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The economics of predation: What drives pricing when there

is learning-by-doing?∗

David Besanko† Ulrich Doraszelski‡ Yaroslav Kryukov§

June 20, 2011
—PRELIMINARY AND INCOMPLETE—

Abstract

Predatory pricing—a deliberate strategy of pricing aggressively in order to eliminate
competitors—is one of the more contentious areas of antitrust policy and its existence
and efficacy are widely debated. The purpose of this paper is to formally characterizes
predatory pricing in a modern industry dynamics framework. We endogenize competi-
tive advantage and industry structure through learning-by-doing. We show that we can
isolate and measure a firm’s predatory incentives by decomposing the equilibrium pric-
ing condition. Our decomposition maps into existing economic definitions of predation
and provides us with a coherent and flexible way to develop alternative characteriza-
tions of a firm’s predatory incentives. We ask three interrelated questions. First, when
does predation-like behavior arise? Second, what drives pricing and, in particular, how
can we separate predatory incentives for pricing aggressively from efficiency-enhancing
incentives for pricing aggressively in order to move further down the learning curve?
Third, what is the impact of predatory incentives on industry structure, conduct, and
performance? We find that predation-like behavior arises for wide range of parameter-
izations, and our decomposition-based definitions are succesful in isolating predatory
incentives in the sense that eliminating them leads to improvemtns in long-term mea-
sures of market structure, conduct and performance. It also appears that consumers
might be valuing short-term benefits of low predatory price more than the cost of future
monopolization.
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1 Introduction

Predatory pricing—a deliberate strategy of pricing aggressively in order to eliminate competitors—

is one of the more contentious areas of antitrust policy. Scholars such as Edlin (2010) argue

that predatory pricing can, under certain circumstances, be an effective and profitable

business strategy. Others—commonly associated with the Chicago School—suggest that

predatory pricing is rarely rational and thus unlikely to be practiced or, as Baker (1994)

puts it, somewhere between a white tiger and a unicorn—a rarity and a myth.

At the core of predatory pricing is a trade-off between lower profit in the short run due

to aggressive pricing and higher profit in the long run due to reduced competition. But as

the debate over the efficacy—and even the existence—of predatory pricing suggests, it is

not necessarily straightforward to translate this intuitive understanding into a more precise

characterization of what predatory pricing actually is.1

Characterizing predatory pricing is especially complicated because aggressive pricing

with subsequent recoupment can also arise when firms face other intertemporal trade-offs

such as learning-by-doing, network effects, or switching costs. The empirical literature pro-

vides ample evidence that the marginal cost of production decreases with cumulative expe-

rience in a variety of industrial settings.2 The resulting tension between predatory pricing

and mere competition for efficiency on a learning curve was a key issue in the policy debate

about the “semiconductor wars” between the U.S. and Japan during the 1970s and 1980s

(Flamm 1993, Flamm 1996). The European Commission case against Intel in 2009 over the

use of loyalty reward payments to computer manufacturers (that lead to a record-breaking

fine of $1.5 billion) likewise revolved around whether Intel’s behavior was exclusionary or

efficiency enhancing (Willig, Orszag & Levin 2009), with Intel CEO Paul Otellini vigor-

ously arguing that “[w]e have . . . consistently invested in innovation, in manufacturing and

in developing leadership technology. The result is that we can discount our products to

compete in a highly competitive marketplace, passing along to consumers everywhere the

efficiencies of being the world’s leading volume manufacturer of microprocessors.”3 More

generally, contractual arrangements such as nonlinear pricing and exclusive dealing that can

be exclusionary are often also efficiency enhancing (Jacobson & Sher 2006, Melamed 2006).

While predatory pricing is difficult to disentangle from pricing aggressively to pursue

1Edlin (2002) provides a comprehensive overview of the current law on predatory pricing. Bolton, Brodley
& Riordan (2000) and Edlin (2010) provide excellent reviews of the theoretical and empirical literature.

2See Wright (1936), Hirsch (1952), DeJong (1957), Alchian (1963), Levy (1965), Kilbridge (1962),
Hirschmann (1964), Preston & Keachie (1964), Baloff (1971), Dudley (1972), Zimmerman (1982), Lieber-
man (1984), Argote, Beckman & Epple (1990), Gruber (1992), Irwin & Klenow (1994), Jarmin (1994),
Pisano (1994), Bohn (1995), Darr, Argote & Epple (1995), Hatch & Mowery (1998), Benkard (2000), Shafer,
Nembhard & Uzumeri (2001), Thompson (2001), Thornton & Thompson (2001), and Thompson (2003).

3See http://www.zdnet.com/blog/btl/ec-intel-abused-dominant-position-vs-amd-fined-record-145-
billion-in-antitrust-case/17884 (accessed on June 7, 2011).
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efficiency, being able to do so is obviously important in legal cases involving alleged preda-

tion. Moreover, if one entertains the possibility that predatory pricing is a viable business

strategy, then a characterization of predatory pricing is required to allow economists, legal

scholars, and antitrust practitioners to detect its presence and measure its extent.

The purpose of this paper is therefore to formally characterize predatory pricing in a

modern industry dynamics framework along the lines of Ericson & Pakes (1995). Unlike

much of the previous literature, we do not attempt to deliver an ironclad definition of

predatory pricing. Instead, our contribution is to show that we can usefully isolate and

measure a firm’s predatory incentives by decomposing the equilibrium pricing condition.

We ask three interrelated questions. First, when does predation-like behavior arise in a

dynamic pricing model with endogenous competitive advantage and industry structure?

Second, what drives pricing and, in particular, how can we separate predatory incentives

for pricing aggressively from efficiency-enhancing incentives? Third, what is the impact of

predatory incentives on industry structure, conduct, and performance? We discuss these

questions—and our answers to them—in turn.

When does predation-like behavior arise? We develop a dynamic pricing model with

endogenous competitive advantage and industry structure similar to the models of learning-

by-doing in Cabral & Riordan (1994) and Besanko, Doraszelski, Kryukov & Satterthwaite

(2010). While there is a sizeable literature that attempts to rationalize predatory pricing

as an equilibrium phenomenon by means of reputation effects (Kreps, Milgrom, Roberts

& Wilson 1982), informational asymmetries (Fudenberg & Tirole 1986), or financial con-

straints (Bolton & Sharfstein 1990), our model forgoes these features and thus “stacks the

deck” against predatory pricing. Our numerical analysis nevertheless reveals the widespread

existence of Markov perfect equilibria involving behavior that resembles conventional no-

tions of predatory pricing in the sense that possibility of rival’s exit is associated with

aggressive pricing. The fact that predation-like behavior arises routinely and without re-

quiring extreme or unusual parameterizations calls into question the idea that economic

theory provides prima facie evidence that predatory pricing is a rare phenomenon.

Our paper relates to earlier work by Cabral & Riordan (1994), who establish analytically

the possibility that predation-like behavior can arise in a model of learning-by-doing, and

Snider (2008), who uses the Ericson & Pakes (1995) framework to explore whether American

Airlines engaged in predatory capacity expansion in the Dallas-Fort Worth to Wichita

market in the late 1990s. Our paper goes beyond establishing possibility by way of an

example or a case study by showing just how common predation-like behavior is.

Our paper moreover reinforces and formalizes a point made by Edlin (2010) that preda-

tory pricing is common “if business folks think so.” Equilibria involving predation-like be-
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havior typically coexist in our model with equilibria involving much less aggressive pricing.

Multiple equilibria arise in our model if, for given demand and cost fundamentals, there is

more than one set of firms’ expectations regarding the value of continued play that is consis-

tent with rational expectations about equilibrium behavior and industry dynamics.4 Which

of these equilibria is realized therefore depends on firms’ expectations. Loosely speaking,

if firms anticipate that predatory pricing may work, then they have an incentive to choose

the extremely aggressive prices that, in turn, ensure that predatory pricing does work.

What drives pricing? We isolate a firm’s predatory pricing incentives by analytically

decomposing the equilibrium pricing condition. Our decomposition is reminiscent of that

of Ordover & Saloner (1989), but it extends to the complex strategic interactions that arise

in the equilibrium of a dynamic stochastic game. The cornerstone of our decomposition is

the insight that the price that a firm sets reflects two goals besides short-run profit. First,

by pricing aggressively the firm may move further down its learning curve and improve its

competitive position in the future, giving rise to what we call the advantage-building motive

in pricing. Second, by pricing aggressively the firm may prevent its rival from moving

further down its learning curve and becoming a more formidable competitor, giving rise to

the advantage-denying motive in pricing.

Decomposing the equilibrium pricing condition with even more granularity reveals that

the probability that the rival exits the industry—the linchpin of any notion of predatory

pricing—affects both motives. For example, one component of the advantage-building mo-

tive is the advantage-building/exit motive. This is the incremental benefit from an increase

in the probability of rival exit that results if the firm moves further down its learning curve.

Similarly, the advantage-denying/exit motive is the incremental benefit from preventing a

decrease in the probability of rival exit that results if the rival moves further down its

learning curve. Other terms in the decomposed equilibrium pricing condition capture the

impact of the firm’s pricing decision on its competitive position, its rival’s competitive po-

sition, and so on. In this way our decomposition corresponds to the common practice of

antitrust authorities to question the intent behind a business strategy.

Certain terms of our decomposition map into the existing economic definitions of preda-

tion including those due to Ordover & Willig (1981) and Cabral & Riordan (1997). For ex-

ample, we show that if the advantage-building/exit motive and the advantage-denying/exit

motive are positive, then the equilibrium price is predatory according to the Cabral & Ri-

ordan (1997) definition. Our decomposition therefore allows us to clarify the relationship

between the existing economic definitions of predation.

4Multiple equilibria can potentially also arise in our model if the best replies of the one-shot game that
is being played given continuation values intersect more than once. This cannot happen in the model in
Besanko et al. (2010).

5



Most important, however, our decomposition provides us with a coherent and flexible

way to develop alternative characterizations of a firm’s predatory pricing incentives, some

of which are motivated by the existing literature while others are novel. To detect the

presence of predatory pricing antitrust authorities routinely ask whether a firm sacrifices

current profit in exchange for the expectation of higher future profit following the exit of

its rival. One way to test for sacrifice is to determine whether the derivative of a profit

function that “incorporate[s] everything except effects on competition” is positive at the

price the firm has chosen (Edlin & Farrell 2004, p. 510). Our alternative characterizations

of predatory incentives correspond to different operationalizations of the everything-except-

effects-on-competition profit function and identify various terms in our decomposition as

the firm’s predatory incentives.

What is the impact of predatory incentives? While much of the previous literature

has argued for (or against) the merits of particular definitions of predatory pricing on

conceptual grounds, we instead directly measure the impact of predatory incentives on

industry structure, conduct, and performance. To this end, we consider what happens if

firms ignore the predatory incentives in setting their prices. We construct counterfactuals

by “switching off” the terms in the decomposed equilibrium pricing condition that our

various definitions identified as predatory incentives. We then compare counterfactuals to

equilibria over a wide range of parameterizations.

Our alternative definitions of predatory incentives that follow from our decomposition

correspond to conduct restrictions of different severity. As previously pointed out by Cabral

& Riordan (1997), predation-like behavior may actually benefit consumer and welfare. Our

numerical analysis echoes this point to the extent that conduct restrictions decrease com-

petition for the market without increasing competition in the market.

Importantly, we find that the less severe conduct restrictions, including those inspired

by Ordover & Willig (1981) and Cabral & Riordan (1997), have, on average, a small impact

on industry structure, conduct, and performance. Hidden behind these averages is the

fact that their impact is large for a small subset of parameterizations. In contrast, the

more severe conduct restrictions have a large impact on industry structure, conduct, and

performance. This large impact stems from the fact that they eliminate equilibria with

predation-like behavior. In contrast, even the more severe conduct restrictions cause little

change in equilibria involving less aggressive pricing.

Overall, our numerical analysis shows that there may be ways of disentangling predatory

incentives for pricing aggressively from efficiency-enhancing incentives for pricing aggres-

sively in order to move further down the learning curve. In particular, a conduct restriction

in the spirit of a dynamic competitive vacuum appears to do this well and has the potential

6



to help welfare in the long run without substantially harming consumers in the short run.

2 Model

Because predatory pricing is an inherently dynamic phenomenon with the potential to shape

the evolution of an industry, we consider a discrete-time, infinite-horizon dynamic stochastic

game between two firms that compete in an industry characterized by learning-by-doing.

At any point in time, firm n ∈ {1, 2} is described by its state en ∈ {0, 1, . . . ,M}. A firm

can be either an incumbent firm that actively produces or a potential entrant. State en = 0

indicates a potential entrant. States en ∈ {1, . . . ,M} indicate the cumulative experience

or stock of know-how of an incumbent firm. By making a sale in the current period, an

incumbent firm can add to its stock of know-how and, through learning-by-doing, lower

its production cost in the subsequent period. Thus, competitive advantage is determined

endogenously in our model. At any point in time, the industry is characterized by a vector

of firms’ states e = (e1, e2) ∈ {0, 1, . . . ,M}2. We refer to e as the state of the industry.

In each period, firms’ decision making proceeds as a price-setting phase followed by

an exit-entry phase as illustrated in Figure 1. During the price-setting phase, the state

of the industry changes from e to e′ depending on the outcome of pricing game between

the incumbent firms. During the exit-entry phase, the state then changes from e′ to e′′

depending on the exit decisions of the incumbent firm(s) and the entry decisions of the

potential entrant(s). The state at the end of the current period (e′′) finally becomes the

state at the beginning of the subsequent period. As shown in Figure 1, we model entry as

a transition from state e′n = 0 to state e′′n = 1 and exit as a transition from state e′n ≥ 1 to

state e′′n = 0 so that the exit of an incumbent firm creates an opportunity for a potential

entrant to enter the industry.

