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Core Deviation Minimizing Auctions�

Isa E. Hafaliryand Hadi Yektaşz

February 13, 2012

Abstract

We study dominant strategy implementable direct mechanisms that minimize the

expected surplus from core deviations. Using incentive compatibility conditions, we

formulate the core deviation miminimization problem as a calculus of variations prob-

lem and then numerically solve it for some particular cases.

JEL Classi�cations Codes: D44, C71

Keywords: Core, Auctions, Mechanism Design

1 Introduction

In an economic environment with complementarities, Vickrey-Clark-Groves (VCG) mecha-

nism may generate low revenues and therefore is vulnerable to collusion (of coalitions that

necessarily include the seller). Motivated by this observation, core-selecting auctions (CSA)

have been proposed as alternatives to VCG mechanism.1 In a complete information setting,

di¤erent forms of CSA have been considered and shown to have superior properties in terms

of revenue while ensuring noncollusive behavior.2

More recently, in a simple stylized environment with private information, Goeree and

Lien (2009) and Ausubel and Baranov (2010) analyze how VCG and CSA perform in terms

of revenue, e¢ ciency, and distance from core allocations. Their results demonstrate that

�We are grateful to Bilkent University for hosting us during the early stages of this research. We also thank
Gokhan Apaydin and Mohamad Maleki for discussions about numerical optimization and Ersin Korpeoglu
for excellent research assistantship.

yTepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, USA E-mail:
isaemin@cmu.edu

zDepartment of Economics, Zirve University, K¬z¬lhisar Kampüsü, Gaziantep 27260, Turkey E-mail: hyek-
tas@gmail.com.

1See Day and Raghavan (2007) and Day and Milgrom (2008).
2There is a small but growing literature on CSA. See, for instance, Day and Crampton (2008), Crampton

(2009), Baranov (2010), Erdil and Klemperer (2010), Lamy (2010) and Sano (2011).
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VCG and CSA cannot be generally ranked in terms of above measures, and their relative

performances depend on speci�cations of value distributions of the players. The stylized

model for CSA considers two goods, two local bidders, and a global bidder. In this model,

the global bidder views the two goods as perfect complements in the sense that he/she has

positive valuation for the bundle, but zero valuation for a single good. Local bidder i; on

the other hand, has positive value for object i and zero value for object j (fi; jg = f1; 2g).
In the same stylized model, we ask a mechanism design problem: Among dominant

strategy implementable direct mechanisms, which mechanism achieves an outcome that is

closest to the core? When answering this problem, we measure the distance from the core as

expected surplus from core deviations.3 Appealing to envelope theorem, we write the transfer

function in terms of the allocation function. We then apply some calculus operations and

write the mechanism design problem as a standard calculus of variations problem. We prove

that the optimal mechanism should �favor the global bidder� in the sense that if global

bidder�s value is greater than the sum of local bidders�values, then global bidder is always

awarded both items.

While an analytical closed-form solution to the calculus of variations problem turns out

to be di¢ cult to obtain, we numerically solve it for two interesting cases. If bidders�value

distributions are all uniform; interestingly, Vickrey auction turns out to be the optimal

mechanism. On the other hand, for another case, we show that the optimal mechanism

performs signi�cantly better as compared to the Vickrey auction.

2 Model

There are two goods, goods 1 and 2, that are to be allocated among two local buyers, buyers

1 and 2, and one global buyer, buyer 3. Local buyer i earns a positive value only from good

i and global buyer earns a positive value only if he obtains both goods. Local buyer i�s

value vi is distributed over [0; 1] according to a distribution function F and global buyer�s

value for the bundle v3 is distributed over [0; 2] according to a distribution function G: We

assume that distributions F and G are atomless, continuous and di¤erentiable.4 Also de�ne

v � (v1; v2; v3) : In this environment, we consider the set of dominant strategy incentive

compatible direct mechanisms that minimize the expected surplus from core deviations.

Note that a deviating group has to include the seller, therefore it is composed either of the

3Goeree and Lien (2009) already established that there exists no (Bayesian) incentive compatible direct
mechanism for which the value of the objective function is zero. We look for a second best, that is, given
incentive constraints, how close can a mechanism get to the core according to this measure?

