\lim_{x_1 \to \alpha} \left| \frac{z_{k+1}(x_1) - \alpha}{q_{k+1}} \right| = q_{k+1}^{-1} \cdot c
\]

where

\[
c = \begin{cases}
1 & \text{if } r_1 > 1 \\
|M_1| s_2 (s_3 + 1) \ldots (s_k + 1) & \text{if } r_1 = 1 \text{ and } k \geq 2 \\
|M_1| & \text{if } r_1 = 1 \text{ and } k = 1
\end{cases}
\]

Note that the righthand side of (4.21) follows from the analyticity of \(f \).
Proof

Let \(C_i = \lim (z_i - \alpha)/(x_i - \alpha) \). Note that \(C_1 = 1 \). From (4.15), (4.16) and since \(q_i > q_{i+1} \) we get

\[
z_{i+1} - \alpha = \alpha - \alpha + z_{i+1} - \alpha = M_{r_i} \left[\prod_{i=1}^{\mu} (z_i - \alpha) \right] s_i + o(e_i^{q_i+1}).
\]

Thus

(4.23) \(C_{i+1} = M_{r_i} \left[\prod_{i=1}^{\mu} C_i \right] \).

Since \(C_1 = 1 \) we get after some tedious calculations

\[
C_{i+1} = M_{r_i} \left[\prod_{i=1}^{\mu} s_{i+1}(s_{i+2} + \ldots + s_{i+\mu}) \right] = \frac{r_{i+1}-1}{r_{i+1}} \frac{s_{i+1}(s_{i+2} + \ldots + s_{i+\mu})}{s_{i+1}}
\]

which proves the first part of Lemma 4.2.

Let \(r_1 > 1 \). Assume by induction that \(K_{i+1}^q \leq |C_i| \leq \tilde{K}_{i+1}^q \). This is true for \(i = 1 \) since \(C_1 = q_1 = 1 \). From (4.23) and (4.21) we have

\[
|C_{i+1}| \leq \tilde{K}_{i+1}^q s_{i+1}(q_{i+1} - 1) + \ldots + s_{i+\mu} q_{i+1} - 1
\]

and similarly we get a lower bound.

Let \(r_1 = 1 \). Assume by induction that

\[
c_i \leq |C_i| \leq \tilde{K}_{i+1}^q c_i \text{ where } c_1 = 1, c_2 = |M_1| \text{ and } c_i = |M_1| s_{i+1}(s_{i+1} + 1) \text{ for } i \geq 3.
\]

This is true for \(i = 1 \) and 2 since \(C_1 = q_1 = q_2 = 1 \) and \(C_2 = M_{r_1} \). Then

\[
|C_{i+1}| \leq \tilde{K}_{i+1}^q s_{i+1}(s_{i+1} + 1) \frac{s_{i+1}(s_{i+1} + 1) \ldots s_{i+\mu} s_{i+1(\mu + 1)}}{s_{i+1} s_{i+2(\mu + 1)} \ldots s_{i+\mu(\mu + 1)}}
\]

and similarly we get a lower bound. Hence (4.22) holds which
completes the proof.

Lemma 4.2 in the case \(r_1 > 1 \) states that the asymptotic constant \(C_{k+1} \) depends exponentially on the order \(q_{k+1} \). This property makes an analysis of the complexity of iteration easier (Traub and Wozniakowski will analyze it in a future paper).

We are now in a position to answer the following question. For given \(n \) and \(k, k \leq n \), find nonnegative integers \(s_1, s_2, \ldots, s_k \) to maximize the order of information

\[
p_k = \max \left\{ \prod_{i=2}^{k} (s_i + 1) \right\}
\]

Using a standard technique it is easy to verify that

\[
(4.24) \quad \left(n + (k-1) \left[\frac{n-1}{k} \right] \right) \left(1 + \left[\frac{n-1}{k} \right] \right) < 2^{n-1}
\]

for \(k \leq n-2 \) and \(p_k = 2^{n-1} \) for \(k = n-1 \) or \(n \). If \(k \) is a divisor of \(n-1 \) then the optimal \(s_i \) are given by

\[
s_1 = 1 + \frac{n-1}{k} \quad \text{and} \quad s_i = \frac{n-1}{k} \quad \text{for} \quad i = 2, \ldots, k.
\]