Before analyzing firms’ decisions and the equilibrium of our dynamic stochastic game,

we describe the remaining primitives.

Demand. The industry draws its customers from a large pool of potential buyers. In

each period, one buyer enters the market and purchases one unit of either one of the “inside

goods” that are offered by the incumbent firms at prices p = (p1, p2) or an “outside good”

at an exogenously given price p0.
5 The probability that firm n makes the sale is given by

5This assumption captures the sentiment of Intel CEO Paul Otellini that “ [t]he natural result of
a competitive market with only two major suppliers is that when one company wins sales, the other
does not.” See http://www.zdnet.com/blog/btl/ec-intel-abused-dominant-position-vs-amd-fined-record-
145-billion-in-antitrust-case/17884 (accessed on June 7, 2011).
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price−setting phase exit−entry phase

duopoly: both firms are incumbents

 neither wins sale

 1 wins sale

 2 wins sale

 both stay in

 1 exits, 2 stays in

 1 stays in, 2 exits

 both exit

 both stay in

 1 exits, 2 stays in

 1 stays in, 2 exits

 both exit

 both stay in

 1 exits, 2 stays in

 1 stays in, 2 exits

 both exit

e e
′

e
′′

(e1, e2)

(e1, e2)

(e1 + 1, e2)

(e1, e2 + 1)

(e1, e2)

(0, e2)

(e1, 0)

(0, 0)

(e1 + 1, e2)

(0, e2)

(e1 + 1, 0)

(0, 0)

(e1, e2 + 1)

(0, e2 + 1)

(e1, 0)

(0, 0)

monopoly: firm 1 is incumbent, firm 2 is entrant

 neither wins sale

 1 wins sale

 1 stays in, 2 enters

 1 stays in, 2 stays out

 1 exits, 2 enters

 1 exits, 2 stays out

 1 stays in, 2 enters

 1 stays in, 2 stays out

 1 exits, 2 enters

 1 exits, 2 stays out

(e1, 0)

(e1, 0)

(e1 +1, 0)

(e1, 1)

(e1, 0)

(0, 1)

(0, 0)

(e1 +1, 1)

(e1 +1, 0)

(0, 1)

(0, 0)

empty: both firms are entrants

 neither wins sale

 both enter

 1 enters, 2 stays out

 1 stays out, 2 enters

 both stay out

(0, 0) (0, 0)

(1, 1)

(1, 0)

(0, 1)

(0, 0)

Figure 1: Possible state-to-state transitions.

8



the logit specification

Dn(p) =
exp(−pn

σ
)

∑2
k=0 exp(

−pk
σ

)
,

where σ > 0 is a scale parameter that governs the degree of product differentiation. As

σ → 0, goods become homogeneous. If firm n is a potential entrant, then we set its price

to infinity so that Dn(p) = 0.

Learning-by-doing and production cost. Incumbent firm n’s marginal cost of pro-

duction c(en) depends on its stock of know-how through a learning curve with a progress

ratio ρ ∈ [0, 1]:

c(en) =

{
κρlog2 en if 1 ≤ en < m,

κρlog2 m if m ≤ en ≤ M.

Marginal cost decreases by 100(1 − ρ)% as the stock of know-how doubles, so that a lower

progress ratio implies a steeper learning curve. The marginal cost for a firm without prior

experience, c(1), is κ > 0. The firm can add to its stock of know-how by making a sale.6

Once the firm reaches state m, the learning curve “bottoms out” and there are no further

experienced-based cost reductions. Following Cabral & Riordan (1994), we refer to an

incumbent firm in state en ≥ m as a mature firm and an industry in state e ≥ (m,m) as

a mature duopoly. In the same spirit, we refer to an incumbent firm in state en = 1 as an

emerging firm and an industry in state (1, 1) as an emerging duopoly.

Scrap value and setup cost. If incumbent firm n exits the industry, it receives a scrap

value Xn drawn from a continuous distribution FX(·) with compact support. If potential

entrant n enters the industry, it incurs a setup cost Sn drawn from a continuous distribution

FS(·) with compact support. Scrap values and setup costs are independently and identically

distributed across firms and periods, and their realization is observed by the firm but not its

rival. We assume that scrap values are drawn from a symmetric triangular distribution with

support [X−∆X ,X+∆X ], where EX(Xn) = X and ∆X > 0 is a scale parameter, and setup

costs are drawn from a symmetric triangular distribution with support [S −∆S, S + ∆S],

where ES(Sn) = S and ∆S > 0 is a scale parameter.

2.1 Firms’ decisions

To analyze the pricing decision pn(e) of incumbent firm n, the exit decision φn(e
′,Xn) ∈

{0, 1} of incumbent firm n with scrap value Xn, and the entry decision φn(e
′, Sn) ∈ {0, 1}

of potential entrant n with setup cost Sn, we work backwards from the exit-entry phase

6We obviously have to ensure en ≤ M . To simplify the exposition we abstract from boundary issues in
what follows.
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to the price-setting phase. Because scrap values and setup costs are private to a firm,

its rival remains uncertain about the firm’s decision. Combining exit and entry decisions,

we let φn(e
′) denote the probability, as viewed from the perspective of its rival, that firm

n decides not to operate in state e′: If en 6= 0 so that firm n is an incumbent, then

φn(e
′) = EX [φn(e

′,Xn)] is the probability of exiting; if e′n = 0 so that firm n is an entrant,

then φn(e
′) = ES [φn(e

′, Sn)] is the probability of not entering.

We use Vn(e) to denote the expected net present value of future cash flows to firm n in

state e at the beginning of the period and Un(e
′) to denote the expected net present value

of future cash flows to firm n in state e′ after pricing decisions but before exit and entry

decisions are made. The price-setting phase determines the value function Vn(e) along with

the policy function pn(e); the exit-entry phase determines the value function Un(e
′) along

with the policy function φn(e
′).

Exit decision of incumbent firm. To simplify the exposition we focus on firm 1; the

derivations for firm 2 are analogous. If incumbent firm 1 exits the industry, it receives the

scrap value X1 in the current period and perishes. If it does not exit and remains a going

concern in the subsequent period, its expected net present value is

X̂1(e
′) = β

[
V1(e

′)(1 − φ2(e
′)) + V1(e

′
1, 0)φ2(e

′)
]
,

where β ∈ [0, 1) is the discount factor. The first bracketed term represents the contingency

that firm 2 decides to operate in the subsequent period and the second term that firm 2

decides not to operate. Incumbent firm 1’s decision to exit the industry in state e′ is thus

φ1(e
′,X1) = 1

[
X1 ≥ X̂1(e

′)
]
, where 1 [·] is the indicator function and X̂1(e

′) serves as the

critical level of the scrap value above which exit occurs. The probability of incumbent firm

1 exiting is φ1(e
′) = 1 − FX(X̂1(e

′)). It follows that before incumbent firm 1 observes a

particular draw of the scrap value, its expected net present value is given by the Bellman

equation

U1(e
′) = EX

[
max

{
X̂1(e

′),X1

}]

= (1− φ1(e
′))β

[
V1(e

′)(1 − φ2(e
′)) + V1(e

′
1, 0)φ2(e

′)
]

+φ1(e
′)EX

[
X1|X1 ≥ X̂1(e

′)
]
, (1)

where EX

[
X1|X1 ≥ X̂1(e

′)
]
is the expectation of the scrap value conditional on exiting the

industry.
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Entry decision of potential entrant. If potential entrant 1 does not enter the industry,

it perishes. If it enters and becomes an incumbent firm (without prior experience) in the

subsequent period, its expected net present value is

Ŝ1(e
′) = β

[
V1(1, e

′
2)(1− φ2(e

′)) + V1(1, 0)φ2(e
′)
]
.

In addition, it incurs the setup cost S1 in the current period. Potential entrant 1’s decision

to not enter the industry in state e′ is thus φ1(e
′, S1) = 1

[
S1 ≥ Ŝ1(e

′)
]
, where Ŝ1(e

′) is

the critical level of the setup cost. The probability of potential entrant 1 not entering is

φ1(e
′) = 1 − FS(Ŝ1(e

′)) and before potential entrant 1 observes a particular draw of the

setup cost, its expected net present value is given by the Bellman equation

U1(e
′) = ES

[
max

{
Ŝ1(e

′)− S1, 0
}]

= (1− φ1(e
′))

{
β[V1(1, e

′
2)(1− φ2(e

′)) + V1(1, 0)φ2(e
′)]

−ES

[
S1|S1 ≤ Ŝ1(e

′)
]}

, (2)

where ES

[
S1|S1 ≤ Ŝ1(e

′)
]
is the expectation of the setup cost conditional on entering the

industry.7

Pricing decision of incumbent firm. In the price-setting phase the expected net

present value of incumbent firm 1 is

V1(e) = max
p1

(p1 − c(e1))D1(p1, p2(e)) +D0(p1, p2(e))U1(e)

+D1(p1, p2(e))U1(e1 + 1, e2) +D2(p1, p2(e))U1(e1, e2 + 1), (3)

where U1(e), U1(e1 + 1, e2), and U1(e1, e2 + 1) are determined in the exit-entry phase from

equations (1) and (2).

Because D0(p) = 1 −D1(p) −D2(p), we can equivalently formulate the maximization

problem on the right-hand side of the Bellman equation (3) as

max
p1

Π1(p1, p2(e), e),

7See Appendix A.1 for closed-form expressions for EX

[
X1|X1 ≥ X̂1(e

′)
]

in equation (1) and

ES

[
S1|S1 ≤ Ŝ1(e

′)
]
in equation (2).
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where

Π1(p1, p2(e), e) = (p1 − c(e1))D1(p1, p2(e)) + U1(e)

+D1(p1, p2(e)) [U1(e1 + 1, e2)− U1(e)]−D2(p1, p2(e)) [U1(e)− U1(e1, e2 + 1)] (4)

is the long-run profit of incumbent firm 1. Given p2(e) and e, Π1(p1, p2(e), e) is strictly

quasiconcave in p1, so that the pricing decision p1(e) is uniquely determined by the solution

to the first-order condition

mr1(p1, p2(e))− c(e1)

+ [U1(e1 + 1, e2)− U1(e)] +
D2(p1, p2(e))

1−D1(p1, p2(e))
[U1(e)− U1(e1, e2 + 1)] = 0, (5)

where

mr1(p1, p2(e)) = p1 −
σ

1−D1(p1, p2(e))

is the marginal revenue of incumbent firm 1.8 We note that mr1(p1, p2(e)) is increasing

in p1 and a formal representation of the concept of “inclusive price” formulated by Edlin

(2010).

Equations (4) and (5) show that, besides short-run profit (p1 − c(e1))D1(p1, p2(e)), the

price that an incumbent firm sets reflects two goals. First, by winning a sale, the firm may

move further down its learning curve and improve its competitive position in the future.

The “reward” that the firm receives if it wins the sale is [U1(e1 + 1, e2)− U1(e)]. We call

this the advantage-building motive in pricing. Second, the firm may prevent its rival from

moving further down its learning curve and becoming a more formidable competitor. The

“penalty” that the firm incurs if its rival wins the sale is [U1(e)− U1(e1, e2 + 1)]. This

penalty is deflated by the probability D2(p1,p2(e))
1−D1(p1,p2(e))

that the rival wins the sale in the event

that the firm does not win the sale. We call [U1(e)− U1(e1, e2 + 1)] the advantage-denying

motive in pricing.

Because mr1(p1, p2(e)) is strictly increasing in p1 and D2(p1,p2(e))
1−D1(p1,p2(e))

is independent of

p1 (from the properties of logit demand), equation (5) implies that any increase in the

advantage-building or advantage-denying motives makes the firm more aggressive in pricing.

To the extent that achieving improvements in the firm’s competitive position is valuable, i.e.,

[U1(e1 + 1, e2)− U1(e)] > 0, and that preventing improvements in the rival’s competitive

position is valuable, i.e., [U1(e)− U1(e1, e2 + 1)] > 0, the firm charges a price below the

static optimum.9 If these motives are sufficiently large, they may even result in price below

8See Appendix A.2 for an explanation.
9The value function U1(e) is endogenously determined in equilibrium. For some parameterizations, the

advantage-building and advantage-denying motives fail to be positive.
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marginal cost.

In sum, the pricing decision of an incumbent firm reflects the interplay of the short-run

profit maximization, the advantage-building motive, and the advantage-denying motive. In

Section 4, we further decompose the latter two motives and use them to isolate predatory

incentives.

2.2 Equilibrium

Because our demand and cost specification is symmetric, we restrict ourselves to symmetric

Markov perfect equilibria. The focus on symmetric equilibria does not imply that the

industry inevitably evolves towards a symmetric structure. Depending on how successful a

firm is in moving down its learning curve, it may have a cost and charge a price different

from that of its rival.

Existence of a symmetric Markov perfect equilibrium in pure strategies follows from the

arguments in Doraszelski & Satterthwaite (2010). In a symmetric equilibrium, the decisions

taken by firm 2 in state e = (e1, e2) are identical to the decisions taken by firm 1 in state

e[2] = (e2, e1), where e[2] is constructed from e by interchanging the stocks of know-how of

firms 1 and 2. It therefore suffices to determine the value and policy functions of firm 1.

3 Equilibrium behavior and industry dynamics

We use the homotopy method in Besanko et al. (2010) to compute the Markov perfect

equilibria of our dynamic stochastic game. 10 Although it cannot be guaranteed to find all

equilibria, the advantage of this method is its ability to search for multiple equilibria in a

systematic fashion.