4Ausubel and Baranov (2010) also considered the case in which local bidders�valuations may be correlated.
We do not analyze that speci�cation here.
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seller and the two local buyers or of the seller and the global buyer.

Using revelation principle, we focus on truthful direct mechanisms. A direct mechanism

hQ; T i is de�ned by an allocation rule Q and a payment rule T . Here, we focus on determin-
istic rules. Moreover, we consider monotonic rules in the sense that a bidder�s probability

of getting the item (or bundle) increases with his own value. Note that the seller would

not want to allocate only one object to the global buyer or both objects to one of the local

buyers. Therefore, we can write Q = (Ql; Qg) where Ql and Qg are probabilities of winning

for local buyers and global buyer, respectively. Of course, Ql +Qg = 1:

3 Surplus from core deviations

In this setting, the expected surplus from core deviations is given by

Z 1

0

Z 1

0

Z 2

0

 
(maxfv3 � T1 (v)� T2 (v) ; 0g)� I [Ql (v) = 1]
+ (maxfv1 + v2 � T3 (v) ; 0g)� I [Qg (v) = 1]

!
dG (v3) dF (v2) dF (v1) (1)

where I is the identity function.

Given the monotonicity assumption, we can analogously de�ne the allocation rule usingbr (v1; v2) such that
Ql (v) = 1 if and only if v3 < br (v1; v2) (2)

where br is an increasing function of its arguments. As a simplifying assumption, we further
suppose that br (v1; v2) = r (v1 + v2)
where r0 > 0; r (0) = 0 and r (2) = 2.5

Proposition 1 If br (v1; v2) = r (v1 + v2) ; then in a dominant strategy implementable mech-
anism, expected surplus from core deviations can be written as

min
r

Z 1

0

Z 1

0

Z r(v1+v2)

0

maxfv3 �maxfr�1 (v3)� v1; 0g �maxfr�1 (v3)� v2; 0g; 0gdG (v3) dF (v2) dF (v1)

+

Z 1

0

Z 1

0

Z 2

r(v1+v2)

maxfv1 + v2 � r (v1 + v2) ; 0gdG (v3) dF (v2) dF (v1) :

5This assumption is essential for the results we present in the remainder of the paper. Although it is
clearly a restricting assumption, it is at the same time quite reasonable. With this assumption, the allocation
rule treats local bidders symmetrically and compares the global bidder�s value to the sum of the local bidders�
values. Also, note that this assumption is satis�ed by the VCG mechanism.
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Proof. With the speci�cation of r (v1 + v2) ; objective function (1) can be rewritten asZ 1

0

Z 1

0

Z r(v1+v2)

0

maxfv3 � T1 (v)� T2 (v) ; 0gdG (v3) dF (v2) dF (v1)

+

Z 1

0

Z 1

0

Z 2

r(v1+v2)

maxfv1 + v2 � T3 (v) ; 0gdG (v3) dF (v2) dF (v1) (3)

and the incentive compatibility constraints are given by

Qi (vi; v�i) vi � Ti (vi; v�i) � Qi (v0i; v�i) vi � Ti (v0i; v�i) (4)

for all i 2 f1; 2; 3g; vi; v0i and v�i:
De�ne Ui (vi; v�i) = Qi (vi; v�i) vi�Ti (vi; v�i) : Then, by envelope theorem, the incentive

constraints (4) imply that

U 0i (vi; v�i) = Qi (vi; v�i)

and integrating both sides with respect to vi; we obtain

Ui (vi; v�i) = Ui (0; v�i) +

Z vi

0

Qi (t; v�i) dt

which further implies

Ti (vi; v�i) = Qi (vi; v�i) vi + Ti (0; v�i)�
Z vi

0

Qi (t; v�i) dt: (5)

Given r, we have

Qi (vi; v�i) =

(
1 if vi > maxfr�1 (v3)� vj; 0g
0 if vi < maxfr�1 (v3)� vj; 0g

(6)

for i; j = 1; 2 and j 6= i and

Q3 (v3; v1; v2) =

(
1 if v3 > r (v1 + v2)

0 if v3 < r (v1 + v2) :
(7)
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Substituting (6) and (7) into (5) yields

Ti (vi; v�i) =

8><>:
Ti (0; v�i) if vi < maxfr�1 (v3)� vj; 0g
vi + Ti (0; v�i)� (vi �maxfr�1 (v3)� vj; 0g)

