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Abstract

We study a dynamic model of corporate investment with fixed and convex capital ad-

justment costs, and estimate the parameters of the model separately for each firm in a

sample of U.S. companies. We evaluate empirically the degree of parameter heterogeneity

among firms; quantify the cross-sectional distribution of capital adjustment costs; and as-

sess the magnitude of the estimation bias when one assumes that firms are characterized

by a homogeneous set of parameter values. The results show that a considerable amount

of parameter heterogeneity exists across firms. Average fixed adjustment costs are 1.15%

of the firm’s capital, they account for the majority of total adjustment costs, and they are

underestimated when assuming parameter homogeneity across firms. Adjustment costs de-

cline with firm size, and convex adjustment costs are positively related to a firm’s average

merger and acquisition expenditure.
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1. Introduction

There is a growing body of research that studies and estimates dynamic models of

corporate investment and financing choices.1 The aim is to infer from the data the value

of economic variables that are not directly observable by researchers, such as the costs of

external financing (Hennessy and Whited, 2007), or capital adjustment costs (Cooper and

Haltiwanger, 2006).

The approach followed by most papers in this literature is to parameterize an intertem-

poral model of firm-level investment and financing decisions, and estimate the parameters

by matching a set of simulated moments from the model to their empirical counterparts.

This estimation procedure neglects firm heterogeneity, because it implicitly assumes that

all firms in the sample are described by the same set of parameters. This can lead to bi-

ased estimates because, typically, the investment models considered are non-linear, and the

parameters that characterize an average, representative firm are different from the average

parameters across the firms in the sample.2

Two sources of firm heterogeneity can give rise to this bias. The first, which is the main

focus of our paper, is represented by differences in production technologies that determine

how invested capital translates into cash flows. A second source is the presence of financing

frictions that determine the choice between internal and external financing, the capital

structure mix, and the allocation of the cash flows among the firm’s security holders (Glover,

2011, and Morellec, Nikolov, and Schurhoff, 2012).

In this paper, we study a dynamic model of investment with capital adjustment costs,

and estimate the parameters of the model separately for each firm in a sample of U.S.

companies. This allows us to evaluate empirically the degree of technological heterogeneity

among firms; quantify the cross-sectional distribution of capital adjustment costs; and assess

the magnitude of the bias when one assumes homogeneity across firms.

As a basis for estimation, we employ a neoclassical model of investment that has become

standard in the literature (e.g., Cooper and Haltiwanger, 2006, and Riddick and Whited,

1See Strebulaev and Whited (2012) for a recent survey of this literature.
2The issue of neglected persistent firm heterogeneity is well recognized in the literature. For example,

Welch (2011) argues that “common problems that plague empirical research in corporate finance are strong
firm-size effects that are not fully understood, [and] residual heterogeneity across firms and industries.”
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2009). The model is in discrete time, and the horizon is infinite. Firms are risk neutral and

maximize the present value of future cash flows. In each period, cash flows are determined

by operating profits, which are affected by firm-specific persistent productivity shocks, the

value of investment, and capital adjustment costs. The latter are incurred whenever a firm

acquires or sells capital, which depreciates over time. The specification of the adjustment

cost function includes both a fixed and a convex component in the firm’s investment-to-

capital ratio.

In the model, firms are heterogeneous with respect to six parameters: the depreciation

rate of capital, the persistence and volatility of the productivity shock, a profit curvature

parameter that affects the marginal returns to capital, and two parameters that describe

the cost adjustment function and measure, respectively, fixed and convex adjustment costs.

We estimate a separate set of parameters for each firm in a sample of 1,068 public U.S.

companies in the period 1972 to 2006. Our source of data is the Compustat database. To

facilitate estimation, we restrict attention to firms with at least 20 years of consecutive ob-

servations. Estimation is based on the Simulated Method of Moments (SMM) (McFadden,

1989, and Pakes and Pollard, 1995). This procedure requires to minimize a weighted dis-

tance between a set of simulated moments that are derived from the solution of the model,

and their empirical counterparts in the data.

For each firm, the time-series moments that we choose to match are the average Tobin’s

Q, the persistence of the ratio of operating profits to capital, the variance and skewness of

the investment to capital ratio, and the coefficients of an OLS regression of the investment

ratio on a constant, Tobin’s Q, and the firm profitability ratio. These moments are chosen

on the basis of their informativeness about the structural parameters. For example, the

profit curvature parameter affects negatively the value of average Tobin’s Q, and positively

the correlation of investment with Tobin’s Q and profitability. The persistence and volatility

of the productivity process are positively related to the autocorrelation of profitability and

to the variance of investment, respectively. A high value of the parameter governing convex

adjustment costs implies less variable investment, whereas a higher fixed adjustment cost

parameter means less frequent but more aggressive investment bursts and, therefore, higher

investment skewness.
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The estimation results show that a considerable amount of parameter heterogeneity

exists across firms. To quantify potential biases, we compare the cross-sectional averages

of our estimates to the values obtained by assuming that all firms are characterized by a

homogeneous set of parameters. The curvature of the profit function and the persistence of

idiosyncratic productivity are estimated with a relatively low amount of bias. The distri-

bution of the curvature parameter is skewed to the left, and its minimum estimated value,

0.37, is well below the cross-sectional average of 0.83. The distribution of the variance of

the productivity shocks exhibits fat tails and its average lies at a considerably lower level

than the estimate obtained by neglecting heterogeneity. This bias obtains because of the

non-linear way in which the variance of investment and the variance of productivity shocks

are related.