Let (V1,U1,p1,φ1) denote the vector of values and policies that are determined by the

model, Ω the vector of parameters of the model, and H(V1,U1,p1,φ1;Ω) = 0 the system

of equations (Bellman equations and optimality conditions) that defines an equilibrium.

The equilibrium correspondence mapping parameters into values and policies is

H−1(Ω) = {(V1,U1,p1,φ1)|H(V1,U1,p1,φ1;Ω) = 0}.

The equilibrium correspondence is a potentially complicated set of multidimensional sur-

faces. To explore the equilibrium correspondence, we compute slices of it by varying one

parameter of the model, such as the progress ratio ρ. A slice of the equilibrium correspon-

dence along ρ, denoted as H−1(ρ) in what follows, consists of a finite number of differen-

10Our codes are available upon request. A detailed description of our application of natural-parameter
homotopy is provided by Borkovsky, Doraszelski & Kryukov (2010).
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tiable paths through (V1,U1,p1,φ1, ρ) space. The homotopy algorithm traces out a path

by numerically solving the differential equation that describes it.

Baseline parameterization. To compute slice of the equilibrium correspondence we

hold all but one parameter fixed at the values in Table 1. While the baseline parameteri-

zation is not intended to be representative of any particular industry, it is neither entirely

unrepresentative nor extreme. The discount factor is consistent with discount rates and

product life cycle lengths in high-tech industries where learning-by-doing may be particu-

larly important.11 The baseline value for the progress ratio lies well within the range of

empirical estimates Dutton & Thomas (1984). Setup costs are about three times scrap

values and therefore largely sunk. Scrap values and setup costs are reasonably variable.12

The picture that the baseline parameterization paints is that of an industry where an

emerging firm has a reasonable shot at gaining traction and a mature firm enjoys a modest

degree of market power. In an emerging duopoly the own-price elasticity of demand is

−9.15 at static Nash equilibrium prices and −2.63 in a mature duopoly; the corresponding

cross-price elasticities are 2.08 and 2.61, respectively. Profit opportunities are reasonably

good: if the industry instantly became a mature duopoly, then at static Nash equilibrium

prices the annual rate of return on setup costs is about 22%.

3.1 Predation-like behavior

To illustrate the types of behavior that can emerge in our model, we examine the equilibria

that arise for the baseline parameterization in Table 1. For two of these three equilibria

Figure 2 shows the pricing decision of firm 1, the non-operating probability of firm 2, and

the time path of the probability distribution over industry structures (empty, monopoly,

and duopoly).13

The upper panels of Figure 2 exemplify what we call a trenchy equilibrium.14 The pricing

decision in the upper left panel exhibits a deep well in state (1,1) with p1(1, 1) = −34.78.

11The discount factor can be thought of as β = ζ

1+r
, where r > 0 is the per-period discount rate and

ζ ∈ (0, 1] is the exogenous probability that the industry survives from one period to the next. Consequently,
our baseline value of β corresponds to a variety of scenarios that differ in the length of a period. For example,
it corresponds to a period length of one year, a yearly discount rate of 5.26%, and certain survival. But
it also corresponds to a period length of one month, a monthly discount rate of 1% (corresponding to a
yearly discount rate of 12.7%), and a monthly survival probability of about 0.96. To put this in perspective,
technology companies such as IBM and Microsoft had costs of capital in the range of 11 to 15% per annum
in the late 1990s. Further, an industry with a monthly survival probability of 0.96 has an expected lifetime
of 26.25 months. This scenario is therefore consistent with a pace of innovative activity that is expected to
make an industry’s current generation of products obsolete within two to three years.

12Any predatory incentives vanish as ∆X → ∞ because the probability that the rival exits the industry
approaches 0.5 irrespective of the behavior of the firm.

13The third equilibrium is essentially intermediate between the two shown in Figure 2.
14Our terminology is similar, but not identical, to that of Besanko et al. (2010).
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Figure 2: Pricing decision of firm 1 (left), non-operating probability of firm 2 (middle), and
time path of probability distribution over industry structures, starting from e = (1, 1) at
T = 0 (right). Trenchy (upper) and flat (lower) equilibria.
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parameter value

maximum stock of know-how M 30
price of outside good p0 10
product differentiation σ 1
cost at top of learning curve κ 10
bottom of learning curve m 15
progress ratio ρ 0.75

scrap value X, ∆X 1.5, 1.5

setup cost S, ∆S 4.5, 1.5
discount factor β 0.95

Table 1: Baseline parameterization.

A well is a preemption battle where firms vie to be the first to move down from the top

of their learning curves in order to gain a competitive advantage. The pricing decision

further exhibits a deep trench along the e1 axis with p1(e1, 1) ranging from 0.08 to 1.24 for

e1 ∈ {2, . . . , 30}.15 A trench is a price war that the leader (firm 1) wages against the follower

(firm 2). One can think of a trench as an endogenously arising mobility barrier in the sense

of Caves & Porter (1977). In the trench the follower exits the industry with a positive

probability of φ2(1, e2) = 0.22 for e2 ∈ {2, . . . , 30} as the upper middle panel shows. The

follower remains in in this exit zone as long as it does not win the sale. Once the follower

exits, the leader raises its price and the industry becomes an entrenched monopoly.16 This

sequence of events resembles conventional notions of predatory pricing. The industry may

also evolve into a mature duopoly if the follower manages to crash through the mobility

barrier by winning the sale but, as the upper right panel of Figure 2 shows, this is far less

likely than an entrenched monopoly.

The lower panels of Figure 2 are typical for a flat equilibrium. There is a shallow well

in state (1, 1) with p1(1, 1) = 5.05 as the lower left panel shows. Absent mobility barriers

in the form of trenches, however, any competitive advantage is temporary and the industry

evolves into a mature duopoly as the lower right panel shows.

3.2 Industry structure, conduct, and performance

As looking at policy functions plots for large number of equilibria is not practical, we

succinctly describe an equilibrium by the industry structure, conduct, and performance that

it implies. First, we use the policy functions p and φ to construct the matrix of state-to-

15Because prices are strategic complements, there is also a shallow trench along the e2 axis with p1(1, e2)
ranging from 3.63 to 4.90 for e2 ∈ {2, . . . , 30}.

16In this particular equilibrium, φ2(e1, 0) = 1.00 for e1 ∈ {2, . . . , 30}, so that a potential entrant does not
enter if the incumbent firm has moved down from the top of its learning curve.
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state transition probabilities that characterizes the Markov process of industry dynamics.

From this, we compute the transient distribution over states in period T , µT , starting

from state (1, 1) in period 0. This tells us how likely each possible industry structure is in

period T given that the game began as an emerging duopoly. Depending on T , the transient

distributions can capture short-run or long-run (steady-state) dynamics. We think of period

1000 as the long run and, with a slight abuse of notation, denote µ1000 by µ∞. Finally, we

use the transient distributions to compute six metrics of industry structure, conduct, and

performance.

Structure. Expected long-run Herfindahl index:

HHI∞ =
∑

e≥(0,0)

µ∞ (e)

1− µ∞(0, 0)
HHI(e),

where

HHI(e) =

2∑

n=1

[
Dn(e)

D1(e) +D2(e)

]2

is the Herfindahl index in state e and Dk(e) = Dk(p1(e), p2(e)) is the probability that the

buyer purchases good k ∈ {0, 1, 2} in state e. The expected long-run Herfindahl index is a

summary measure of industry concentration. If HHI∞ > 0.5, then an asymmetric industry

structure arises and persists.

Conduct. Expected long-run average price:

p∞ =
∑

e≥(0,0)

µ∞ (e)

1− µ∞(0, 0)
p(e),

where

p(e) =

2∑

n=1

Dn(e)

D1(e) +D2(e)
pn(e)

is the (share-weighted) average price in state e.

Performance. Expected long-run consumer surplus:

CS∞ =
∑

e

µ∞ (e)CS(e),

where

CS(e) = σ log

{
exp

(−p0

σ

)
+

∑2

n=1
exp

(−pn(e)

σ

)}
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is consumer surplus in state e.

Expected long-run total surplus:

TS∞ =
∑

e

µ∞ (e)

{
CS(e) +

2∑

n=1

PSn(e)

}
,

where PSn(e) is the producer surplus of firm n in state e.17

Expected discounted consumer surplus:

CSNPV =

∞∑

T=0

βT
∑

e

µT (e)CS(e).

Expected discounted total surplus:

TSNPV =
∞∑

T=0

βT
∑

e

µT (e)

{
CS(e) +

2∑

n=1

PSn(e)

}
.

By focusing on the states that arise in the long run (as given by µ∞), CS∞ and TS∞

summarize the long-run implications of equilibrium behavior for industry performance. In

contrast, CSNPV and TSNPV summarize the short-run and the long-run implications that

arise along entire time paths of states (as given by µ0, µ1, . . . ). Hence, CSNPV and TSNPV

reflect any short run competition for the market as well as any long-run competition in the

market.

Table 2 illustrates industry structure, conduct, and performance for the equilibria in

Section 3.1. The Herfindahl index reflects that the industry is substantially more likely

to be monopolized under the trenchy equilibrium than under the flat equilibrium. In the

entrenched monopoly prices are higher. Finally, consumer and total surplus are lower

under the trenchy equilibrium than under the flat equilibrium. The difference between the

equilibria is smaller for CSNPV than for CS∞ because the former metric accounts for the

competition for the market in the short run that manifests itself in the deep well and trench

of the trenchy equilibrium and mitigates the lack of competition in the market in the long

run.

Progress ratio. The upper panel of Figure 3 illustrates the equilibrium correspondence

by plotting HHI∞ against ρ.18 If ρ = 1 there is no learning-by-doing, while if ρ = 0 the

learning economies become infinitely strong in the sense that the marginal cost of production

jumps from κ for the first unit to 0 for any further unit. The progress ratio ρ therefore

17See Appendix A.3 for a derivation.
18See the Online Appendix for the remaining metrics.
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trenchy flat
metric equilibrium equilibrium

HHI∞ 0.96 0.50
p∞ 8.26 5.24
CS∞ 1.99 5.46
TS∞ 6.09 7.44
CSNPV 104.17 109.07
TSNPV 110.33 121.14

Table 2: Industry structure, conduct, and performance. Trenchy and flat equilibria.

determines the possible extent of efficiency gains from pricing aggressively in order to move

down the learning curve.

There are multiple equilibria for ρ from 0 to 0.80. H−1(ρ) involves a main path (labeled

MP ) with one equilibrium for ρ from 0 to 1, a semi-loop (SL) with two equilibria for ρ

from 0 to 0.80, and two loops (L1 and L2) with two equilibria for ρ from 0.25 to 0.70 and,

respectively, from 0.35 to 0.65.

The equilibria on MP are flat. The industry evolves into a mature duopoly with

HHI∞ = 0.5 as in the flat equilibrium in Section 3.1. The equilibria on the lower fold

of SL similarly involve an almost symmetric industry structure. The equilibria on the up-

per fold of SL as well as those on L1 and L2 are trenchy. As in the trenchy equilibrium in

Section 3.1, the industry evolves into an entrenched monopoly with HHI∞ ≈ 1.0.

Product differentiation. The middle panel of Figure 3 plots HHI∞ against σ, which

influences how desirable it is for a firm to induce its rival to exit the industry. As σ → 0

the goods become homogenous. As competition intensifies, profits fall. σ = 0.3 already

entails very weak product differentiation: In an emerging duopoly the own- and cross-price

elasticities of demand are −28.17 and 6.38, respectively, at static Nash equilibrium prices

and −6.42 and 6.42 in a mature duopoly.19 As σ → ∞, firms operate in independent

markets. σ = 3 already entails very strong product differentiation: The own- and cross-

price elasticities are −3.72 and 0.84, respectively, in an emerging duopoly and −1.66 and

1.07 in a mature duopoly.

There are multiple equilibria for σ below 1.10. While H−1(σ) involves just a main path

(labeled MP ), multiple equilibria arise as this path bends back on itself. The equilibria

on the lower fold of MP are flat and the industry evolves into a mature duopoly. The

equilibria on the upper fold of MP are trenchy and the industry evolves into an entrenched

monopoly.

19Our algorithm fails for σ below 0.3.
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Scrap value. The lower panel of Figure 3 plotsHHI∞ against X. X determines how easy

it is for a firm to induce its rival to exit the industry. Because a firm can always guarantee

itself a nonnegative short-run profit, exit is impossible if X + ∆X < 0 ⇔ X < 1.5. As

X → ∞, exit becomes inevitable. At the same time, however, exit is immediately followed

by entry. In particular, if X −∆X > S +∆S ⇔ X > 7.5, then a potential entrant has an

incentive to incur the setup cost for the exclusive purpose of receiving the scrap value.20

There are multiple equilibria for X from 0.7 to 5. H−1(X) involves a main path (labeled

MP ) that bends back on itself. The equilibria on the lower fold of MP are flat and the

industry evolves into a mature duopoly. The equilibria on the upper fold of MP are trenchy

and the industry evolves into an entrenched monopoly.

Overall, many equilibria are trenchy. In these equilibria predation-like behavior arises.

Multiplicity of equilibria is the norm rather than the exception, and trenchy equilibria

typically coexist with flat equilibria.

4 Isolating predatory incentives

To isolate a firm’s predatory pricing incentives, we decompose the advantage-building and

advantage-denying motives in the equilibrium pricing condition (5). Straightforward, albeit

tedious, algebra shows that in a symmetric Markov perfect equilibrium the first-order con-

dition (5) for the equilibrium price p1(e) charged by incumbent firm 1 can be written as

mr1(p1(e), p2(e)) − c(e1) +

[
5∑

k=1

Γk
1(e)

]
+

D2(e)

1−D1(e)

[
4∑

k=1

Θk
1(e)

]
= 0. (6)

The terms Γk
1(e) decompose the advantage-building motive [U1(e1 + 1, e2)− U1(e)] and the

terms Θk
1(e) decompose the advantage-denying motive [U1(e)− U1(e1, e2 + 1)]. Throughout

we use equation (1) to express U1(e) in terms of V1(e). Below we describe each term in the

decomposition in turn.21

Advantage building. The decomposed advantage-building motives summarized in Table

3 are the various sources of incremental benefit to the firm from winning the sale and moving

further down its learning curve.