For \(k = n \) the optimal \(s_i = 1 \). Furthermore from Theorem 7.1 in Kung and Traub [74] it follows that there are exactly two cases which maximize the order of information,

\[
k = n-1, \quad s_1 = 2, \quad s_i = 1 \quad \text{for} \quad i = 2, \ldots, n, \quad p_{n-1} = 2^{n-1}
\]

\[
k = n, \quad s_1 = 1 \quad \text{for} \quad i = 1, \ldots, n, \quad p_n = 2^{n-1}.
\]

The first case means that we use \(f \) and \(f' \) at the first point and \(f \) at the other points. The second case states that we use \(n \) function evaluations. From Theorem 4.1 and \((4.24)\) we get
Corollary 4.3

The Kung and Traub conjecture holds for hermitian information \(p_n(0,H) = 2^{n-1} \).

The next part of this section deals with the general problem \(f^{(m)}(x) = 0, \ m \geq 1 \). It seems to us that hermitian information is not always relevant for that problem especially for large \(m \). Note that we have to compute \(f^{(m)}(x_1) \) and if the information is hermitian then we have to assume \(n \geq m+1 \). On the other hand if we use \(f^{(m)}(z_1), ..., f^{(m)}(z_n) \) (which is nonhermitian) then the order of information is \(2^{n-1} \). However it is interesting to know the optimal order of information for special hermitian cases, e.g., \(f, f' \) at \(z_1 \) followed by \(n-1 \) function evaluation at the other points for the problem \(f'(x) = 0 \), (see Lemma 4.5).

Recall that \(p_n(m,H) \) denotes the maximal order of hermitian information. In general we do not know \(p_n(m,H) \). We only show some bounds on it.

Lemma 4.4

\[p_n(m,H) \leq 2^{n-1} \]

Proof

If \(\tilde{f} \equiv f \) then

\[\tilde{f}^{(m)}(x) - f^{(m)}(x) = [G(x) \prod_{i=1}^{k} (x-z_i)^{s_i}]^{(m)} \]

for an analytic function \(G \). Let \(G(x) = \frac{1}{m!(x-\alpha)^m} \). Since \(\tilde{f}^{(m+1)}(\alpha) \) tends to \(g^{(m+1)}(\alpha) \neq 0 \) as \(x_1 \) tends to \(\alpha \) then setting \(x = \alpha \) in (4.25) we have

\[\tilde{\alpha} - \alpha = c(\alpha, x_1) \prod_{i=1}^{k} (\alpha - z_i)^{s_i} \]

where \(c(\alpha, x_1) \) tends to a nonzero limit (see (4.4)).
The proof of Lemma 4.4 may now be obtained analogously to the proof of Theorem 4.1.

Lemma 4.5

Let \(n \geq m+1 \geq 2 \). Then

\[
p_n(m, H) \geq c \cdot q(m)^{n-1}
\]

where

\[
c = c(m) = \frac{2}{(1+2m^2+t)}\qquad q(m) = \left(\frac{1+\sqrt{t}}{2}\right)^m
\]

and \(t = 1 + 4m \).

Proof

Define \(s_1 = m+1 \) and \(s_i = m \) for \(i = 2, \ldots, k \). Let \(z_2 = x_1 + \beta f^{(m)}(x_1) \) for \(\beta \neq 0 \) and let \(z, \mu \geq 3 \), be the nearest zero to \(z_1 \mu \) of the polynomial \(w^{(m)}(z) \) where

\[
w^{(j)}(z) = f^{(j)}(z), \quad i = 1, 2, \ldots, \mu-1;
\]

\[
w^{(m)}(z) = f^{(m)}(z)
\]

and \(w \) is of degree \(\leq (\mu-1)m \). It is straightforward to verify that

\[
z_\mu - \alpha = 0((x_1 - \alpha)^q)
\]

where \(q_1 = q_2 = 1 \) and for \(\mu \geq 3 \),

\[
q_\mu = m(q_1 + \ldots + q_{\mu-2}) + q_1 = q_{\mu-1} + mq_{\mu-2}.
\]

It is easy to verify that

\[
q_{k+1} \geq c \left(\frac{1+\sqrt{t}}{2}\right)^{k+1}
\]

where \(c = c(m) = 2/(1 + 2m + \sqrt{t}) \).
For a given n let $k = \lfloor (n-1)/m \rfloor = \frac{n-1}{m} + \theta$ where $-1 < \theta \leq 0$. The total number of evaluation is equal to $km + 1 \leq n$. Hence $p_n(m,H) \geq p_{km+1}(m,H) \geq q_{k+1} \geq q_{k+1} \geq c \; q(m)^{n-1} \left(\frac{1+\sqrt{2}}{2} \right) \geq c \; q(m)^{n-1}$ which proves Lemma 4.5.