Using the parameter estimates, for each firm we compute by Monte Carlo simulation

the expected total adjustment costs, and evaluate the relative importance of the fixed and

convex components. Average fixed adjustment costs are 1.15% of the firm’s capital, and

they account for the majority of total adjustment costs (1.4%). Moreover, the cross section

of firms’ fixed adjustment costs is characterized by a bimodal shape: for 31% of firms, these

costs assume a value close to zero, whereas for approximately 42% of firms, they range

between 1.5% and 3%. Finally, we find that fixed adjustment costs are underestimated

when assuming parameter homogeneity across firms, in which case they are found to be

0.22% of capital.

Next, we analyze the determinants of the cross-sectional dispersion of adjustment costs.

We find that, although these costs exhibit clustering at the sectoral level, 85% of their

variation is driven by idiosyncratic firm characteristics. In other words, biases due to het-

erogeneity are bound to persist when one estimates the model assuming that firms within

the same sector have homogeneous parameters. To analyze within sector variation of adjust-

ment costs, we regress their average simulated value on firm-specific characteristics. This

analysis shows that adjustment costs decline as firm size, measured by sales, increases. To

put this relationship into perspective, fixed adjustment costs are on average 1.2% of capital

value for firms in the bottom size decile and 0.8% for firms in the top decile. We argue that

aggregation of asset-specific fixed adjustment costs within firm is a plausible explanation
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for this effect. In addition, we find that convex adjustment costs are positively related to

the average merger and acquisition expenditure that a firm undertakes. This implies that

merger integration costs are an important source of investment frictions at the corporate

level. Finally, firms characterized by intensive R&D activity exhibit higher convex and

lower fixed adjustment costs, after controlling for sector effects. This can be attributed to

high adjustment costs in human capital, in which R&D intensive firms heavily invest.

Our paper is related to several recent contributions in the literature on corporate in-

vestment and financing. Cooper and Haltiwanger (2006) develop a model of investment

with both fixed and convex adjustment costs and calibrate its parameters using plant-level

data from the Longitudinal Research Database.3 Building on this model, DeAngelo, DeAn-

gelo, and Whited (2011) propose a dynamic model of capital structure and investment to

explain the slow speed of adjustment of leverage ratios and the frequent use of debt to fi-

nance investment spikes. The same model of corporate investment also serves as a building

block in Riddick and Whited (2009) and Eisfeldt and Muir (2012), who study the opti-

mal firm retention policy in an intertemporal setting with costly external finance; and in

Nikolov and Whited (2009), who study cash accumulation and corporate investment when

the management-investor relationship is affected by agency problems.4

A common assumption that these papers make for estimation is that firms are charac-

terized by the same set of parameter values.5 In this sense, firms are ex-ante homogeneous,

and heterogeneity is generated over time only by the realization of firm-specific productivity

shocks. We find that, by neglecting persistent firm heterogeneity, not only are parameters

estimated with a bias, due to non-linearities in the optimal investment policy, but this bias

can vary systematically across firms. For instance, we find that fixed adjustment costs are

underestimated more severely for smaller rather than larger firms.

Notable exceptions that account for heterogeneity in firm parameters are the papers

by Morellec, Nikolov, and Schurhoff (2012), who use Simulated Maximum Likelihood to

3Notice that estimates of investment policy obtained by plant level data are not necessarily representative
of the parameters characterizing total corporate investment, since the latter involves a degree of aggregation
within firm.

4The aggregate effects capital adjustment costs have also been the focus of recent macroeconomic models
(e.g., Khan and Thomas, 2008).

5For example, whereas DeAngelo, DeAngelo, and Whited (2011) use a panel data approach to estimate
the profit curvature parameter, in their simulations all firms are assumed to be characterized by the same
parameter values.
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estimate a dynamic capital structure model with agency costs, and Glover (2011), who

estimates the cross-sectional distribution of financial distress costs in a trade-off model of

capital structure. Whereas these papers focus on financing policies, to the best of our

knowledge, ours is the first paper that estimates at the firm level a structural model of

corporate investment with adjustment frictions.

The paper is structured as follows. Section 2 studies a dynamic model of firm investment

with capital adjustment costs, describes the data, and provides details of the estimation

procedure. In section 3, we discuss the structural parameter estimates and the simulated

cross-sectional distribution of adjustment costs. Section 4 concludes.

2. Model and Estimation

In this section, we present the model of corporate investment with fixed and convex

capital adjustment costs that forms the basis for estimation. Furthermore, we discuss

sample construction and provide definitions to the empirical variables. Finally, we describe

our estimation strategy and the choice of the moments to match.

2.1. Model

We study an economy populated by risk-neutral firms that discount future cash flows

at rate r. Time is discrete, and the horizon is infinite. Firm j’s operating profits are

πj(zj , kj) = zjk
αj
j , where k is capital, αj ∈ (0, 1) characterizes the firm-specific decreasing

returns to scale, and zj ∈ [zj , zj ] is a random profitability shock with law of motion given

by

ln(z′j) = ρz,jln(zj) + σε,jεj , (1)

where ρz,j ∈ (0, 1), σε,j ≥ 0 and εj follows a truncated standard normal distribution.

The prime symbol denotes values one period in the future. The dynamics of capital are

determined by the firm’s investment choices ij = k′j − (1− δj)kj , where δj ∈ (0, 1) denotes
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the depreciation rate. Investment results in adjustment costs

A(kj , k
′
j) =

[
c0,jI(k′j − (1− δj)kj 6= 0) +

c1,j
2

(
k′j − (1− δj)kj

kj

)2
]
kj , (2)

where I(�) is an indicator function. The specification of adjustment costs in (2) is standard

in the literature, as it accounts for investment irreversibility in a parsimonious way (Cooper

and Haltiwanger, 2006; Riddick and Whited, 2009; DeAngelo, DeAngelo, and Whited, 2001;

and Eisfeldt and Muir, 2012). The adjustment cost function contains two terms. The first

represents a fixed cost that the firm incurs whenever investment is non-zero, e.g., costs of

organizational restructuring within the firm, or integration costs in the case of a merger.