20Our model cannot capture perfect contestability which requires ∆X = ∆S = 0 in addition to X = S.
21The decomposition applies to an industry with two incumbent firms in state e ≥ (1, 1). Because the

terms Γk
1(e) and Θk

1(e) are typically positive, we refer to them as incremental benefits. To streamline the
exposition, we further presume monotonicity of the value and policy functions. For some parameterizations
these assumptions fail.
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advantage-building motives if the firm wins the sale and moves further down its learn-
ing curve, then the firm. . .

Γ1
1(e) baseline . . . improves its competitive position within the duopoly

Γ2
1(e) exit . . . increases its rival’s exit probability

Γ3
1(e) survival . . . decreases its exit probability

Γ4
1(e) scrap value . . . increases its expected scrap value

Γ5
1(e) market structure . . . gains from an improved competitive position as a mo-

nopolist versus as a duopolist

Table 3: Decomposed advantage-building motives.

Baseline advantage-building motive:

Γ1
1(e) = (1− φ1(e))β [V1(e1 + 1, e2)− V1(e)] .

The baseline advantage-building motive is the incremental benefit to the firm from an

improvement in its competitive position, assuming that its rival does not exit in the current

period. The increase in the firm’s expected net present value V1(e1+1, e2)−V1(e) is deflated

by the probability (1 − φ1(e)) that the firm remains in the industry in the current period

because otherwise the incremental benefit is nil. The baseline advantage-building motive

captures both the lower marginal cost and any future advantages (winning the sale, exit of

rival, etc.) that stem from this lower cost.

Advantage-building/exit motive:

Γ2
1(e) = (1− φ1(e)) [φ2(e1 + 1, e2)− φ2(e)] β[V1(e1 + 1, 0) − V1(e1 + 1, e2)].

The advantage-building/exit motive is the incremental benefit to the firm from increasing

its rival’s exit probability from φ2(e) to φ2(e1 + 1, e2). The increase in the firm’s expected

net present value if the rival exits V1(e1 + 1, 0) − V1(e1 + 1, e2) is again deflated by the

probability (1− φ1(e)) that the firm remains in the industry.

Advantage-building/survival motive:

Γ3
1(e) = [φ1(e)− φ1(e1 + 1, e2)] β [φ2(e1 + 1, e2)V1(e1 + 1, 0) + (1− φ2(e1 + 1, e2))V1(e1 + 1, e2)] .

The advantage-building/survival motive is the incremental benefit to the firm from decreas-

ing its exit probability from φ1(e) to φ1(e1+1, e2); if the firm remains a going concern, its ex-

pected net present value is [φ2(e1 + 1, e2)V1(e1 + 1, 0) + (1− φ2(e1 + 1, e2))V1(e1 + 1, e2)].
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advantage-denying motives if the firm wins the sale and prevents its rival from moving
further down its learning curve, then the firm . . .

Θ1
1(e) baseline . . . prevents its rival from improving its competitive posi-

tion within the duopoly
Θ2

1(e) exit . . . prevents its rival’s exit probability from decreasing
Θ3

1(e) survival . . . prevents its exit probability from increasing
Θ4

1(e) scrap value . . . prevents its expected scrap value from decreasing

Table 4: Decomposed advantage-denying motives.

Advantage-building/scrap value motive:

Γ4
1(e) = φ1(e1 + 1, e2)EX

[
X1|X1 ≥ X̂1(e1 + 1, e2)

]
− φ1(e)EX

[
X1|X1 ≥ X̂1(e)

]
.

The advantage-building/scrap value motive is incremental benefit to the firm from increasing

its scrap value in expectation from φ1(e)EX

[
X1|X1 ≥ X̂1(e)

]
to φ1(e1+1, e2)EX

[
X1|X1 ≥ X̂1(e1 + 1, e2)

]
.

Advantage-building/market structure motive:

Γ5
1(e) = (1− φ1(e))φ2(e)β {[V1(e1 + 1, 0) − V1(e1, 0)] − [V1(e1 + 1, e2)− V1(e)]} .

The advantage-building/market structure motive is the incremental benefit to the firm

from a lower marginal cost and any future advantages that stem from this lower cost as a

monopolist, [V1(e1 + 1, 0) − V1(e1, 0)], versus as a duopolist, [V1(e1 + 1, e2)− V1(e)].

Advantage denying. The decomposed advantage-denying motives summarized in Table

3 are the various sources of incremental benefit to the firm from winning the sale and, in so

doing, preventing its rival from moving further down its learning curve.

Baseline advantage-denying motive:

Θ1
1(e) = (1− φ1(e))(1 − φ2(e1, e2 + 1))β [V1(e)− V1(e1, e2 + 1)] .

The baseline advantage-denying motive is the incremental benefit to the firm from prevent-

ing an improvement in its rival’s competitive position, assuming its rival does not exit in the

current period. The increase in the firm’s expected net present value V1(e)−V1(e1, e2+1) is

deflated by the probability (1− φ1(e)) that the firm remains in the industry in the current

period and by the probability (1 − φ2(e1, e2 + 1)) that the rival does so because otherwise

the incremental benefit is nil.
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Advantage-denying/exit motive:

Θ2
1(e) = (1− φ1(e))[φ2(e)− φ2(e1, e2 + 1)]β[V1(e1, 0)− V1(e)]. (7)

The advantage-denying/exit motive is the incremental benefit to the firm from preventing

its rival’s exit probability from decreasing from φ2(e) to φ2(e1, e2 + 1). The increase in the

firm’s expected net present value V1(e) to V1(e1, 0) if the rival exits is again deflated by the

probability (1− φ1(e)) that the firm remains in the industry.

Advantage-denying/survival motive:

Θ3
1(e) = [φ1(e1, e2 + 1)− φ1(e)] β [φ2(e1, e2 + 1)V1(e1, 0) + (1− φ2(e1, e2 + 1))V1(e1, e2 + 1)] .

The advantage-denying/survival motive is the incremental benefit to the firm from prevent-

ing its exit probability from increasing from φ1(e) to φ1(e1, e2+1); if the firm remains a going

concern, its expected net present value is [φ2(e1, e2 + 1)V1(e1, 0) + (1− φ2(e1, e2 + 1))V1(e1, e2 + 1)].

Advantage-denying/scrap value motive:

Θ4
1(e) = φ1(e)EX

[
X1|X1 ≥ X̂1(e)

]
− φ1(e1, e2 + 1)EX

[
X1|X1 ≥ X̂1(e1, e2 + 1)

]
.

The advantage-denying/scrap value motive is the incremental benefit to the firm from pre-

venting its scrap value from decreasing in expectation from φ1(e)EX

[
X1|X1 ≥ X̂1(e)

]
to

φ1(e1, e2 + 1)EX

[
X1|X1 ≥ X̂1(e1, e2 + 1)

]
.

The upper left and middle panels of Table 5 illustrate the decomposition (6) for the

trenchy equilibrium in Section 3.1 for a set of states where firm 2 is emerging. The compe-

tition for the market in the well is driven mostly by the baseline advantage-building motive

Γ1
1(1, 1) and the advantage-building/exit motive Γ1

2(1, 1). In contrast, the competition for

the market in the trench is driven mostly by the baseline advantage-denying motive Θ1
1(e1, 1)

and the advantage-denying/exit motive Θ1
2(e1, 1) for e1 ∈ {2, . . . , 30}. The predation-like

behavior in the trench arises not because by becoming more efficient the leader increases

the probability that the follower exits the industry but because by preventing the follower

from becoming more efficient the leader keeps the follower in the trench and thus prone to

exit. Another way to put this is that the leader makes the cost to the follower of attempting

to move down its learning curve comparable to the benefit to the follower of doing so, so

that exit is in the follower’s interest. Viewed this way, the aggressive pricing in the trench

can be viewed as raising the rival’s cost of remaining in the industry.

As can be seen in lower left and middle panels of Table 5 for a set of states where firm 2

has already gained some traction neither the advantage-building nor the advantage-denying
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motives are very large. To the extent that the price is below the static optimum this is due

mostly to the baseline advantage-building motive Γ1
1(e1, 4) for e1 ∈ {1, . . . , 30}.

4.1 Definitions of predatory pricing in the literature

To serve as a point of departure for defining predatory incentives, we relate our decompo-

sition (6) to economic definitions of predatory pricing formulated in the existing literature.

Cabral & Riordan (1997). Cabral & Riordan (1997) call “an action predatory if (1) a

different action would increase the probability that rivals remain viable and (2) the different

action would be more profitable under the counterfactual hypothesis that the rival’s viability

were unaffected” (p. 160). In the context of predatory pricing, it is natural to interpret “a

different action” as a higher price. To port the Cabral & Riordan definition from their two-

period model to our infinite-horizon dynamic stochastic game, we take the “rival’s viability”

to refer to the probability that the rival exits the industry in the current period. Finally, we

interpret “the different action would be more profitable” in the spirit of Markov perfection

to mean that by a setting a higher price in the current period but returning to equilibrium

play from the subsequent period onward, the firm can affect the evolution of the state to

increase its expected net present value.

With these interpretations, Proposition 1 tells us that the Cabral & Riordan definition

of predatory pricing boils down to the signs of the advantage-building/exit and advantage-

denying/exit motives.

Proposition 1 Consider an industry with two incumbent firms in state e ≥ (1, 1). Assume

φ1(e) < 1, V1(e1, 0) > V1(e), and V1(e1 +1, 0) > V1(e1 +1, e2), i.e., exit is less than certain

and the expected net present value of a monopolist exceeds that of a duopolist. (a) If Γ2
1(e) ≥

0 and Θ2
1(e) ≥ 0, with at least one of these inequalities being strict, then the equilibrium

price p1(e) in state e is predatory according to the Cabral & Riordan (1997) definition;

(b) if p(e) is predatory according to the Cabral & Riordan definition, then Γ2
1(e) > 0 or

Θ2
1(e) > 0.

Proof. See Appendix B.

Ordover & Willig (1981). According to Ordover & Willig (1981), “[p]redatory behav-

ior is a response to a rival that sacrifices part of the profit that could be earned under

competitive circumstances were the rival to remain viable, in order to induce exit and gain

consequent additional monopoly profit” (pp. 9–10). As Cabral & Riordan (1997) observe,
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advantage building advantage denying alternative characterizations
e p1(e) c(e1) Γ1

1(e) Γ2
1(e) Γ3

1(e) Γ4
1(e) Γ5

1(e) Θ1
1(e) Θ2

1(e) Θ3
1(e) Θ4

1(e) 1 2 3 4 5 6
(1,1) -34.78 10.00 39.45 6.44 0.02 0.00 -0.01 0.93 0.03 0.44 -0.51

√√ √√ √√ √√ √ √√

(2,1) 0.08 7.50 4.27 0.02 0.00 0.00 -0.20 32.93 6.45 0.00 0.00
√√ √√ √√ √√ √√ √

(3,1) 0.56 6.34 2.94 0.01 0.00 0.00 -0.12 33.96 6.27 0.00 0.00
√√ √√ √√ √√ √√ √

(4,1) 0.80 5.63 2.20 0.01 0.00 0.00 -0.08 34.54 6.17 0.00 0.00
√√ √√ √√ √√ √√ √

(5,1) 0.95 5.13 1.71 0.01 0.00 0.00 -0.05 34.91 6.10 0.00 0.00
√√ √√ √√ √√ √√ √

(6,1) 1.05 4.75 1.36 0.00 0.00 0.00 -0.04 35.17 6.06 0.00 0.00
√√ √√ √√ √√ √√

(7,1) 1.11 4.46 1.09 0.00 0.00 0.00 -0.03 35.35 6.02 0.00 0.00
√√ √√ √√ √√ √√

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

(14,1) 1.24 3.34 0.09 0.00 0.00 0.00 0.00 35.71 5.96 0.00 0.00
√√ √√ √√ √√ √√

(15,1) 1.24 3.25 0.00 0.00 0.00 0.00 0.00 35.71 5.96 0.00 0.00
√√ √√ √√ √√ √√

(16,1) 1.24 3.25 0.00 0.00 0.00 0.00 0.00 35.71 5.96 0.00 0.00
√√ √√ √√ √√ √√

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

(30,1) 1.24 3.25 0.00 0.00 0.00 0.00 0.00 35.71 5.96 0.00 0.00
√√ √√ √√ √√ √√

(1,4) 4.41 10.00 5.21 0.00 1.92 -0.52 0.00 0.00 0.00 0.00 0.00
√√ √

(2,4) 6.06 7.50 2.87 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00
√√ √

(3,4) 5.79 6.34 2.12 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00
√√ √

(4,4) 5.65 5.63 1.66 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.00
√√ √

(5,4) 5.56 5.13 1.34 0.00 0.00 0.00 0.00 0.35 0.00 0.00 0.00
√√ √

(6,4) 5.49 4.75 1.10 0.00 0.00 0.00 0.00 0.39 0.00 0.00 0.00
√√ √

(7,4) 5.45 4.46 0.90 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00
√√ √

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

(14,4) 5.32 3.34 0.09 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00
√√ √

(15,4) 5.32 3.25 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00
√ √

(16,4) 5.32 3.25 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00
√ √

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

(30,4) 5.32 3.25 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00
√ √

Table 5: Decomposed advantage-building and advantage-denying motives and alternative characterizations of predatory incentives,
Trenchy equilibrium.