Lemma 4.4 and 4.5 state that $p_n(m,H)$ as a function of n is exponentially bounded from below and above. However $\lim_{m\to\infty} q(m) = 1$.

5. GENERAL INFORMATION, $m = 0$

We deal with the n-evaluation problem for $m = 0$. For small n it is possible to verify the Kung and Traub conjecture and to characterize the information sets for all iterations which have maximal order.

For $n = 1$ the unique piece of information is given by $f(x_j)$. Since $\tilde{f}(x) = f(x) + (x-x_j)$ has the same information as f then $p_1(0) = 1$. This means that for any $y = y(x_j,f(x_j))$ the distance $\alpha - y$ can be at most of first order in $\alpha - x_j$. However y is not, in general, an iteration function, see Lemma 3.3. Note also that for any m, $p_1(m) = 1$.

For $n = 2$, Kung and Traub [73] proved that the maximal order of iteration equals two under a certain assumption on the iterations considered. Using our technique we find the order of information for any \mathfrak{M} with $n = 2$. Note that if \mathfrak{M} is hermitian information then $p(\mathfrak{M}) \leq 2$, by Corollary 4.3. Thus it suffices to consider the non-hermitian case. Let us first consider one-point iterations, i.e., $k = 1$ and $\mathfrak{M} = \{f(x_1), f^{(j)}(x_1)\}$ for $j \geq 2$. Then $\tilde{f}(x) = f(x) + (x-x_1)$ and $p(\mathfrak{M}) = 1$. Let us pass to two-point iterations, i.e., $k = 2$ and $\mathfrak{M} = \{f(x_1), f^{(j)}(z_2)\}$ where $j \geq 1$ and
\[z_2 = z_2(x_1, f(x_1)). \] If \(j \geq 2 \) then \(\tilde{f}(x) = f(x) + (x-x_1) \) and \(p(\Omega) = 1. \) Let \(j = 1. \) Then \(\tilde{f}(x) = f(x) + (x-x_1)(x-2z_2^2+x_1). \)

From this we get

\[\tilde{\alpha} - \alpha = (\alpha-x_1)(\alpha-y), \quad y = 2z_2 - x_1. \]

Since \(y = y(x_1, f(x_1)) \) then \(\alpha-y \) can be at most of first order in \((\alpha-x_1). \) Hence \(p(\Omega) \leq 2 \) and \(p(\Omega) = 2 \) if, for instance, \(z_2 = x_1 + \beta f(x_1), \) for any constant \(\beta \neq 0. \)

It is easy to verify that, in addition, \(p_2(m) = 2 \) for any \(m. \)

For \(n = 3, \) \(p_3(0) = 4. \) There are a number of information sets \(\Omega \) for which \(p(\Omega) = 4. \) A proof and discussion may be found in Meersman [75].

Unfortunately the proof technique used to establish the cases \(n = 2, 3 \) cannot be used for general \(n \) since there are too many sub-cases to investigate.

We now wish to discuss some general properties of the \(n \)-evaluation problem.

Recall that \(E_n^k = (e_{ij}) \) is the incidence matrix of the information \(\Omega \) and let

\[(5.1) \quad M_r = \sum_{r=0}^{k} \sum_{i=1}^{r} e_{ij} \]

denote the total number of evaluations \(f,f',...,f^r \) at \(z_1,...,z_k, \quad r = 0,1,...,k. \)

The incidence matrix \(E_n^k \) satisfies the Polya conditions if

\[(5.2) \quad M_r \geq r+1 \quad \text{for } r = 0,1,...,n-1. \]

(See Sharma [72].) If \(E_n^k \) satisfies the Polya conditions then \(e_{ij} = 0 \) for any \(i \) and \(j \geq n. \) This means we do not use
derivatives of order higher than \(n-1 \). Note that hermitian \(E_n^k \) satisfies the Polya conditions. Furthermore all known information sets with maximal order of information have \(E_n^k \) which satisfy the Polya conditions.