Such fixed costs give rise in equilibrium to lumpy investment behavior: periods of high in-

vestment are followed by periods of inactivity. The second term in (2)is a convex adjustment

cost, which generates investment smoothing over time. Examples are inventory adjustment

costs, machine set-up costs, or overtime costs (Holt, Modigliani, Muth, and Simon, 1960;

Hamermesh and Pfann, 1996). Scaling the adjustment cost function by the capital level

implies that lumpy investment and investment smoothing can take place irrespective of firm

size.

In each period, firm j’s cash flows are

e
(
zj , kj , k

′
j

)
≡ πj(zj , kj)− ij −A(kj , k

′
j), (3)

with a negative value of e corresponding to external financing proceed. The firm’s technology

is characterized by the structural parameter vector θj = (αj , δj , ρz,j , σε,j , c0,j , c1,j). We

assume that θj is time invariant. Therefore, unlike most prior papers in the literature, firm

heterogeneity in the model results not only from transitory productivity shocks, but also

from permanent differences in investment policies across firms.

The firm’s maximization problem is characterized by the following Bellman equation:

V (zj , kj ; θj) = max
k′j≥0

ej(zj , kj , k
′
j) +

1

1 + r

zj∫
zj

V (z′j , k
′
j ; θj)dF (z′j |zj ; ρz,j , σε,j), (4)
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where F (.|zj ; ρz,j , σε,j) is the productivity shock’s transition c.d.f. implied by equation

(1).6 We solve the Bellman equation using value function iteration. To that end, we

discretize the state space for both the idiosyncratic productivity shock and the level of

capital. Since firms’ technologies are heterogeneous, the ergodic sets for z and k differ

depending on the parameters. To compute expectations over future productivity shocks,

we follow Tauchen (1986). We construct an equally spaced grid with nz = 25 points for

log(zj) that spans eight standard deviations of the ergodic distribution, that is log(zj) ∈[
− 4σε,j√

1−ρ2z,j
,

4σε,j√
1−ρ2z,j

]
. It can be shown that the level of capital never exceeds a firm-specific

upper bound kj =
(
zj
δj

) 1
1−αj , where zj = exp

(
4σε,j√
1−ρ2z,j

)
. The grid of capital is then

constructed as kj ∈
[
kj(1− δj)

nk(j)−1

2 , ..., kj(1− δj)1/2, kj
]
. We set the number of points of

the capital grid for firm j, nk(j), so that the left endpoint of the grid lies below 0.01, with

a minimum nk(j) equal to 100. We do so in order to allow the firm to choose a sufficiently

low capital level to implement almost complete disinvestment.

2.2. Data

Our source of data is the Compustat Industrial Annual database. To select our sample,

we choose a set of filters that are common in the corporate finance literature.7 We start from

the full data sample between 1972 and 2006, and we delete all firms that have a primary

Standard Industrial Classification (SIC) code between 4900 and 4999 (regulated firms),

6000 and 6999 (financial firms), or greater than 9000 (quasi-public firms). We also delete

firm-year observations with missing values and observations with negative values for total

assets, gross property plant and equipment, or sales.8 We then choose, for each firm, the

longest consecutive time series of data and drop firms with less than twenty observations.

Our final sample consists of 29,895 yearly observations for 1,068 firms, with an average of

about 28 observations per firm.

6Our model satisfies assumptions 9.4-9.7 in Stokey, Lucas, and Prescott (1989) and therefore the value
function exists and it is unique.

7See, for example, Riddick and Whited (2009) and DeAngelo, DeAngelo, and Whited (2011).
8We replace with zeros the missing values for deferred taxes (item 74), sale of property, plant and

equipment (item 107), and acquisitions (item 129). According to Frank and Goyal (2003), Compustat
records these variables “as missing when a firm does not report a particular item or combines it with other
data items.”
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Variable definitions are as follows: total assets are item 6 in Compustat; sales are item 12;

gross property, plant and equipment (PPE) is item 7; the investment ratio is the difference

between PPE expenditure (item 30) and sale of PPE (item 107), divided by gross PPE;

profitability is operating income before depreciation (item 13) divided by total assets; the

depreciation rate is item 14 divided by PPE; the numerator of Tobin’s Q is the sum of

the market value of equity (computed as the product of item 199 – the stock price at the

fiscal-year end – and the number of common shares outstanding, item 25) and total assets

minus the book value of equity (item 60 plus item 74, deferred taxes), the denominator is

total assets; the R&D ratio is item 46 divided by sales; acquisition expenditure is item 129.

Variables are deflated to constant 2005 dollars using the GDP deflator.9 Finally, to reduce

the effect of outliers when computing moments, we winsorize the variables at the top and

bottom 1%.

2.3. Estimation Procedure

To assess the degree of technological heterogeneity in the cross-section of firms, we

estimate the set of structural parameters θj for each company in our dataset, j = 1, . . . , 1068,

using the SMM procedure introduced by McFadden (1989) and Pakes and Pollard (1989).

Denote by Nj the number of observations in the time-series data sample for firm j, by S

the number of simulated samples, by ηN the vector of moments estimated using the real

data, and by ηNS(θ) the vector of simulated moments, which is a function of the vector of

structural parameters, θj . The structural parameter estimator is given by

θ̂j = arg min
θ∈Θ

(ηNS (θ)− ηN )′ ŴN (ηNS (θ)− ηN ) , (5)

where ŴN is an optimally chosen weighting matrix equal to 1
Nj

Σ̂−1, with Σ = V ar (ηN ).