√√
means that the weighted sum of the predatory pricing incentives is larger than 0.5,

√
that the weighted

sum is between 0 and 0.5, and a blank that the weighted sum smaller or equal to 0.
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the premise in the Ordover & Willig definition is that the rival is viable with certainty.22

Proposition 2 establishes a formal relationship between the Ordover & Willig definition of

predation and our decomposition.

Proposition 2 Consider an industry with two incumbent firms in state e ≥ (1, 1). Assume

φ1(e) < 1, V1(e1, 0) > V1(e), and V1(e1 + 1, 0) > V1(e1 + 1, e2), i.e., exit is less than

certain and the expected net present value of a monopolist exceeds that of a duopolist. (a)

If Γ2
1(e) ≥ 0, Θ2

1(e) ≥ 0, Γ5
1(e) ≥ 0,

[
Γ3
1(e)− Γ3

1(e)
∣∣
φ2=0

]
≥ 0,

[
Θ1

1(e)− Θ1
1(e)

∣∣
φ2=0

]
≥ 0,

and
[
Θ3

1(e)− Θ3
1(e)

∣∣
φ2=0

]
≥ 0, with strict inequality for either Γ2

1(e) or Θ2
1(e), then the

equilibrium price p1(e) in state e is predatory according to the Ordover & Willig (1981)

definition;23 (b) if p1(e) is predatory according to the Ordover & Willig definition, then

Γ2
1(e) > 0, Θ2

1(e) > 0, Γ5
1(e) > 0,

[
Γ3
1(e)− Γ3

1(e)
∣∣
φ2=0

]
> 0,

[
Θ1

1(e)− Θ1
1(e)

∣∣
φ2=0

]
> 0, or

[
Θ3

1(e)− Θ3
1(e)

∣∣
φ2=0

]
> 0.

Proof. See Appendix B.

4.2 Alternative definitions of predatory incentives

To detect the presence of predatory pricing antitrust authorities routinely ask whether a

firm sacrifices current profit in exchange for the expectation of higher future profit following

the exit of its rival. This sacrifice test thus views predation as an “investment in monopoly

profit” (Bork 1978). As Edlin & Farrell (2004) point out, one way to test for sacrifice is

to determine whether the derivative of a suitably defined profit function is positive at the

price the firm has chosen, which indicates that the chosen price is less than the price that

maximizes profit. Moreover, “[i]n principle this profit function should incorporate everything

except effects on competition” (p. 510, our italics). 24

To formalize the sacrifice test, decompose the profit function of incumbent firm 1 Π1(p1)

into an everything-except-effects-on-competition profit function ΠEEEC
1 (p1) and the remain-

der Ω(p1):

Π1(p1) = ΠEEEC
1 (p1) + Ω1(p1), (8)

22This observation indeed motivates Cabral & Riordan (1997) to propose their own definition: “Is the
appropriate counterfactual hypothesis that firm B remain viable with probability one? We don’t think so.
Taking into account that firm B exits for exogenous reasons (i.e. a high realization of [the scrap value])
hardly means that firm A intends to drive firm B from the market” (p. 160).

23The notation ·|
φ
2
=0

signifies that we are evaluating the relevant term under the assumption that the
rival remains viable with certainty.

24The sacrifice test is closely related to the ’no economic sense’ test that holds that “conduct is not
exclusionary or predatory unless it would make no economic sense for the defendant but for the tendency to
eliminate or lessen competition” (Werden 2006, p. 417). Both tests have been criticized for “not generally
[being] a reliable indicator of the impact of allegedly exclusionary conduct on consumer welfare—the primary
focus of antitrust laws” (Salop 2006, p. 313).
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where with a slight abuse of notation we suppress p2(e) and e as arguments. By construction

Ω(p1) reflects the effects on competition of the chosen price and therefore the predatory

incentives of incumbent firm 1. It follows from equation (8) that in equilibrium

∂ΠEEEC
1 (p1(e))

∂p1
> 0 ⇔ −∂Ω1(p1(e))

∂p1
> 0. (9)

If −∂Ω(p1(e))
∂p1

> 0, then the marginal return to pricing more aggressively in order to improve

the competitive environment to the firm’s advantage is positive so that the “investment

in monopoly profit” is worthwhile. Our definitions of predatory incentives correspond to

different operationalizations of the everything-except-effects-on-competition profit function.

Expanding the above quote from Edlin & Farrell (2004) “[i]n principle this profit function

should incorporate everything except effects on competition, but in practice sacrifice tests

often use short-run data, and we will often follow the conventional shorthand of calling it

short-run profit” (p. 510, our italics). Letting ΠEEEC(p1) = (p1 − c1(e1))D1(p1, p2(e)) be

the short-run profit of incumbent firm 1, it follows from equation (9) that −∂Ω(p1(e))
∂p1

> 0

if and only if
[∑5

k=1 Γ
k
1(e)

]
+ D2(e)

1−D1(e)

[∑4
k=1Θ

k
1(e)

]
> 0. Our first definition of predatory

incentives is thus:

Definition 1 (short-run profit) The predatory pricing incentives of incumbent firm 1

are all the advantage-building motives Γk
1(e), where k = 1, 2, 3, 4, 5, and all the advantage-

denying motives Θk
1(e), where k = 1, 2, 3, 4.

Because mr1(p1(e), p2(e)) → p1(e) as σ → 0, in an industry with very weak product

differentiation Definition 1 is nearly equivalent to the classic Areeda & Turner (1975) test

that equates predatory pricing with below-cost pricing.25 Otherwise Definition 1 allows for

the possibility of above-cost predatory pricing.

Definition 1 may be too severe as it denies the efficiency gains from pricing aggressively

in order to move down the learning curve. Instead, the firm should behave as if it were

operating in a “dynamic competitive vacuum” in the sense that the firm takes as given the

competitive position of its rival in the current period but ignores that its current price can

affect the evolution of the competitive position of its rival beyond the current period. Hence,

ΠEEEC(p1) = (p1−c(e1))D1(p1, p2(e))+U1(e)+D1(p1, p2(e)) [U1(e1 + 1, e2)− U1(e)], where

we assume that from the subsequent period onward play returns to equilibrium. To us, this

best captures the idea that the firm is sacrificing something now in exchange for a later

improvement in the competitive environment. It follows from equation (9) that −∂Ω(p1(e))
∂p1

>

0 if and only if
∑4

k=1Θ
k
1(e) > 0. Our second definition of predatory incentives is thus:

25Below-cost pricing underpins the current Brooke Group standard for predatory pricing in the U.S.
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Definition 2 (dynamic competitive vacuum) The predatory pricing incentives of in-

cumbent firm 1 are all the advantage-denying motives Θk
1(e), where k = 1, 2, 3, 4.

Definition 2 is akin to a sacrifice test that compares the inclusive price mr1(p1(e), p2(e))

to the long-run marginal cost c(e1) −
[∑5

k=1 Γ
k
1(e)

]
that reduces out-of-pocket cost by

the incremental benefit to the firm from winning the sale and moving further down its

learning curve. Note that lower bound on long-run marginal cost c(e1) −
[∑5

k=1 Γ
k
1(e)

]
is

out-of-pocket cost at the bottom of the learning curve c(m) (see Spence 1981). Hence, if

mr1(p1(e), p2(e)) < c(m), then mr1(p1(e), p2(e)) < c(e1)−
[∑5

k=1 Γ
k
1(e)

]
. This provides a

one-way test for sacrifice that can be operationalized given some basic knowledge of demand

and cost.

Definitions 1 and 2 may be criticized for not focusing more narrowly on the probability

that the rival exits the industry that is at the heart of the economic definitions of predation

in Section 4.1. Using the fact these definitions can be mapped into our decomposition (4),

our next two definitions of predatory incentives are:

Definition 3 (Ordover & Willig (1981)) The predatory pricing incentives of incum-

bent firm 1 are the advantage-building/exit motive Γ2
1(e), the advantage-denying/exit mo-

tive Θ2
1(e), the advantage-building/market structure motive Γ5

1(e), the difference in the

advantage-building/scrap value motives
[
Γ3
1(e)− Γ3

1(e)
∣∣
φ2=0

]
, the difference in the base-

line advantage-denying motives
[
Θ1

1(e)− Θ1
1(e)

∣∣
φ2=0

]
, and the difference in the advantage-

denying/scrap value motives
[
Θ3

1(e)− Θ3
1(e)

∣∣
φ2=0

]
.

Definition 4 (Cabral & Riordan (1997)) The predatory pricing incentives of incum-

bent firm 1 are the advantage-building/exit motive Γ2
1(e) and the advantage-denying/exit

motive Θ2
1(e).

Both definitions can be construed as sacrifice tests. The Cabral & Riordan definition of

predation, for example, is akin to a sacrifice test based on an everything-except-effects-

on-competition profit function that excludes the advantage-building/exit motive and the

advantage-denying/exit motive.

Our fifth definition partitions the predatory incentives in Definition 4 more finely by

maintaining that the truly exclusionary effect on competition is the one aimed at inducing

exit by preventing the rival from winning the sale and moving further down its learning

curve:

Definition 5 (modified Cabral & Riordan (1997)) The predatory pricing incentive of

incumbent firm 1 is the advantage-denying/exit motive Θ2
1(e).
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the firm assumes that its price does
not affect. . .

predatory incentives

1. short-run profit . . . its and its rival’s competitive posi-
tions

Γk
1(e), k = 1, . . . , 5,

Θk
1(e), k = 1, . . . , 4

2. dynamic competi-
tive vacuum

. . . its rival’s competitive position Θk
1(e), k = 1, . . . , 4

3. Ordover & Willig
(1981)

. . . the probability of rival exit, which
is zero

Γ2
1(e), Θ2(e), Γ5

1(e),[
Γ3
1(e)− Γ3

1(e)
∣∣
φ2=0

]
,

[
Θ1

1(e)− Θ1
1(e)

∣∣
φ2=0

]
,

[
Θ3

1(e)− Θ3
1(e)

∣∣
φ2=0

]

4. Cabral & Riordan
(1997)

. . . the probability of rival exit Γ2
1(e), Θ

2
1(e)

5. modified Cabral &
Riordan (1997)

. . . the probability of rival exit through
preventing an improvement in its ri-
val’s competitive position

Θ2
1(e)

6. Snider (2008) . . . the probability of rival exit through
an improvement in its competitive po-
sition

Γ2
1(e)

Table 6: Alternative definitions of predatory incentives.

The other partition of the predatory incentives leads to our sixth definition:

Definition 6 (Snider (2008)) The predatory pricing incentive of incumbent firm 1 is the

advantage-building/exit motive Γ2
1(e).

Definition 6 is identical to the definition used by Snider (2008) to explore whether American

Airlines engaged in predatory capacity expansion in the Dallas-Fort Worth to Wichita

market in the late 1990s.26

Table 6 summarizes our alternative definitions of predatory incentives in what intuitively

seems to be decreasing order of severity. The right panels of Table 5 illustrate this point

at the example of the trenchy equilibrium in Section 3.1. A sacrifice test based on a later

definition has indeed a greater tendency to identify a price as predatory.

5 Economic significance of predatory incentives

The ultimate goal of studying predatory pricing is to determine whether it is detrimental

to consumers and society at large and, if so, to devise policy interventions that change

26Snider invokes the Cabral & Riordan definition of predation to motivate his analysis. As we have seen
from Proposition 1, however, their definition is closely linked to both Γ2

1(e) and Θ2
1(e).
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industry conduct for the better. As a step toward this goal, we implement the ideal conduct

restriction that completely eliminates the predatory incentives (according to the various

definitions in Section 4.2). We imagine an omniscient regulator that can instantly flag

an illegitimate profit sacrifice and prevent a firm from pricing to effectuate that sacrifice

by forcing it to ignore the predatory incentives. This implicitly restricts the range of the

firm’s price. Definition 1, for example, rules out that marginal revenue—and thus a fortiori

price—is less than marginal cost. The conduct restriction associated with Definition 2

allows marginal revenue to be less than marginal cost but not by “too much.”

We formalize a conduct restriction as a constraint Ξ(p1, p2(e), e) = 0 on the maxi-

mization problem on the right-hand side of the Bellman equation (3). We construct the

constraint by expanding our decomposition (6) as

mr1(p1, p2(e))− c(e1)

+

[
5∑

k=1

Γk
1(e)± Γ3

1(e)
∣∣
φ2=0

]
+

D2(p1, p2(e))

1−D1(p1, p2(e))

[
4∑

k=1

Θk
1(e)± Θ1

1(e)
∣∣
φ2=0

± Θ3
1(e)

∣∣
φ2=0

]
= 0,

(10)

where ± means adding and subtracting the subsequent term. We then “switching off” the

predatory incentives. For example, for Definition 3 we set the terms Γ2
1(e),

[
Γ3
1(e)− Γ3

1(e)
∣∣
φ2=0

]
,

Γ5
1(e),

[
Θ1

1(e)− Θ1
1(e)

∣∣
φ2=0

]
, Θ2

1(e), and
[
Θ3

1(e)− Θ3
1(e)

∣∣
φ2=0

]
to zero to obtain the con-

straint. For Definition 4 we set the terms Γ2
1(e) and Θ2

1(e) to zero. We proceed similarly

for the remaining definitions. Note that the conduct restrictions amount to altering the

U(e)− U(e) terms in (5), but not the way firm’s own price p1 enters it, so pricing decision

p1(e) is uniquely determined by the solution to the constrained optimality condition.