Let \(j' = j'(E_n^k) \) be a nonnegative integer such that

\[
M_r \geq r+1 \quad \text{for} \quad r = 0,1,\ldots,j' \quad \text{and} \quad M_{j'+1} < j'+2.
\]

Since \(j'+1 \leq M_j \leq M_{j'+1} \leq j'+1 \) then \(e_i,j'+1 = 0 \) which means that we do not use the \((j'+1)\) derivative. We shall call such \(j' = j'(E_n^k) \) an index of \(E_n^k \). \(E_n^k \) satisfies the Polya conditions if and only if its index is equal to \(n-1 \).

We introduce the concept of the polynomial order of information \(\text{pol}(\mathcal{M}) \) defined by

\[
\text{pol}(\mathcal{M}) = \begin{cases}
0 & \text{if } B \text{ is empty} \\
\sup B & \text{otherwise}
\end{cases}
\]

where

\[
B = \{ q \geq 1 : \forall f \in \mathcal{G}, f(\alpha) = 0, \tilde{f} \equiv f \text{ and } \tilde{f} - f \in \Pi_n, \\
\lim \sup_{x_1 \to 0} \frac{|x_1 - \alpha|}{x_1 - \alpha |q - \epsilon|} = 0, \forall \epsilon > 0\},
\]

and \(\Pi_n \) denotes a class of polynomials of degree \(\leq n \). Compare with the order of information where is not assumed that \(\tilde{f} - f \in \Pi_n \), see (2.10). Thus \(p(\mathcal{M}) \leq \text{pol}(\mathcal{M}) \). Similarly let \(\text{pol}(n) = \sup_{\mathcal{M}} p(\mathcal{M}) \). This gives

\[
(5.4) \quad p_n(0) \leq \text{pol}(n).
\]

We show some properties of \(\text{pol}(n) \). From Section 4 it follows that \(\text{pol}(n) \geq 2^{n-1} \) and \(\text{pol}(n) = 2^{n-1} \) for hermitian
information. Furthermore it is possible to show that \(\text{pol}(n) = 2^{n-1} \) for \(n = 1,2,3 \) and that \(\text{pol}(n) \) is an increasing function of \(n \).

Lemma 5.1

Let \(j' \) be the index of the incidence matrix \(E^k_n \) of \(\mathcal{M} \).

Then

\[
\text{pol}(\mathcal{M}) \leq \text{pol}(j'+1).
\]

Proof (Compare with the proof of the Schoenberg Lemma in Schoenberg [66] and Sharma [72], Lemma 1.)

Let \(E^k_j \) denote the first \((j'+1) \) columns of \(E^k_n \). Assume \(f \in \Pi_{j'+1} \). Then \(z^j_i = z^j_i(x^j_i; \mathcal{M}(x^j_i; f)) = z^j_i(x^j_i; \mathcal{M}_i(x^j_i; f)) \)

where \(\mathcal{M}_i \) is the information based on \(E^k_j \). Let \(h \in \Pi_{j'+1} \) and

\[
(5.5) \quad h^{(j)}(z^j_i) = 0 \quad \text{for } (i,j) \in e^k_n \text{ and } j \leq j'.
\]

The total number of homogeneous equations in (5.5) is equal to \(M_j = j'+1 \) and since we have \(j'+2 \) unknowns then there exists a nonzero \(h \) satisfying (5.5). Furthermore \(h^{(j)}(x) \equiv 0 \) for \(j \geq j'+2 \) which means that \(h^{(j)}(z^j_i) = 0 \) for all \((i,j) \in e^k_n \). Define \(\tilde{f}(x) = f(x) + h(x) \) we get

\[
(5.6) \quad \tilde{\alpha} - \alpha = \frac{1}{g'(\alpha)} (1 + o(1))h(\alpha).
\]

But \(h(\alpha) \) depends only on \(E^k_j \), and it can be at most of order \(\text{pol}(j'+1) \). This proves that \(\text{pol}(\mathcal{M}) \leq \text{pol}(j'+1) \). \(\blacksquare \)

Since \(\text{pol}(n) \) is an increasing function of \(n \) we immediately have

Corollary 5.2

A necessary condition for \(\mathcal{M} \) to have the maximal polynomial order \(\text{pol}(n) \) is that its incidence matrix \(E^k_n \) satisfies
the Pólya conditions.