The estimate Σ̂ is based on actual data and is obtained by bootstrapping the moments in

ηN .

At a firm-specific value of the structural parameters, our algorithm simulates a sample

of S = 1000 firms for T = 200 years. This procedure involves drawing S independent

9Source: Bureau of Economic Analysis (www.bea.gov), NIPA Table 1.1.9.
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time series of zj in [zj , zj ], according to the transition law (equation (1)). We use linear

interpolation to find the value function and the optimal next-period capital values between

grid points. For each of the S simulated firms, we compute a set of moments and then

average their value. The moments are computed only on the basis of the last 20 periods

of the simulation, to allow the states of simulated firms to converge to their steady state

distribution. We then minimize the SMM criterion function in equation (5), and repeat the

procedure across every firm in our dataset. Following Strebulaev and Whited (2012), we

use simulated annealing to avoid local optima, followed by the Nelder-Meade algorithm to

accelerate convergence to the global optimum.

2.4. Selection of Moments

We set the depreciation rate δj to its average empirical value for each firm, and the inter-

est rate to 0.04, a standard value in the literature. We estimate the remaining parameters

using the SMM procedure. To do so, we select moments on the basis of their informative-

ness about the structural parameters. We choose seven moments to match: average Tobin’s

Q, defined in the model as V/k; the autocorrelation of firm profitability, defined as π/k;

the variance and skewness of the investment-to-assets ratio, i/k; and OLS coefficients of a

regression of the investment ratio on Q, the firm profitability ratio and a constant term.

Using the regression coefficients as moments serves a dual purpose: it facilitates matching

the average investment rate within firm, and it helps identify the effects of time varying

productivity shocks on investment.

Each structural parameter affects essentially all moments in a non-linear way. To gain

intuition, however, about what guides estimation, we highlight some key relationships be-

tween parameters and moments. A higher curvature parameter α for the profit function

leads to higher investment rate and a decline in Tobin’s Q. At the same time, investment

responds more strongly to shocks, and its correlation with Tobin’s Q and profitability in-

creases. The autocorrelation ρz and the variance σ2ε of the productivity shock are positively

related to the autocorrelation of operating profits and the variance of investment, respec-

tively. Fixed adjustment costs make investment less responsive to productivity shocks,
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leading to periods of investment inactivity followed by investment bursts. In that sense, ad-

justment costs generate skewness in the investment ratio, and reduce Tobin’s Q. Unlike the

fixed cost parameter c0, the quadratic cost parameter c1, reduces the variance of investment

and drives down its skewness.

To illustrate the degree of firm heterogeneity in our sample, we provide kernel den-

sity estimates of firm-specific empirical moments in Figure 1, and summary statistics in

Table 1. Clearly, all moments exhibit substantial cross-sectional dispersion. The average

firm-level depreciation rate, which is arguably the most important determinant of the av-

erage investment rate in structural corporate finance models (see Strebulaev and Whited,

2012), varies considerably, ranging from 3.8% to 21.4%. Both average Tobin’s Q and the

variance of investment exhibit positive skewness. This provides preliminary indication that

the cross-sectional distribution of firms may reflect a mixture between a companies char-

acterized by low fixed capital adjustment costs, and a group of firms with substantially

higher costs. Skewness in investment ratios, a moment that is often used to identify fixed

adjustment costs (e.g., DeAngelo, DeAngelo, and Whited, 2011), is on average positive,

but again varies considerably among firms. Absent adjustment costs, the model implies a

positive relationship between investment with Q and firm profitability. Interestingly, the

sensitivities of investment on Q and profitability exhibit varying signs across firms, again

an indication of heterogeneity in adjustment costs.

How does investment policy vary across firms, and how does this variation affect the

estimates of the structural parameters in our model? Table 2 shows that firms with faster

depreciation exhibit higher Q, average investment, and variance of investment. These ef-

fects are consistent with the model’s predictions: depreciation affects positively the average

investment rate, as firms need to replace capital at a higher rate. In addition, when fixed

adjustment costs are present, depreciation makes investment more volatile because it leads

to more frequent investment bursts. Average Q and the intercept in the investment regres-

sion are positively correlated, which can be explained by the positive relationship of each

of these variables with the productivity shock. Interestingly, the skewness and the variance

of the investment ratio are cross-sectionally positively correlated. This fact can be caused

by fixed adjustment costs, which make investment more skewed due to inactivity and less
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sensitive to productivity shocks. In turn, this can justify the observed negative correlation

between investment skewness and the sensitivity of investment to profitability.

3. Estimation Results

In this section, we present the results of the estimation, discuss the cross-section of struc-

tural parameter estimates, and characterize the distribution of capital adjustment costs.

3.1. The Cross-Sectional Distribution of Parameter Estimates

Figure 2 plots the cross-sectional densities of the estimated firm-level parameters. To fa-

cilitate a comparison between the two cases of homogeneous and heterogeneous parameters,

we also estimate the model assuming that firms are characterized by the same parameter

values. To do so, we average the firm specific moments across all firms, estimate their covari-

ance matrix by bootstrap, and repeat the SMM procedure. The resulting set of parameters

are shown in Panel A of Table 3. Panel B reports summary statistics of the cross-sectional

distribution of parameter estimates, and their cross-correlations are shown in Table 4.