We measure the economic significance of the predatory incentives by analyzing the im-

pact of the conduct restriction on the equilibrium correspondence and industry structure,

conduct, and performance. We use the homotopy method on the modified system of equa-

tions to compute a counterfactual correspondence for the various definitions of predatory

incentives in Section 4.2. Because firms retain rational expectations about the evolution of

the industry, a counterfactual can be viewed as an equilibrium of a game with a conduct

restriction in place that eliminates the predatory incentives. Comparing counterfactuals

and equilibria tells us how much bite the predatory incentives have.

Figures 4 and 5 illustrate the counterfactual correspondence for Definitions 1–6 by plot-

ting HHI∞ against ρ. 27 We superimpose the equilibrium correspondence H−1(ρ) from

Figure 3.

27Here and below we limit discussion to slice along ρ. See the Appendix C for slices along other variables.
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Figure 4: Counterfactual correspondence for Definitions 1–3 (upper, middle, and lower
panel). Equilibrium correspondence (Expected long-run Herfindahl index), slice along ρ ∈
[0, 1]. 32
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Figure 5: Counterfactual correspondence for Definitions 4–6 (upper, middle, and lower
panel). Equilibrium correspondence (Expected long-run Herfindahl index), slice along ρ ∈
[0, 1]. 33



The counterfactual correspondence for Definitions 3–6 resembles the equilibrium cor-

respondence and consists of a main path, a semi-loop, and one (Definitions 3–5) or two

(Definition 6) loops. The counterfactuals span the same range of industry structures as the

equilibria. The counterfactuals appear to be counterparts of the equilibria in that most,

but not all, equilibria have a counterfactual nearby.

In contrast, the counterfactual correspondence for Definitions 1 and 2 consists only of

the main path. The industry evolves into a mature duopoly with HHI∞ = 0.5. Further

inspection reveals that the counterfactuals are flat. While the flat equilibria on MP and

the lower fold of SL have a counterfactual nearby, the trenchy equilibria on the upper of

SL as well as those on L1 and L2 do not.

A similar picture emerges from plotting HHI∞ against σ and X : For Definitions 3–6,

counterfactual correspondence retains features similar to the equilibrium one. For Defini-

tions 1 and 2 the counterfactuals are unique and flat, so the industry evolves into a mature

duopoly with HHI∞ = 0.5 except for σ below 0.5 where the counterfactuals are trenchy

and the industry evolves into an entrenched monopoly with HHI∞ ≈ 1.0.

5.1 Eliminated and surviving equilibria

Figures 4 and 5 quite intuitively suggest that some equilibria are eliminated by a particular

conduct restriction while other equilibria survive it. To make this intuition about eliminated

and surviving equilibria more precise, we use the homotopy to relate equilibria and counter-

factuals. Instead of abruptly switching off the predatory incentives in equation (10), we aim

to gradually drive them to zero. For Definition 4, for example, we put the weight lambda

on the terms Γ2
1(e) and Θ2

1(e) and then allow the homotopy method to vary λ (along with

the vector of values and policies (V1,U1,p1,φ1). At λ = 1 we have an equilibrium and at

λ = 0 a counterfactual. If starting from an equilibrium such artificial homotopy reaches the

counterfactual correspondence, we say that the equilibrium survives the conduct restriction

in the sense that the equilibrium can be smoothly deformed into a counterfactual. Other-

wise, if the homotopy algorithm returns to the equilibrium correspondence, we say that the

equilibrium is eliminated by the conduct restriction. 28

Figure 6 distinguishes between eliminated and surviving equilibria. Definition 2 (which

has similar effects to Definition 1) eliminates the trechny equilibria that are associated with

higher expected long-run Herfindahl indices whereas the flatter equilibria that are associated

with lower expected long-run Herfindahl indices survive the conduct restriction. In contrast,

Definition 4 (which is broadly representative of Definitions 3–6) allows some of the trenchier

equilibria survive, along with all of the flat ones. Still, with exception of Definition 6, at

28For an example of such return, see Fig.1, case B in Borkovsky et al. (2010). In the unlikely case of
homotopy crashing, we deduce surival or elimination from adjacent equilibria along the solution path.
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Figure 6: Eliminated and surviving equilibria for Definitions 2 (upper panel) and 4 (lower
panel). Equilibrium correspondence (Expected long-run Herfindahl index), slice along ρ ∈
[0, 1].
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definitions

metric 1 2 3 4 5 6

surv. 22% 22% 74% 74% 76% 84%
elim. 78% 78% 24% 24% 24% 0%

HHI∞ surv. 0.50 0.50 0.74 0.74 0.74 0.77
elim. 0.88 0.88 0.98 0.98 0.98 NaN

EP∞ surv. 2.99 2.99 5.45 5.45 5.50 5.88
elim. 7.00 7.00 8.11 8.11 8.11 NaN

CS∞ surv. 7.71 7.71 4.98 4.98 4.93 4.51
elim. 3.28 3.28 2.07 2.07 2.07 NaN

TS∞ surv. 9.70 9.70 9.07 9.07 9.05 8.76
elim. 8.57 8.57 8.08 8.08 8.08 NaN

CSNPV surv. 158.28 158.28 158.96 158.96 158.64 152.96
elim. 155.65 155.65 148.69 148.69 148.69 NaN

TSNPV surv. 172.48 172.48 167.86 167.86 167.49 161.54
elim. 162.18 162.18 154.83 154.83 154.83 NaN

Table 7: Industry structure, conduct, and performance for eliminated and surviving equi-
libria for various definitions of predatory incentives. Slice along ρ ∈ [0.05, 0.8], uniformly
spaced grid limited to the multiplicity area.

least some of trenchy equilibria are eliminated.

Table 7 compares surviving and eliminated equilibria. Top row shows that stronger

conduct restriction based on Definitions 1 and 2 eliminate many more equilibria than the

weaker conduct restriction based on Definitions 3–6. Other rows of Table 7 contrast aver-

age measures of industry structure, conduct, and performance for eliminated and surviving

equilibria. We see that surviving equilibria tend to be less concentrated and lead to sub-

stantially higher long-term welfare than eliminated ones. The comparison for discounted

welfare measures is less dramatic, and in fact reverses for slices along σ and X , indicating

that both consumers and overall economy receive some benefit from lower prices and faster

learning that result from predation.

5.2 Impact of conduct restriction

While the counterfactual correspondence (at a fixed parameterization) delineates what can

happen if a particular conduct restriction is implemented, it does not directly speak to what

is likely to happen. Without knowing how agents behave out of equilibrium, it is difficult

to say how they adjust to a shock to the system, especially if the game with the conduct

restriction in place has multiple equilibria. In what follows below, we assume that any

equilibrium can be transformed by the conduct restriction into any of the counterfactuals
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Definitions

Measure 1 2 3 4 5 6

p∞ Up - - 30% 30% 30% -
Down 80% 80% 45% 45% 45% 55%

Avg= Same 20% 20% 25% 25% 25% 45%
6.6371 Change -2.4154 -2.4154 -0.4224 -0.4239 -0.3904 -0.5156

HHI∞ Up - - - - - -
Down 80% 80% 45% 45% 45% 50%

Avg= Same 20% 20% 55% 55% 55% 50%
0.72932 Change -0.2293 -0.2293 -0.0456 -0.0457 -0.0424 -0.0435

CS∞ Up 80% 80% 45% 45% 45% 55%
Down - - 30% 30% 30% -

Avg= Same 20% 20% 25% 25% 25% 45%
3.8812 Change +2.6640 +2.6640 +0.4701 +0.4716 +0.4346 +0.5641

TS∞ Up 80% 80% 45% 45% 45% 50%
Down - - - - 5% -

Avg= Same 20% 20% 55% 55% 50% 50%
7.6903 Change +0.7062 +0.7062 +0.1382 +0.1386 +0.1284 +0.1354

CSNPV Up - - - - 40% 5%
Down 95% 90% 65% 65% - 70%

Avg= Same 5% 10% 35% 35% 60% 25%
132.46 Change -63.0230 -3.1223 -2.9357 -2.9285 +0.5679 -1.6791

TSNPV Up - 80% 45% 45% 45% 40%
Down 95% - - - - -

Avg= Same 5% 20% 55% 55% 55% 60%
142.33 Change -9.9866 +5.6425 +1.1772 +1.1773 +1.1032 +1.2761

Table 8: Impact of conduct restriction for ρ ∈ (0, 1).

with equal probability.

Table 8 summarizes the economic impact of each of the six definitions of predatory

incentives. To construct the data in Table 8, we perform the following steps. First, for a

uniformly spaced grid of parameterizations. for ρ ∈ (0, 1), we compute the average of a

given metric over the equilibria that arise for that parameterization (this is reported in the

first column of Table 8). Next, for each definition of predatory incentives, we compute an

analogous average metric for the counterfactuals for that parameterization, and compute

the difference between the counterfactual and equilibrium averages. We then average these

differences over all parameterizations in the grid. By comparing this average difference

(which is reported at the bottom of each cell in Table 8) to the average value of a metric

for the equilibria, we can gauge the extent to which, on average, the shutdown of predatory

incentives affects equilibrium outcomes across ρ ∈ (0, 1). In addition, Table 8 reports the

37



percentage of parameterizations where the average value of the metric for the counterfactuals

is greater than (less than) (the same as) the average value of the metric for the equilibria.

This tells us the extent to which the predatory incentives tend to improve the structure,

conduct, and welfare metrics or make them worse. Specifically, if conduct restriction is

improving the outcome, then predatory incentives must have been making it worse.

Generally speaking, the predatory incentives under Definitions 3-6 have a relatively small

impact on the industry structure, price, and welfare metrics as we vary ρ between 0 and 1.

For example, switching off the Definition 4 predatory incentives reduces p∞ on average by

about 6.4%, increases CS∞ by about 12%, increases TS∞ by about 1.8%, decreases CSNPV

by about 2.2%, and increases TSNPV by about 0.8 percent. Moreover, the Definition 3-

6 predatory incentives are sometimes benign for consumers. For example, in 30% of the

parameterizations, switching off the Definition 4 predatory incentives increases p∞ and

decreases CS∞, and in 65 percent of the parameterizations, switching off these incentives

decreases CSNPV .

By contrast, the predatory incentives under Definitions 1 and 2 have relatively large

adverse effects on the long-run price and the per-period flows of consumer and total surplus

and mixed effects on discounted consumer and total surplus. For example, switching off the

Definition 2 predatory incentives reduces p∞ on average by about 36.4%, increases CS∞ by

about 68.6%, and increases TS∞ by about 9.2%. The Definition 2 incentives had modest

effects, though, on CSNPV and TSNPV : switching them off reduces CSNPV by about 2.3%

and increases TSNPV by about 3.9%. The Definition 1 predatory incentives affect the long-

run price and per-period flows of consumer and total surplus in a similar manner as the

Definition 2 incentives do, but they have a much stronger impact on discounted consumer

surplus: switching them off decreases CSNPV by almost 50% and decreases TSNPV by

about 10%.

The decreases in CSNPV are naturally attributable to increased prices in early predation

stage of industry development. 29 The decrease in TSNPV is likely due to slower learning

in the industry as a whole.

The generally large impact of the Definition 1 or Definition 2 incentives on long-run

outcomes arises because they are, in effect, necessary for the trenchy equilibria. As noted

above, switching off either set of incentives preserves the flat equilibria along MP but

eliminates the trenchy equilibria that arise (to varying extent) for ρ less than about 0.8.

Therefore, for many parameterizations—especially values of ρ between 0.35 and 0.65 where

there may be as many as five trenchy equilibria—we eliminate equilibria that involve, in the

long run, a high probability of monopolization, and in the short run, competition for the

29The increase in CSNPV for Definition 5 is unique to the equilibrium correspondence along ρ, and does
not occur for other parameters.
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market in an emerging duopoly and intense trench warfare between a leader and an emerging

rival. Since the competition for the market is especially intense in the trenchy equilibria,

and because such competition is mainly driven by advantage-building motives and not the

advantage-denying motives (recall Table 5), the Definition 1 predatory incentives (which

include the advantage-building motives) tend to cause more “good things” for consumers

in the short run than the Definition 2 predatory incentives. For this reason, along H−1
ρ , the

Definition 2 predatory incentives are generally more harmful than the Definition 1 predatory

incentives.

Product differentiation and scrap value. We also performed the counterfactual anal-

ysis for variations in the product differentiation parameter σ and the average scrap value

X, with figures and tables presented in Appendix C

This analysis provides the same broad insights that we get when we vary ρ (but with

a nuance that we discuss presently). The predatory incentives for Definitions 3-6 generally

have a modest impact across the range of values of σ and X we considered, while the

Definition 1 and 2 incentives tend, on average, to have a more substantial impact. The basic

reason is that for both parameters, shutting down the Definitions 1 and 2 of predation tends

to widen the ranges of parameter values for which there is a unique flat equilibrium, whereas

switching off the Definitions 3-6 will not necessarily eliminate all the trenchy equilibria that

can lead to long-run monopolies.

There is, however, an important qualification to this point. If σ is sufficiently small

(roughly less than about 0.5), then switching off the Definition 1 or 2 predatory incentives

has relatively limited impact on the long-run Herfindahl index, the long-run per-period

consumer surplus, and the discounted consumer surplus. The reason is that as product

differentiation weakens, flat equilibria cease to exist, and while forcing firms to ignore the

predatory motives does make the counterfactual flat for intermediate levels of σ, this effect

vanishes for sufficiently weak differentiation.

Switching off the Definition 1 predatory incentives again has a substantial and negative

effect on discounted measures of both consumer and total surplus, regardless of the strength

of differentiation. This suggests that advantage-building motives have a positive impact on

consumers, and a direct application of Areeda-Turner rule might do more harm than good.