We believe that $\text{pol}(n) = 2^{n-1}$. However to find even a crude upper bound on $\text{pol}(n)$ seems to be hard. We give an upper bound on $\text{pol}(n)$ under the following conjecture.

Conjecture 5.3

Let $\varphi_1, \varphi_2, \ldots, \varphi_n$ be any n-point iterations. Then there exists a function $f \in \mathcal{F}$ such that

$$
\lim_{x_1 \to \alpha} \left| \frac{\varphi_i(x_1; \Xi(x_1; f)) - \alpha}{e_1^{\text{pol}(n)+\varepsilon}} \right| = +\infty, \forall \varepsilon > 0, \forall i \leq n.
$$

Assume for simplicity that $C_i = C(f, \varphi_i) = \lim_{x_1 \to \alpha} |\varphi_i(x_1; \Xi(x_1; f)) - \alpha|^2/e_1 \text{pol}(n)$ exist for $i = 1, 2, \ldots, n$. The conjecture 5.3 states that they are all different from zero for one function. Note that it holds for $n = 1$.

Lemma 5.4

If (5.7) holds then $\text{pol}(n) < n!$ for $n \geq 3$.

Proof

Let E_n^k be the incidence matrix of Ξ. Let $0 \neq h \in \Xi_n$ and $h^{(j)}(z_i) = 0$ for $(i, j) \in \Xi_n$. Then

$$
h(x; x_1) = a(x_1)(x-h_1)(x-h_2)\ldots(x-h_j)
$$

where $1 \leq j \leq n$ and $a(x_1)$ is chosen in order to ensure that $h(x; x_1)$ tends to an analytic function as x_1 tends to α.

Note that $h_1 = x_1$ and $h_i = h_i(z_1, z_2, \ldots, z_k)$ depends on at most $(n-1)$ evaluations. If $\lim_{x_1 \to \alpha} h_i = \alpha$ then h_i can be treated as an iteration. From (5.7) we get

$$
|h_i - \alpha| \geq c e_1^{\text{pol}(n-1)+1-\varepsilon}, \quad c > 0,
$$
for any $\varepsilon > 0$. Since it holds for any n, we have

$$\text{pol}(n) \leq (n-1) \text{pol}(n-1) + 1 < n \text{pol}(n-1) \leq n!$$

The next part of this section deals with a restrictive class of n-point iterations. We use n evaluations per step and we assume that an iteration is exact for a function $f \in \Pi_{n-1}$. We shall say that $\varphi \in \mathcal{V}$ if $\varphi(x_{j}) = \alpha$ whenever $f \in \Pi_{n-1}$ and x_{j} is close to α. Note that all iterations considered in Section 4 belong to \mathcal{V}_{n}.

Next we shall say that the problem is \textbf{locally well-poised} for f if for every $h \in \Pi_{n-1}$ such that

$$h^{(j)}(z) = 0 \text{ for } (i,j) \in e_{n}^{k}$$

it follows $h = 0$ for all x_{j} close to x.

Note that Birkhoff interpolation for E_{n}^{k} is well-poised if $\forall(x_{1}, x_{2}, \ldots, x_{k}) h^{(j)}(z_{i}) = 0$ for $(i,j) \in e_{n}^{k}$ and $h \in \Pi_{n-1} = h = 0$ (see Sharma [72]). Thus, if Birkhoff interpolation is well-poised than the problem is locally well-poised but not in general vice versa.

\textbf{Lemma 5.5}

If an iteration φ is exact for $f \in \Pi_{n-1}$, $\varphi \in \mathcal{V}_{n}$, then

(i) E_{n}^{k} satisfies the Polya conditions,

(ii) the problem is locally well-poised for $f \in \Pi_{n-1}$,

(iii) $p(\mathcal{M}) \leq n(n+1)^{n-1}$.

\textbf{Proof}

Suppose that the problem is not locally well-poised for $f \in \Pi_{n-1}$. Then there exists a nonzero $h \in \Pi_{n-1}$ such that
Define $f(x) = f(x) + h(x)$. Since $\tilde{f} \in \Pi_{n-1}$ and $\tilde{f}(\alpha) \neq 0$ then

$$\alpha = \varphi(x_1, \mathfrak{M}(x_1, \tilde{f})) = \varphi(x_1, \mathfrak{M}(x_1, \tilde{f})) \neq \tilde{\alpha}.$$

This contradicts that $\varphi \in \tilde{\mathfrak{e}}$. Hence (ii) holds. Let j' be the index of E^k_n. If $j' < n-1$ then there exists a nonzero $h \in \Pi_{j' + 1}$ such that $h(j)(z_i) = 0$ for all $(i,j) \in e^k_n$, see the proof of Lemma (5.1). This contradicts that the problem is locally well-poised. Thus, (i) holds.