The curvature parameter of the profit function, α, averages 0.83 across all firms, and

is close to the 0.89 value obtained by assuming firm homogeneity. In the cross section,

however, α ranges from as low as 0.37 to as high as 0.96, exhibiting left skewness. Similarly,

we find little bias in the estimation of the productivity shock autocorrelation, ρz, assuming

homogeneity (0.54), when compared to the average in the cross section (0.58). The same

does not hold true for the standard deviation of the innovation of the productivity shock.

The cross-sectional average of σε, 0.2, is considerably lower than the estimate obtained by

assuming the same parameter values across firms. This bias can be explained by the non-

linear relationship between the variance of investment and the variance in the innovation

process.10 For the majority of firms, σε lies between 0.15 and 0.3, but the distribution

exhibits fat tails with a kurtosis of 14.48 (Figure 2c).

10To illustrate this point, assume away adjustment costs. Then, it can be shown that the optimal capital

choice, given by k′ =

[
zρexp( 1

2
σ2
ε)

r+δ

] 1
1−α

, implies a convex relationship between the variance of the investment

ratio k′−(1−δ)k
k

and σ2
ε . By Jensen’s inequality, it follows that the value of σ2

ε inferred from the average cross-
sectional moment σ2

I overestimates the cross-sectional mean of σ2
ε .
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The estimated cross-sectional distribution of the fixed adjustment cost parameter c0 is

bimodal (Figure 2d). While for a 31% of firms c0 does not exceed 0.005, for another 42% of

firms, the parameter lies between 0.015 and 0.03, a considerably higher level than the value

obtained by neglecting firm heterogeneity (0.0003). Finally, the quadratic cost parameter

c1 exhibits right skewness, and its average cross-sectional value lies below the estimated c1

for the representative firm.

In the cross section, the parameter estimates co-vary with firm-level moments in line with

the discussion of subsection 2.4. As Table 5 shows, firms with higher curvature parameter

in the profit function (i.e., higher α), exhibit lower Q, more volatile investment, and higher

sensitivity of investment to Q and to firm profitability. More persistent productivity shocks

are associated with a higher autocorrelation in firm profitability, higher average Q, and

investment that is more responsive to shocks. The latter effect is reflected in the time-series

variance of investment, and its conditional correlation with Tobin’s Q and firm profitability.

The standard deviation of the productivity innovations is negatively correlated with the

persistence of profitability, as well as with the investment-profitability sensitivity. Firms

with higher fixed adjustment costs are associated with higher variance and skewness of

investment. According to the model, this is explained by the longer periods of inactivity

and the more aggressive bursts of investment that higher fixed adjustment costs imply.

These bursts are much less pronounced, when adjustment costs are of a convex (quadratic)

nature, which justifies their negative cross-sectional correlation with the variance and the

skewness of investment.

3.2. The Determinants of the Adjustment Costs

At the firm level, the investment policy depends to a large extent on the magnitude of

the capital adjustment costs. In this section, we describe the cross-sectional variation of

adjustment costs and we relate their size to firm and industry characteristics. Given the

estimated parameters, we simulate the cross-section of firms to find the ratios of adjustment

cost to capital and adjustment costs to firm value. We do so under two hypothesis. First,

we assume that all firms are characterized by the same parameters, as shown in Panel A of
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Table 3. Second, we allow firms to be heterogeneous.

The results in Table 6 reveal a number of interesting patterns. Adjustment costs in the

cross section average 1.4% of capital value and 1.0% of firm value, and they are considerably

higher than the 0.2% value obtained assuming homogeneity. What explains the bias in

the estimates using the homogeneous-parameters assumption? As Figure 1 shows, the

average skewness of investment is low. At the same time, the distribution of the variance of

investment exhibits a long right tail. The estimate of the fixed adjustment cost parameter

c0 responds non-linearly to these moments. Low values of skewness and variance attract

the parameter towards the lower bound at zero, whereas high skewness and variance lead

to substantial increases in the c0 estimate. These two facts, a bounded support of c0 and

skewness in the cross-sectional distribution of the variance of investment, combine to yield

an underestimation of the adjustment costs when one assumes a population of firms with

homogeneous parameters.

Our estimates show that fixed adjustment costs, as a fraction of capital, are four times

as large as convex (quadratic) costs. Their magnitude, however, varies considerably from

firm to firm, leading to high dispersion in total adjustment costs (Figure 3). What drives

this dispersion? A natural conjecture is that technological heterogeneity across firms is

clustered at the industry level. In Table 7, we summarize the average adjustment costs for

the 49 Fama-French industries.11 These costs range from less than 1% for the Beer, Gold

and Drugs industries to approximately two percent in the Textiles, Fabricated Products and

Wholesale sectors. In an unreported ANOVA analysis, we find that, even though between-

sector variation in adjustment costs is statistically significant, 85% of the total variation

obtains from firms within the same sector.

To analyze their within-sector variation, in Table 8 we regress the simulated adjustment

costs, as a fraction of capital, against a number of firm-level variables. A natural candidate

variable, according to the existing literature, is firm size. Cooper and Haltiwanger (2006)

analyze a large sample of plant-level data and find evidence of fixed and convex adjustment

costs. They use a simulated dataset to argue that the role of fixed adjustment costs in

the determination of investment declines at the aggregate level. At the corporate level,

11Industry classifications are available on Kenneth French’s webpage. In our sample, firms operating
regulated industries, financial firms, and quasi-public companies are omitted.
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intuition suggests that investment irreversibility and fixed costs associated with individual

assets should also be smoothed out. This aggregation effect should be more prevalent in

larger firms. Since the investment ratio is decreasing in the capital level, we also expect

quadratic costs to be negatively correlated with firm size. Our regression results confirm

that fixed, quadratic, and total adjustment costs as a fraction of capital are all negatively

related to the time-series average of firm size. These effects are statistically significant at

the one percent level and economically large: average fixed adjustment costs are 1.15% of

capital value for firms at the bottom size decile and 0.8% for firms at the top decile.