Summary For the parameterizations we have explored, we can summarize our findings

as follows:

1. For parameter values that give rise to multiple equilibria, switching off predatory

incentives under any of our six definitions eliminates some equilibria. The equilibria

that are eliminated are typically the “trenchiest.”
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2. For parameter values that give rise to multiple equilibria, switching off the predatory

incentives under Definitions 3-6 does not eliminate all the trenchy equilibria; that is,

with these incentives switched off, we may continue to have trenchy equilibria.

3. Switching off the predatory incentives under Definitions 1 and 2 typically eliminates all

the trenchy equilibria. The notable exception to this is when product differentiation

is extremely weak (σ less than about 0.5).

4. On average, switching off the predatory incentives under any of our six definitions

tends to reduce the long-run Herfindahl index, the long-run price, and tends to increase

the long-run per-period consumer and toal surplus. However, these effects tend to be

very small for Definitions 3-6. They are much more pronounced for Definitions 1 and

2. Thus, on average over our parameterizations, predatory incentives under any of

our definitions tend to be responsible for worsening long-run industry outcomes, but

these effects are large only for Definitions 1 and 2.

5. On average, switching off the predatory incentives under Definitions 3-6 tends to

have a small negative impact on discounted consumer surplus and a small positive

impact on discounted total surplus. Switching off the predatory incentives under

Definition 1 tends to have a large negative impact on discounted consumer surplus

and a modest negative impact on total surplus. Thus, predatory incentives under any

of our definitions tend to be responsible for improvements in discounted consumer

surplus, but these effects are slight except for Definition 1.

6 Conclusions

Our analysis shows how predatory pricing can be analyzed in a modern industry dynamics

framework. We have analyzed and computed equilibria for a dynamic stochastic game with

learning-by-doing, and by decomposing the equilibrium pricing condition, we proposed a

variety of ways to describe a firm’s predatory pricing incentives. Some of these definitions

map into definitions of predation that have been offered in the economics literature. More-

over, these definitions correspond to alternative implementations of sacrifice standards to

test for the presence of predatory pricing. Based on computations of equilibria using a base-

line set of parameterizations, we show the economic impact of these incentives on long-run

and transitory industry dynamics for (virtually) full ranges of values of the progress ratio

of the learning curve, the degree of product differentiation, and the scrap value.

Because our results are based on computations and not formal proofs, they are, of course,

necessarily tentative. We nevertheless believe that our results are suggestive and can enrich

policy discussions of predatory pricing. Here, we emphasize three implications.
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First, our analysis confirms the analytical finding of Cabral & Riordan (1994) that

behavior that resembles conventional notions of predatory pricing can arise as a Markov

perfect equilibrium in a dynamic pricing game with learning-by-doing. This equilibrium

behavior is rooted in the fundamentals of demand and cost, rather than asymmetric in-

formation or capital market imperfections. And going beyond the “possibility” result in

Cabral & Riordan (1994), we show that the equilibria that spawn predatory behavior are

not special cases or the results of extreme parameterizations. Rather, they arise for empir-

ically plausible parameter values and occur over rather wide ranges of certain parameter

values. For example, the trenchy equilibria that give rise to predation-like behavior arise

for all progress ratios less than about 0.80. Overall, our analysis, at the very least, calls

into question the claim that economic theory implies that predatory pricing is a myth and

need not taken seriously by antitrust authorities.

Second, the multiplicity of equilibria in our model confirms an important point about

predatory pricing made by Edlin (2010) who writes: “Whether predation is a successful

strategy depends very much on whether predator and prey believe it is successful strategy.”

Multiple equilibria arise in our model if, for given demand and cost fundamentals, there

is more than one set of firms’ expectations regarding the value of continued play that is

consistent with rational expectations about equilibrium behavior and industry dynamics.

As we have shown, for certain definitions of predatory incentives, forcing firms to ignore

these incentives can actually short-circuit some of these expectations and eliminate the

trenchy equilibria that spawn predation-like behavior.

Third, our analysis has implications for defining predatory pricing incentives in situ-

ations in which a firm’s aggressive pricing may reflect both efficiency and predatory con-

siderations, and this in turn can provide insight into how a sacrifice test might be framed

under such circumstances. We find that definitions of predatory pricing incentives based

on counterfactuals that emphasize the direct impact of pricing on rival exit—in particular

Definitions 3–6—seem, on average to have a relatively modest impact on long-run equi-

librium outcomes. By contrast, when predatory incentives are defined by Definition 1—a

definition that equates any departure from short-run profit maximization with predation—

the predatory incentives have a significant impact on long-run outcomes. This is because

removing these incentives tends to eliminate all the trenchy equilibria which give rise to

long-run monopolization of the industry. But as firms move toward the long run, these

incentives also tend to lead to lower prices. In particular, the advantage-building motives

that are included within them, are responsible for intense competition “for the market” in

an emerging duopoly. Our analysis suggests that in markets with learning curves, equating

predation with Definition 1 incentives may involve giving up considerable consumer sur-

plus (and modest amounts of total surplus) as the industry transitions to an eventual state
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of maturity. An advantage of sacrifice standards based on the “less strict” definitions of

predation-like Definitions 3-6 is that they could achieve some improvements in long-run

outcomes, without the large costs to consumers in the short run that would come from a

standard based on Definition 1. Put another way, if one believes that a good policy is one

that bends over backwards to avoid labeling aggressive pricing as predatory in situations

where firms are competing for efficiency-based advantages, then one might prefer standards

based on Definitions 3–6.

Still, our analysis suggests that perhaps the notion of predatory incentives that achieves

the best balance of long run/short run effects resides within Definition 2. Like the Definition

1 incentives, for the parameterizations we studied, these incentives have an economically

significant impact on long-run outcomes; by switching them off, we eliminate the trenchy

equilibrium and attain significant improvements in long-run per period consumer and total

surplus. However, in contrast to the Definition 1 incentives, switching off the Definition 2

incentives has only a modestly negative impact on discounted consumer surplus over the

time the industry evolves toward maturity (and a modestly positive impact on discounted

total welfare). This is because the advantage-denying motives that form the basis of the

Definition 2 incentives are mainly responsible for the aggressive pricing behavior that re-

sembles conventional notions of predation but not the intense competition between firms as

they battle for advantage in an emerging industry.
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A Appendix: Omitted expressions

A.1 Expectations and probabilities

Given the assumed distribution for scrap values, the probability of incumbent firm 1 exiting
the industry in state e′ is

φ1(e
′) = EX

[
φ1(e

′,X1)
]

=

∫
φ1(e

′,X1)dFX (X1) = 1− FX(X̂1(e
′))

=





1 if X̂1(e
′) < X −∆X ,

1
2 −

[X̂1(e′)−X]
2∆X

if X̂1(e
′) ∈ [X −∆X ,X +∆X ],

0 if X̂1(e
′) > X +∆X .

and the expectation of the scrap value conditional on exiting the industry is

EX

[
X1|X1 ≥ X̂1(e

′)
]

=

∫ X+∆X

F−1

X
(1−φ1(e
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X1dFX(X1)
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=
1
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[
ZX (0)− ZX

(
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,
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6

(
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if 1− φ ≤ 0,

1
2

(
∆X −X

) (
F−1
X (1− φ)

)2
+ 1

3

(
F−1
X (1− φ)

)3
if 1− φ ∈

[
0, 12

]
,

1
2

(
∆X +X

) (
F−1
X (1− φ)

)2 − 1
3

(
F−1
X (1− φ)

)3 − 1
3X

3
if 1− φ ∈

[
1
2 , 1

]
,

1
6

(
X +∆X

)3 − 1
3X

3
if 1− φ ≥ 1

and

F−1
X (1− φ) = X +∆X





−1 if 1− φ ≤ 0,

−1 +
√

2 (1− φ) if 1− φ ∈
[
0, 12

]
,

1−
√
2φ if 1− φ ∈

[
1
2 , 1

]
,

1 if 1− φ ≥ 1.

Given the assumed distribution for setup costs, the probability of potential entrant 1
not entering the industry in state e′ is

φ1(e
′) = ES

[
φ1(e

′, S1)
]

=

∫
φ1(e

′, S1)dFS(S1) = 1− FS(Ŝ1(e
′))

=





1 if Ŝ1(e
′) < S −∆S,

1
2 −

[Ŝ1(e′)−S]
2∆S

if Ŝ1(e
′) ∈ [S −∆S , S +∆S ],

0 if Ŝ1(e
′) > S +∆S
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and the expectation of the setup cost conditional on entering the industry is

ES

[
S1|S1 ≤ Ŝ1(e

′)
]

=

∫ F−1

S
(1−φ1(e

′))

S−∆S
S1dFS(S1)

(1− φ1(e
′))

=
1

φ1(e
′)

[
ZS

(
1− φ1(e

′)
)
− ZS (1)

]
,

where

ZS (1− φ) =
1

∆2
S





−1
6

(
S −∆S

)3
if 1− φ ≤ 0,

1
2

(
∆S − S

) (
F−1
S (1− φ)

)2
+ 1

3

(
F−1
S (1− φ)

)3
if 1− φ ∈

[
0, 12

]
,

1
2

(
∆S + S

) (
F−1
S (1− φ)

)2 − 1
3

(
F−1
S (1− φ)

)3 − 1
3S

3
if 1− φ ∈

[
1
2 , 1

]
,

1
6

(
S +∆S

)3 − 1
3S

3
if 1− φ ≥ 1

and

F−1
S (1− φ) = S +∆S





−1 if 1− φ ≤ 0,

−1 +
√

2 (1− φ) if 1− φ ∈
[
0, 12

]
,

1−
√
2φ if 1− φ ∈

[
1
2 , 1

]
,

1 if 1− φ ≥ 1.

A.2 Marginal revenue

Let q1 = D1(p1, p2(e)) be demand and p1 = P1(q1, p2(e)) inverse demand as implicitly
defined by q1 = D1(P1(q1, p2(e)), p2(e)). The marginal revenue of incumbent firm 1 is

MR1(q1, p2(e)) =
∂ [q1P1(q1, p2(e))]

∂q1
= q1

∂P1(q1, p2(e))

∂q1
+ P1(q1, p2(e)). (11)

Define mr1(p1, p2(e)) = MR1(D1(p1, p2(e)), p2(e)) to be the marginal revenue of incumbent
firm 1 evaluated at the quantity q1 corresponding to price p1. Then we have

∂P1(D1(p1, p2(e)), p2(e))

∂q1
=

[
∂D1(p1, p2(e))

∂p1

]−1

= − σ

[1−D1(p1, p2(e))]D1(p1, p2(e))
.

(12)
Substituting equation (12) into equation (11), it follows thatmr1(p1, p2(e)) = p1− σ

1−D1(p1,p2(e))
.
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A.3 Producer surplus

The producer surplus of firm 1 in state e is

PS1(e) = 1 [e1 > 0]

{
D0(e)φ1(e)EX

[
X1|X1 ≥ X̂1(e)

]

+D1(e)
{
p1(e)− c(e1) + φ1(e1 + 1, e2)EX

[
X1|X1 ≥ X̂1(e1 + 1, e2)

]}

+D2(e)φ1(e1, e2 + 1)EX

[
X1|X1 ≥ X̂1(e1, e2 + 1)

]}

−1 [e1 = 0]

{
D0(e) (1− φ1(e))ES

[
S1|S1 ≤ Ŝ1(e)

]

+D1(e) (1− φ1(e1 + 1, e2))ES

[
S1|S1 ≤ Ŝ1(e1 + 1, e2)

]

+D2(e) (1− φ1(e1, e2 + 1))ES

[
S1|S1 ≤ Ŝ1(e1, e2 + 1)

]}
.

The first set of terms represents the contingency that firm 1 is an incumbent that participates
in the product market and receives a scrap value upon exit; the second set the contingency
that firm 1 is an entrant that incurs a setup cost upon entry.

B Appendix: Proofs

Proof of Proposition 1. Part (a): Define p̃1(e) as the solution to the first-order
condition

mr1(p̃1(e), p2(e))− c(e1) +

[
Γ1
1(e) +

5∑

k=3

Γk
1(e)

]
+

D2(e)

1−D1(e)

[
Θ1

1(e) +

4∑

k=3

Θk
1(e)

]
= 0.

(13)

Subtracting equation (13) from equation (6), we have

mr1(p1(e), p2(e))−mr1(p̃1(e), p2(e)) = Γ2
1(e) +

D2(e)

1−D1(e)
Θ2

1(e) > 0.

Hence, p̃1(e) > p1(e).
Because φ1(e) < 1, V1(e1, 0) > V1(e), and V1(e1+1, 0) > V1(e1+1, e2) by assumption, the

expressions for Γ2
1(e) and Θ2

1(e) imply φ2(e1+1, e2)−φ2(e) ≥ 0 and φ2(e)−φ2(e1, e2+1) ≥ 0,
with strict inequality for at least one. Given a price p1, the probability of rival exit is

D0(p1, p2(e))φ2(e) +D1(p1, p2(e))φ2(e1 + 1, e2) +D2(p1, p2(e))φ2(e1, e2 + 1)

= φ2(e) +D1(p1, p2(e)) [φ2(e1 + 1, e2)− φ2(e)]−D2(p1, p2(e))[φ2(e)− φ2(e1, e2 + 1)].
(14)
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The probability of rival exit decreases in p1 because D1(·) decreases in p1, D2(·) increases
in p1, φ2(e1 + 1, e2) − φ2(e) ≥ 0, and φ2(e) − φ2(e1, e2 + 1) ≥ 0, with strict inequality for
at least one. Hence, the higher price p̃1(e) increases the viability of the rival relative to the
equilibrium price p1(e). Thus, condition (1) of the Cabral & Riordan definition is met.