= Ti (0; v�i) + maxfr�1 (v3)� vj; 0g
if vi > maxfr�1 (v3)� vj; 0g

(8)

T3 (v3; v1; v2) =

8><>:
T3 (0; v1; v2) if v3 < r (v1 + v2)

v3 + T3 (0; v1; v2)� (v3 � r (v1 + v2))
= T3 (0; v1; v2) + r (v1 + v2)

if v3 > r (v1 + v2)
(9)

where i; j = 1; 2 and j 6= i. Note that r�1 (v3)� vj could be greater than 1:
We can also argue that at the optimum, T3 (0; v1; v2) = T1 (0; v�1) = T2 (0; v�2) = 0:6

Then, we can summarize the problem as

O � min
r(�)

Z 1

0

Z 1

0

Z r(v1+v2)

0

max

( 
v3 �maxfr�1 (v3)� v1; 0g
�maxfr�1 (v3)� v2; 0g

!
; 0

)
dG (v3) dF (v2) dF (v1)

+

Z 1

0

Z 1

0

Z 2

r(v1+v2)

maxfv1 + v2 � r (v1 + v2) ; 0gdG (v3) dF (v2) dF (v1) : (10)

where r is a continuos and strictly increasing function de�ned over [0; 2] with r (0) = 0

and r (2) = 2:

This problem is equivalent to the original mechanism design problem of �nding optimal

dominant strategy implementable mechanism where the objective is to minimize the surplus

from core deviations. This is true due to standard mechanism design technique: by envelope

conditions, the incentive constraints are satis�ed and built in to objective function, and

by T3 (0; v1; v2) = T1 (0; v�1) = T2 (0; v�2) = 0, individual rationality conditions are also

satis�ed.

4 Calculus of variations problem

We now establish that the mechanism design problem can be expressed as a calculus of

variations problem.

Proposition 2 The core deviation minimization problem can be written as a calculus of

6Note that Ti (0; v�i) cannot be positive because otherwise individual rationality constraint of bidder
i with type 0 is violated: If, on the other hand, Ti (0; v�i) is strictly negative, then we can subtract that
number from the payments of bidder i, which will not change i�s incentive constraints, but decrease the value
of the objective function.
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variations problem.

Proof. First of all, by changing the orders of integrations, we can rewrite (10) as

Z 2

0

0BB@
R 1
maxfr�1(v3)�1;0g

R 1
maxfr�1(v3)�v1;0gmax

( 
v3 �maxfr�1 (v3)� v1; 0g
�maxfr�1 (v3)� v2; 0g

!
; 0

)
dF (v2) dF (v1)

+
R minfr�1(v3);1g
0

R minfr�1(v3)�v1;1g
0 maxf(v1 + v2 � r (v1 + v2)) ; 0gdF (v2) dF (v1)

1CCA dG (v3)

By changing the variable r�1 (v3) to v; we obtain

min
r

Z 2

0

0B@ R 1
maxfv�1;0g

R 1
maxfv�v1;0g

 
max

( 
r (v)�maxfv � v1; 0g
�maxfv � v2; 0g

!
; 0

)!
dF (v2) dF (v1)

+
R minfv;1g
0

R minfv�v1;1g
0 maxf(v1 + v2 � r (v1 + v2)) ; 0gdF (v2) dF (v1)

1CA g (r (v)) r0 (v) dv
(11)

In calculus of variations problems, the objective is to optimize an integral by choosing a

function, where the integrand involves the function and its derivative. Above minimization

is of this sort.

Moreover, it can be shown that the optimal mechanism should �favor the global bidder�

in the sense that r (v) � v:

Proposition 3 In the optimal mechanism, r (v) � v:

Proof. Suppose r (v) > v on some interval (c; d) ; then consider the function er which satis�eser (v) = v for v 2 (c; d) ; and er (v) = r (v) for v =2 (c; d) :We argue that er will achieve a smaller
value than r at the objective function. If v1+v2 2 (c; d) ; thenmaxf(v1 + v2 � r (v1 + v2)) ; 0g
is zero, and decreasing r in this interval up to r (v) = v; does not change the value of this term.