To what extent does aggregation due to firm size help explain the bi-modality of the

fixed adjustment costs distribution? To answer this question, we perform a logit regression

that relates the probability of low average fixed adjustment costs (less than 0.5% of capital),

to firm size and other characteristics. If the negative relationship between fixed adjustment

costs and firm size takes place for small rather than large firms, we would expect the

corresponding regression coefficient to be insignificant. The results of Panel C in Table 8,

however, indicate that the probability of a very low c0 observation increases in firm size.

A second potential source of adjustment frictions in investment are the transaction

costs associated with capital reallocation across firms. To proxy for this effect, we collect

information on the M&A expenditure-to-assets ratio for each firm in the sample. Total

adjustment costs are significantly positively related to M&A costs at the one percent level,

either controlling for industry effects or not. Significance obtains only for quadratic costs

however, indicating larger costs of integration associated with mega-mergers. In total,

adjustment costs average 1.39% of capital value for firms in the bottom decile of M&A

activity and 1.56% for firms in the top decile.

A final characteristic that explains the cross sectional variation of adjustment costs

is asset tangibility. In particular, we examine how fixed and quadratic adjustment costs

correlate with the average R&D to Sales ratio. We find two opposite effects: While quadratic

costs increase for R&D-intensive firms, the contrary holds true for fixed adjustment costs.

This finding is consistent with the presence of high labor adjustment costs for R&D intensive

firms, which are more likely to invest a large fraction of their assets in human capital.

Consistent with this conjecture, Holt, Modigliani, Muth, and Simon (1960) find that a
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quadratic specification approximates well labor adjustment costs.

4. Conclusion

This paper highlights the importance of accounting for persistent cross-sectional firm

heterogeneity when estimating structural models in corporate finance. To do so, we consider

a large sample of U.S. companies and estimate separately for each firm the parameters of

a dynamic model of corporate investment. This allows us to quantify the cross-sectional

distribution of firms’ capital adjustment costs, which are the source of investment frictions

in our model. We find considerable variation in parameter estimates both for firms within

the same industry, and across different industries. Because dynamic investment models with

frictions are typically highly non-linear, neglecting heterogeneity creates an estimation bias:

the parameter estimates for a representative firm are different from the average parameters

across firms. In our case, the average adjustment cost in the cross section (1.4% of capital)

exceed the corresponding estimate if one assumes that all firms are ex-ante homogeneous

(0.2%).

Being the first paper to estimate a structural investment model at the firm-level, we

focus on technological rather than financing frictions – such as costs of external financing or

bankruptcy costs. An interesting avenue for future research would be to evaluate empirically

models that incorporate both types of frictions (e.g., Gomes, 2001; DeAngelo, DeAngelo,

and Whited, 2011), to derive their joint distribution in the cross section of firms. Although

such models are characterized by a higher number of state variables, recent developments

in numerical integration methods (Judd, Maliar, and Maliar, 2011) and the use of parallel

computing (Aldrich, Fernandez-Villaverde, Gallant, and Rubio-Ramirez, 2011) alleviate the

computational burden required for estimation.
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Table 1: Summary statistics of firm-specific empirical moments. This table shows sum-
mary statistics for the cross section of firm-specific moments. The sample consists of 1,068 publicly
traded firms in Compustat. δ is the firm’s average depreciation rate. Q the firm’s average Tobin’s
Q ratio. ρoi is autocorrelation in firm profitability. σ2

I is the time series variance of the firm’s
investment ratio; Skew(I) is the time series skewness of the investment ratio; β0, βQ, and βoi are
OLS regression coefficients from a regression of the investment ratio on an intercept, Tobin’s Q, and
firm profitability. The details of the sample construction and variable definitions can be found in
subsection 2.2.

δ Q ρoi σ2I Skew(I) β0 βQ βoi
Mean 0.081 1.498 0.620 0.011 0.845 0.065 0.020 0.209
Median 0.075 1.303 0.662 0.006 0.838 0.062 0.007 0.238
Standard Deviation 0.028 0.627 0.209 0.026 1.180 0.117 0.093 0.576
Skewness 1.403 2.043 -0.941 12.421 -0.909 0.100 2.699 -0.444
Min 0.038 0.764 -0.384 0.000 -5.378 -0.703 -0.354 -3.260
Max 0.214 4.987 0.986 0.542 4.426 0.833 0.864 3.534
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Table 2: Spearman rank correlation between firm-level moments. This table shows the
Spearman rank correlation matrix between firm-specific empirical moments. The sample consists of
1,068 publicly traded firms in Compustat. δ is the firm’s average depreciation rate; Q the firm’s
average Tobin’s Q ratio; ρoi is autocorrelation in firm profitability; σ2

I is the time series variance
of the firm’s investment ratio; Skew(I) is the time series skewness of the investment ratio; β0, βQ,
and βoi are OLS regression coefficients from a regression of the investment ratio on an intercept,
Tobin’s Q, and firm profitability. The details of the sample construction and variable definitions can
be found in subsection 2.2.