To prove (iii) it suffices to note that if

$$E^k_n \leq \tilde{E}^k_n \text{ then } p(E^k_n) \leq p(\tilde{E}^k_n)$$

for $n \leq \tilde{n}$ where by $E^k_n = (e^k_{ij}) \leq \tilde{E}^k_n = (\tilde{e}^k_{ij})$ we mean $e^k_{ij} \leq \tilde{e}^k_{ij}$ for $(i,j) \in e^k_n$.

Define \tilde{E}^k_n as a hermitian matrix where $\tilde{n} = kn$,

$$\tilde{e}^k_{ij} = 1 \quad \text{for } i = 1,2,\ldots,k \text{ and } j = 0,1,\ldots,n-1.$$

Of course $E^k_n \leq \tilde{E}^k_n$ and from Theorem 4.1 we get

$$p(E^k_n) \leq \tilde{n}(n+1)^{n-1}$$

which proves (iii).

6. FINAL REMARKS

The problem of the maximal order of n-point iterations is connected with Birkhoff interpolation which has been open almost 70 years. The main difficulty is to estimate the difference between the zeros, $\tilde{\alpha} - \alpha$, of any two functions with the same information, $\tilde{f} \equiv \mathfrak{f}$. Note that \tilde{f} can belong to Π_{n-1} for
all if the problem is well-poised. However up to now we
do not know when Birkhoff interpolation is well-poised.
There are many reasons to believe that hermitian information
(interpolation without gaps) is optimal. However there also
exists nonhermitian information with order 2^{n-1}.

For nonhermitian information it is hard to find the
order $p(M)$. We know the order of such information only in a
few cases. The first one is a Brent iteration based on
$M = \{ f(z_1), f'(z_1), \ldots, f^{(j)}(z_1), f^{(r)}(z_2), f^{(r)}(z_3), \ldots, f^{(r)}(z_k) \}$
for suitable chosen z_1 where $0 < r \leq j+1$ (see Brent [75]).
This information uses $n = j+k$ evaluations and has the order
$p(M) = j + 2k - 1$, see Meersman [75]. Note that this problem
is well-poised. The second example is Abel-Goncarov information given by

$$M = \{ f(z_1), f'(z_2), \ldots, f^{(n-1)}(z_n) \},$$

see Sharma [72]. Recall that if $z_1 = z_i$ for $i = 2, \ldots, n$
then we get one-point information which has the order n (even
in the multivariate and abstract cases). For Abel-Goncarov
information it is possible to prove

$$n \leq p(M) \leq 2n$$

but we do not know whether this upper bound is sharp. Finally let us mention lacunary information given by

$$M = \{ f(z_1), f''(z_1), f(z_2), f''(z_2), \ldots, f(z_k), f''(z_k) \}$$

and $n = 2k$, see Sharma [72]. It is possible to verify that

$$\frac{1}{2} 2^{n/2} \leq p(M) \leq \frac{3}{4} 2^n$$

but the exact value of $p(M)$ is unknown.
ACKNOWLEDGMENT

I am greatly appreciative to J. F. Traub, A. Sharma, B. Kacewicz and R. Meersman for their helpful comments and assistance during the preparation of this paper.

REFERENCES

This paper deals with multipoint iterations without memory for the solution of
the nonlinear scalar equation \(f^{(m)}(x) = 0, \ m \geq 0 \). Let \(p_n(m) \) be the maximal or­
der of iterations which use \(n \) evaluations of the function or its derivatives per
stop. We prove the Kung and Traub conjecture \(p_n(0) = \frac{2^{n-1}}{n-1} \) for Hermitian infor­
mation. We show \(p_{n+1}(m) \geq p_n(m) \) and conjecture \(p_n(m) \equiv 2^{n-1} \). The problem of the
maximal order is connected with Birkhoff interpolation. Under a certain assump­
tion we prove that the Polya conditions are necessary for maximal order.