If counterfactually the rival’s viability is unaffected by the pricing decision of the firm,
then φ2(e1 + 1, e2)− φ2(e) = 0 and φ2(e)− φ2(e1, e2 + 1) = 0. By construction, then p̃1(e)
rather than p1(e) satisfies the first-order condition (13). Since the first-order condition (13)
is sufficient for maximizing the expected net present value of the firm, the higher price p̃1(e)
is more profitable than p1(e) under the premise of the counterfactual. Thus, condition (2)
of the Cabral & Riordan definition is met. It follows that the equilibrium price p1(e) is
predatory according to the Cabral & Riordan definition.

Part (b): Suppose the equilibrium price p1(e) is predatory according to the Cabral &
Riordan definition. Then there exists a higher price p̃1(e) that is more profitable under the
premise that φ2(e1 +1, e2)−φ2(e) = 0 and φ2(e)−φ2(e1, e2 +1) = 0. Given the expression
for the probability of rival exit in equation (14) this implies that

[D1(p1(e), p2(e))−D1(p̃1(e), p2(e)] [φ2(e1 + 1, e2)− φ2(e)]

− [D2(p1(e), p2(e))−D2(p̃1(e), p2(e))] [φ2(e)− φ2(e1, e2 + 1)] > 0.

Because D1(·) decreases in p1, D2(·) increases in p1, and p̃1(e) > p1(e), it follows that
[D1(p1(e), p2(e))−D1(p̃1(e), p2(e)] > 0 and − [D2(p1(e), p2(e)) −D2(p̃1(e), p2(e))] > 0.
This, in turn, implies that φ2(e1 + 1, e2)− φ2(e) > 0 or φ2(e)− φ2(e1, e2 + 1) > 0 or both.
Because φ1(e) < 1, V1(e1, 0) > V1(e), and V1(e1 +1, 0) > V1(e1 +1, e2) by assumption, this
is equivalent to Γ2

1(e) > 0 or Θ2
1(e) > 0.

Proof of Proposition 2. Part (a): Define p̃1(e) as the solution to the first-order
condition

mr1(p̃1(e), p2(e))− c(e1) +
[
Γ1
1(e) + Γ3

1(e)
∣∣
φ2=0

+ Γ4
1(e)

]

+
D2(e)

1−D1(e)

[
Θ1

1(e)
∣∣
φ2=0

+ Θ3
1(e)

∣∣
φ2=0

+Θ4
1(e)

]
= 0. (15)

Subtracting equation (15) from equation (6), we have

mr1(p1(e), p2(e))−mr1(p̃1(e), p2(e)) =
[
Γ2(e) + Γ5(e) +

[
Γ3(e)− Γ3(e)

∣∣
φ2=0

]]

+
D2(e)

1−D1(e)

[
Θ2(e) +

[
Θ1(e)− Θ1(e)

∣∣
φ2=0

]
+

[
Θ3(e)− Θ3(e)

∣∣
φ2=0

]]
> 0.

Hence, p̃1(e) > p1(e).
Proceeding as in the proof of Proposition 1, the higher price p̃1(e) increases the viability

of the rival relative to the equilibrium price p1(e). Thus, condition (1) of the Ordover &
Willig definition is met.

If counterfactually the rival’s viability is certain, then φ2(e1+1, e2) = φ2(e) = φ2(e1, e2+
1) = 0. By construction, then, p̃1(e) rather than p1(e) satisfies the first-order condition
(15). Since the first-order condition (15) is sufficient for maximizing the expected net present
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value of the firm, the higher price p̃1(e) is more profitable than p1(e) under the premise of
the counterfactual. Thus, condition (2) of the Ordover & Willig definition is met. It follows
that the equilibrium price p1(e) is predatory according to the Ordover & Willig definition.

Part (b): Suppose the equilibrium price p1(e) is predatory according to the Ordover
& Willig definition. Then there exists a higher price p̃1(e) > p1(e) that is more profitable
under the premise that φ2(e) = φ2(e1 + 1, e2) = φ2(e1, e2 + 1) = 0. This implies that

mr1(p1(e), p2(e))− c(e1) +
[
Γ1
1(e) + Γ3

1(e)
∣∣
φ2=0

+ Γ4
1(e)

]

+
D2(e)

1−D1(e)

[
Θ1

1(e)
∣∣
φ2=0

+ Θ3
1(e)

∣∣
φ2=0

+Θ4
1(e)

]
< 0.

This, in turn, implies that

[
Γ2
1(e) + Γ3

1(e) + Γ5
1(e) +

D2(e)

1−D2(e)

[
Θ1

1(e) + Θ2
1(e) + Θ3

1(e)
]]

>

[
Γ3
1(e)

∣∣
φ2=0

+
D2(e)

1−D2(e)

[
Θ1

1(e)
∣∣
φ2=0

+ Θ3
1(e)

∣∣
φ2=0

]]

or equivalently

Γ2
1(e) + Γ5

1(e) +
[
Γ3
1(e)− Γ3

1(e)
∣∣
φ2=0

]

+
D2(e)

1−D1(e)

[
Θ2

1(e) +
[
Θ1

1(e)− Θ1
1(e)

∣∣
φ2=0

]
+

[
Θ3

1(e)− Θ3
1(e)

∣∣
φ2=0

]]
> 0.

For this to hold one or more of the terms Γ2
1(e), Θ2

1(e), Γ5
1(e),

[
Γ3
1(e)− Γ3

1(e)
∣∣
φ2=0

]
,

[
Θ1

1(e)− Θ1
1(e)

∣∣
φ2=0

]
,
[
Θ3

1(e)− Θ3
1(e)

∣∣
φ2=0

]
must be positive.

C Appendix: Additional figures and tables

C.1 Slice along σ

Figures 7-8 present the counterfactual correspondence. Figure 9 and Table 9 present the
surviving and eliminated equilibria, while Table 10 presents the impact of conduct restric-
tions.

C.2 Slice along X

Figures 10-11 present the counterfactual correspondence, Figure 12 and Table 11 present
the surviving and eliminated equilibria, while Table 12 presents the impact of conduct
restrictions.
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Figure 7: Counterfactual correspondence for Definitions 1–3 (upper, middle, and lower
panel). Equilibrium correspondence (expected long-run Herfindahl index), slice along σ ∈
[0, 3].

51



0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

σ

H
H

I∞

0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

σ

H
H

I∞

0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

σ

H
H

I∞

Figure 8: Counterfactual correspondence for Definitions 4–6 (upper, middle, and lower
panel). Equilibrium correspondence (expected long-run Herfindahl index), slice along σ ∈
[0, 3].
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Figure 9: Eliminated and surviving equilibria for Definitions 2 (upper panel) and 4 (lower
panel). Equilibrium correspondence (expected long-run Herfindahl index), slice along σ ∈
[0, 3].
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Figure 10: Counterfactual correspondence for Definitions 1–3 (upper, middle, and lower
panel). Equilibrium correspondence (expected long-run Herfindahl index), slice along X ∈
[−1.5, 7.5]. 54



−2 −1 0 1 2 3 4 5 6 7
0.5

0.6

0.7

0.8

0.9

1

X̄

H
H

I∞

 

 

Counterfactuals
Equilibria

−2 −1 0 1 2 3 4 5 6 7
0.5

0.6

0.7

0.8

0.9

1

X̄

H
H

I∞

 

 

Counterfactuals
Equilibria

−2 −1 0 1 2 3 4 5 6 7
0.5

0.6

0.7

0.8

0.9

1

X̄

H
H

I∞

 

 

Counterfactuals
Equilibria

Figure 11: Counterfactual correspondence for Definitions 4–6 (upper, middle, and lower
panel). Equilibrium correspondence (expected long-run Herfindahl index), slice along X ∈
[−1.5, 7.5]. 55
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Figure 12: Eliminated and surviving equilibria for Definitions 2 (upper panel) and 4 (lower
panel). Equilibrium correspondence (Expected long-run Herfindahl index), slice along X ∈
[−1.5, 7.5].
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definitions

metric 1 2 3 4 5 6

surv. 8% 8% 42% 39% 39% 94%
elim. 91% 92% 58% 61% 61% 0%

HHI∞ surv. 0.85 0.85 0.95 0.94 0.94 0.98
elim. 0.99 0.99 1.00 1.00 1.00 NaN

EP∞ surv. 7.68 7.68 8.36 8.32 8.32 8.56
elim. 8.67 8.67 8.74 8.75 8.75 NaN

CS∞ surv. 2.60 2.60 1.79 1.84 1.84 1.56
elim. 1.43 1.43 1.34 1.33 1.33 NaN

TS∞ surv. 6.55 6.55 6.31 6.31 6.31 6.26
elim. 6.24 6.24 6.23 6.24 6.24 NaN

CSNPV surv. 107.40 107.40 107.37 107.13 107.13 107.49
elim. 107.73 107.71 107.90 108.04 108.04 NaN

TSNPV surv. 114.71 114.71 113.26 113.09 113.09 113.08
elim. 113.10 113.09 113.19 113.32 113.32 NaN

Table 9: Industry structure, conduct, and performance for eliminated and surviving equi-
libria for various definitions of predatory incentives. Slice along σ ∈ [0.4, 1.1], uniformly
spaced grid over multiplicity area.
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Definitions

Measure 1 2 3 4 5 6

p∞ Up - - 10% 10% 10% -
Down 62% 62% 10% 10% 10% 5%

Avg= Same 38% 38% 81% 81% 81% 95%
7.2254 Avg. -1.5700 -1.3614 -0.1047 -0.1054 -0.1033 -0.0059

HHI∞ Up - - 5% - 5% -
Down 62% 62% 10% 10% 10% -

Avg= Same 38% 38% 86% 90% 86% 100%
0.75624 Avg. -0.2077 -0.1833 -0.0163 -0.0164 -0.0160 -0.0009

CS∞ Up 62% 62% 10% 10% 10% 5%
Down - - 10% 10% 10% -

Avg= Same 38% 38% 81% 81% 81% 95%
3.2744 Avg. +1.7449 +1.5194 +0.1209 +0.1217 +0.1193 +0.0068

TS∞ Up 62% 62% 10% 10% 10% -
Down - - 5% 5% 5% -

Avg= Same 38% 38% 86% 86% 86% 100%
6.8399 Avg. +0.5062 +0.4597 +0.0496 +0.0499 +0.0490 +0.0028

CSNPV Up - 14% - - 5% -
Down 100% 62% 48% 52% - 62%

Avg= Same - 24% 52% 48% 95% 38%
104.57 Avg. -48.1640 -3.0778 -0.9812 -0.9924 -0.0105 -1.2047

TSNPV Up - 48% 10% 10% 10% -
Down 100% - - - - -

Avg= Same - 52% 90% 90% 90% 100%
117.22 Avg. -10.7580 +2.2789 +0.3677 +0.3559 +0.3440 +0.0199

Table 10: Impact of conduct restriction for σ ∈ (0.3, 3).
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definitions

metric 1 2 3 4 5 6

surv. 14% 14% 82% 77% 91% 70%
elim. 86% 82% 18% 23% 9% 11%

HHI∞ surv. 0.55 0.55 0.71 0.73 0.71 0.78
elim. 0.76 0.77 0.82 0.76 0.95 0.81

EP∞ surv. 5.57 5.57 6.60 6.68 6.58 7.03
elim. 6.91 6.94 7.26 6.86 8.16 7.17

CS∞ surv. 5.07 5.07 3.88 3.79 3.91 3.39
elim. 3.53 3.50 3.13 3.58 2.09 3.22

TS∞ surv. 7.28 7.28 6.89 6.86 6.90 6.71
elim. 6.76 6.75 6.56 6.73 6.14 6.62

CSNPV surv. 106.73 106.73 104.98 104.85 105.01 104.35
elim. 104.44 104.39 103.71 104.42 102.14 103.24

TSNPV surv. 117.74 117.74 117.84 117.65 117.85 115.70
elim. 117.12 117.07 114.32 115.67 110.70 114.84

Table 11: Industry structure, conduct, and performance for eliminated and surviving equi-
libria for various definitions of predatory incentives. Slice along X ∈ [1, 6.5], uniformly
spaced grid over multiplicity area.
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Definitions

Measure 1 2 3 4 5 6

p∞ Up - - 15% 15% 10% 5%
Down 57% 57% 40% 45% 45% 10%

Avg= Same 43% 43% 45% 40% 45% 85%
6.4019 Avg. -0.9956 -0.9956 -0.0982 -0.0906 -0.0874 -0.0334

HHI∞ Up - - 5% 5% - 5%
Down 57% 57% 15% 15% 10% 10%

Avg= Same 43% 43% 80% 80% 90% 85%
0.67904 Avg. -0.1538 -0.1538 -0.0089 -0.0140 -0.0135 -0.0052

CS∞ Up 57% 57% 25% 45% 50% 10%
Down - - 15% 15% 10% 5%

Avg= Same 43% 43% 60% 40% 40% 85%
4.1214 Avg. +1.1452 +1.1452 +0.1023 +0.1041 +0.1005 +0.0385

TS∞ Up 57% 57% 25% 15% 10% 10%
Down - - 5% 5% - 5%

Avg= Same 43% 43% 70% 80% 90% 85%
7.0664 Avg. +0.3007 +0.3007 +0.0488 +0.0359 +0.0337 +0.0154

CSNPV Up - 14% - - 5% -
Down 100% 71% 55% 65% - 70%

Avg= Same - 14% 45% 35% 95% 30%
105.35 Avg. -46.3980 -3.9722 -1.2757 -1.6928 -0.0201 -1.8716

TSNPV Up - 36% 20% 5% 5% 5%
Down 100% 14% - 5% - 5%

Avg= Same - 50% 80% 90% 95% 90%
120.51 Avg. -13.6140 +0.0110 +0.5811 +0.1540 +0.1151 +0.0728

Table 12: Impact of conduct restriction for X ∈ (−2, 7.5).
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