δ Q ρoi σ2I Skew(I) β0 βQ βoi
δ 1
Q 0.307 1
ρoi -0.027 0.234 1
σ2I 0.344 0.129 -0.163 1
Skew(I) -0.004 -0.028 -0.113 0.270 1
β0 0.143 0.175 -0.065 -0.032 0.074 1
βQ 0.056 -0.091 -0.062 0.230 0.068 -0.547 1
βoi -0.013 -0.024 0.177 -0.040 -0.164 -0.443 -0.274 1
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Table 3: Structural parameter estimates. This table shows the structural parameter estimates
derived using the Simulated Method of Moments. Panel A shows the estimates obtained by assuming
that the same parameter values hold across firms, and by matching the mean moment values in
Table 1. Panel B shows summary statistics of the estimates obtained by allowing for heterogeneous
parameters across firms, and by matching the firm specific moments summarized in Table 1. The
sample consists of 1,068 publicly traded firms in Compustat. The details of the sample construction
and variable definitions can be found in subsection 2.2. α is the curvature parameter of the profit
function; ρz is the autocorrelation of the firm specific log-productivity and σε its variance; c0 is fixed
adjustment cost parameter and c1 is the convex (quadratic) adjustment cost parameter.

Panel A: Structural parameter estimates assuming firms with homogeneous
parameters.

α ρz σε c0 c1
Coefficient 0.890 0.544 0.420 0.0003 0.395

Panel B: Summary statistics of firm-level structural parameter estimates.

α ρz σε c0 c1
Mean 0.831 0.578 0.207 0.015 0.303
Median 0.865 0.571 0.205 0.020 0.260
Standard Deviation 0.102 0.107 0.059 0.010 0.114
Skewness -1.796 0.581 1.343 -0.436 3.296
Min 0.372 0.228 0.003 0.000 0.071
Max 0.962 0.990 0.662 0.035 1.657
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Table 4: Spearman rank correlation of structural parameters in the cross-section. This
table shows the Spearman-rank correlation between the structural parameter estimates. The esti-
mates are obtained using the Simulated Method of Moments for a sample of 1,068 firms in Compu-
stat, allowing for heterogeneous parameters across firms, and matching the firm specific moments
summarized in Table 1. α is the curvature parameter of the profit function; ρz is the autocorrelation
of the firm specific log-productivity and σε its variance; c0 is fixed adjustment cost parameter and
c1 is the convex (quadratic) adjustment cost parameter.

α ρz σε c0 c1
α 1
ρz -0.128 1
σε -0.213 -0.314 1
c0 0.302 -0.008 -0.091 1
c1 -0.386 -0.105 -0.058 -0.805 1
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Table 5: Spearman rank correlation between structural parameters and firm moments.
This table shows the Spearman rank correlation matrix between the firm-level structural parameter
estimates and the firm’s empirical moments. The sample consists of 1,068 publicly traded firms
in Compustat. The details of the sample construction and variable definitions can be found in
subsection 2.2. Q is the firm’s average Tobin’s Q ratio; ρoi is autocorrelation in firm profitability; σ2

I

is the time series variance of the firm’s investment ratio; Skew(I) is the time series skewness of the
investment ratio; β0, βQ, and βoi are OLS regression coefficients from a regression of the investment
ratio on an intercept, Tobin’s Q, and firm profitability. α is the curvature parameter of the profit
function; ρz is the autocorrelation of the firm specific log-productivity and σε its variance; c0 is fixed
adjustment cost parameter and c1 is the convex (quadratic) adjustment cost parameter.

Q ρoi σ2I Skew(I) β0 βQ βoi
α -0.603 -0.129 0.060 -0.048 -0.097 0.062 0.085
ρz 0.083 0.184 0.047 -0.106 -0.301 0.151 0.139
σε 0.110 -0.065 0.200 0.156 0.053 0.045 -0.135
c0 -0.395 -0.227 0.468 0.215 -0.042 0.062 0.059
c1 0.501 0.189 -0.493 -0.202 0.156 -0.145 -0.070
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Table 6: Summary statistics of simulated adjustment costs. This table shows summary
statistics for average simulated adjustment costs scaled by capital and firm value. Total adjustment
costs are the sum of fixed and quadratic adjustment costs. The sample consists of 1,068 publicly
traded firms in Compustat. In Panel A, all firms’ parameters are set at the values reported in
Table 3, Panel A. In Panel B, firms have heterogeneous parameters and their values are summarized
in Panel B of Table 3.

Panel A: Average simulated adjustment costs using the assumption of
homogeneous firms.

Mean

Fixed AC / Capital 0.0003
Quadratic AC / Capital 0.0019
Total AC / Capital 0.0022
Fixed AC / Firm Value 0.0003
Quadratic AC / Firm Value 0.0017
Total AC / Firm Value 0.0021

Panel B: Summary statistics of cross-section of simulated adjustment costs.

Mean Median St.Dev. Skew. Max

Fixed AC / Capital 0.012 0.014 0.008 -0.237 0.027
Quadratic AC / Capital 0.003 0.002 0.002 2.283 0.016
Total AC / Capital 0.014 0.017 0.009 -0.234 0.036
Fixed AC / Firm Value 0.008 0.009 0.007 0.228 0.036
Quadratic AC / Firm Value 0.001 0.001 0.001 1.779 0.006
Total AC / Firm Value 0.010 0.011 0.007 0.221 0.041
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Table 7: Summary statistics of adjustment costs by industry. This table shows summary
statistics at the sector level for simulated total adjustment costs scaled by capital. Adjustment costs
are simulated using the firms-specific parameter values summarized in Panel B of Table 3. The
sample consists of 1,068 publicly traded firms in Compustat. Firms are grouped into 49 industries
according to the Fama-French classification (FF). Regulated firms, financial firms, and quasi-public
firms are excluded from the sample. The details of the sample construction can be found in subsec-
tion 2.2

FF Name Mean St. Dev. FF Name Mean St. Dev.
1 Agriculture 0.0137 0.0111 23 Automobiles and Trucks 0.0154 0.0091
2 Food 0.0123 0.0090 24 Aircraft 0.0131 0.0089
3 Soda 0.0156 0.0125 25 Shipbuilding, Rail. Eq. 0.0115 0.0110
4 Beer 0.0049 0.0080 26 Defense 0.0089 0.0059
5 Tobacco 0.0115 0.0097 27 Gold 0.0086 0.0060
6 Toys 0.0124 0.0107 28 Mines 0.0177 0.0080
7 Entertainment 0.0114 0.0058 30 Oil 0.0131 0.0079
8 Books 0.0108 0.0102 32 Telecommunications 0.0099 0.0105
9 Consumer goods 0.0133 0.0091 33 Personal Services 0.0139 0.0092
10 Clothes & Apparel 0.0153 0.0088 34 Business Services 0.0180 0.0083
11 Healthcare 0.0143 0.0086 35 Computer Hardware 0.0138 0.0103
12 Medical Equipment 0.0093 0.0074 36 Computer Software 0.0159 0.0102
13 Drugs 0.0080 0.0071 37 Electronic Eq. 0.0136 0.0083
14 Chemicals 0.0106 0.0081 38 Measuring Eq. 0.0155 0.0082
15 Rubber & Plastics 0.0157 0.0090 39 Business Supplies 0.0130 0.0081
16 Textiles 0.0203 0.0045 40 Shipping Containers 0.0140 0.0100
17 Construction Mat. 0.0136 0.0083 41 Transportation 0.0168 0.0071
18 Construction 0.0169 0.0076 42 Wholesale 0.0191 0.0070
19 Steel 0.0128 0.0082 43 Retail 0.0146 0.0079
20 Fabricated Prod. 0.0197 0.0031 44 Restaurant and Hotels 0.0127 0.0078
21 Machinery 0.0142 0.0084 49 Other 0.0155 0.0105
22 Electrical Eq. 0.0112 0.0094
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Table 8: Regression analysis of adjustment costs. This table shows the cross-sectional deter-
minants of simulated firm adjustment costs scaled by capital. The sample consists of 1,068 publicly
traded firms in Compustat. Firm-specific average adjustment costs are computed by simulation,
using the parameters summarized in Panel B of Table 3. Panel A shows summary statistics of the
independent variables in the regression, which are defined in subsection 2.2. Panel B shows OLS
coefficients obtained by regressing firm-specific average adjustment costs on the time-series averages
of firm characteristics. TotAC, FixAC, QuadAC are, respectively, average firm-specific total, fixed,
and quadratic adjustment costs. Panel C shows coefficients of a logit regression of a dummy variable
that equals 1 when the average fixed adjustment cost is less than 0.5%, on firm-specific characteris-
tics. *, ** and *** indicate significance at the 10%, 5% and 1% level, respectively. Robust standard
errors are in parentheses.

Panel A: Summary statistics of independent variables in the regression.

Mean Median St. Dev. Skewness

log(Sales) 6.0024 5.9574 1.8140 0.1491
Acquisition Exp. 0.0145 0.0148 0.0101 1.4589
R&D/Sales 0.0198 0.0030 0.0369 2.8870

Panel B: OLS Regression analysis of adjustment costs.

(1) (2) (3) (4) (5)
Dependent variable TotAC TotAC TotAC FixAC QuadAC
log(Sales) -0.0010∗∗∗ -0.0012∗∗∗ -0.0012∗∗∗ -0.0010∗∗∗ -0.0002∗∗∗

(0.0001) (0.0001) (0.0002) (0.0002) (2.8E-05)
Acquisition Exp. 0.0389∗∗ 0.0548∗∗∗ 0.0270 0.0278∗∗∗

(0.0189) (0.0193) (0.0183) (0.0045)
R&D/Sales -0.0275∗∗∗ -0.0075 -0.0255∗∗∗ 0.0180∗∗∗

(0.0068) (0.0089) (0.0087) (0.0025)
Constant 0.0201∗∗∗ 0.0210∗∗∗ 0.0205∗∗∗ 0.0170∗∗∗ 0.0035∗∗∗

(0.0009) (0.0010) (0.0032) (0.0028) (0.0007)
Industry effects No No Yes Yes Yes
R2 0.0448 0.0630 0.1483 0.1361 0.4027

Panel C: Logit analysis of fixed adjustment costs.

Logit coeff.

log(Sales) 0.2407∗∗∗

(0.0471)
Acquisition Exp. -1.2865

(5.2709)
R&D/Sales 1.0336

(2.5626)
Constant -2.1014∗∗∗

(0.6784)

Industry effects Yes
Pseudo-R2 0.0867
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Figure 1: Cross-sectional distribution of empirical moments. This figure shows kernel
density estimates of the distributions of firm-specific empirical moments. The sample consists of
1,068 publicly traded firms in Compustat. Sample construction and variable definitions are provided
in subsection 2.2.
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Figure 2: Cross sectional distributions of structural parameters. Estimation is performed
using the SMM approach. Summary statistics of the moments to match are in Table 1. The
sample consists of 1,068 publicly traded firms in Compustat. Sample construction and variable
definitions are provided in subsection 2.2. α is the curvature parameter of the profit function; ρz is
the autocorrelation of the firm specific log-productivity and σε its variance; c0 is fixed adjustment
cost parameter and c1 is the convex (quadratic) adjustment cost parameter.
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Figure 3: Distribution of estimated total adjustment costs/capital ratios in the cross-
section of firms. The adjustment costs are simulated according to the firm-specific structural
parameter estimates obtained using the SMM approach. The sample consists of 1,068 publicly traded
firms in Compustat. Sample construction and variable definitions are provided in subsection 2.2.
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