Moreover, decreasing r in this interval makes maxfr (v)�maxfv�v1; 0g�maxfv�v2; 0g; 0g
smaller. Hence this decrease has no cost, but only bene�t. Hence r has to satisfy r (v) � v
at the optimal solution.

Hence, we can write the objective function as

min
r

Z 2

0

0B@ R 1
maxfv�1;0g

R 1
maxfv�v1;0gmaxf

 
r (v)�maxfv � v1; 0g
�maxfv � v2; 0g

!
; 0gdF (v2) dF (v1)

+
R minfv;1g
0

R minfv�v1;1g
0

(v1 + v2 � r (v1 + v2))dF (v2) dF (v1)

1CA g (r (v)) r0 (v) dv

6



subject to

r (0) = 0

r (2) = 2

r0 (v) > 0

r (v) � v

We now show that one can eliminate the integrals in the integrands of Equation (11).

Proposition 4 The core deviation minimization problem can be written as a standard cal-

culus of variations problem of the formZ 2

0

A (r (v) ; r0 (v) ; v) dv

Proof. DenoteZ 2

0

 Z minfv;1g

0

Z minfv�v1;1g

0

(v1 + v2 � r (v1 + v2))dF (v2) dF (v1)
!
g (r (v)) r0 (v) dv

by O1 and

Z 2

0

 Z 1

maxfv�1;0g

Z 1

maxfv�v1;0g
maxfr (v)�maxfv � v1; 0g �maxfv � v2; 0g; 0gdF (v2) dF (v1)

!
g (r (v)) r0 (v) dv

by O2:

Denote the expectation of F by L;

L (v) =

Z v

0

v0f (v0) dv0: (12)

Moreover, denote v1 + v2 by t and the distribution of t by H: That is

H (t) =

Z minft;1g

0

Z minft�v1;1g

0

dF (v2) dF (v1) : (13)

Also denote its density by h; h (t) = H 0 (t) ; and expectation by K;

K (t) =

Z t

0

t0h (t0) dt0: (14)
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Lastly, denote v1 + v2 conditional on v1; v2 < v by tv and its distribution by Hv: That is,

Hv (tv) =

Z minftv ;vg

0

Z minft�v1;vg

0

dF (v2) dF (v1) (15)

Also denote its density by hv; hv (t) = d
dt
Hv (t) ; and expectation by Kv;

Kv (t) =

Z t

0

t0hv (t
0) dt0: (16)

Then, we can write

O1 =

Z 2

0

�Z v

0

(t� r (t))dH (t)
�
g (r (v)) r0 (v) dv

=

Z 2

0

�
K (v)�

Z v

0

r (t)h (t) dt

�
g (r (v)) r0 (v) dv

=

Z 2

0

K (v) g (r (v)) r0 (v) dv �
Z 2

0

�Z v

0

r (t)h (t) dt

�
dG (r (v))

=

Z 2

0

K (v) g (r (v)) r0 (v) dv �
Z 2

0

�Z 2

t

dG (r (v))

�
r (t)h (t) dt

=

Z 2

0

K (v) g (r (v)) r0 (v) dv �
Z 2

0

(1�G (r (t))) r (t)h (t) dt

=

Z 2

0

(K (v) g (r (v)) r0 (v)� (1�G (r (v))) r (v)h (v)) dv

where, to achieve fourth line, we change order of integration.

On the other hand,

O2 =

Z 1

0

�Z 1

v

Z 1

v

r (v) dF (v2) dF (v1)

�
g (r (v)) r0 (v) dv

+

Z 1

0

�Z 1

v

Z v

0

maxfr (v)� v + v2; 0gdF (v2) dF (v1)
�
g (r (v)) r0 (v) dv

+

Z 1

0

�Z v

0

Z 1

v

maxfr (v)� v + v1; 0gdF (v2) dF (v1)
�
g (r (v)) r0 (v) dv

+

Z 1

0

�Z v

0

Z v

v�v1
maxfr (v)� 2v + v1 + v2; 0gdF (v2) dF (v1)

�
g (r (v)) r0 (v) dv

+

Z 2

1

�Z 1

v�1

Z 1

v�v1
maxfr (v)� 2v + v1 + v2; 0gdF (v2) dF (v1)

�
g (r (v)) r0 (v) dv

8



Let us denote the �rst, second, third, fourth and �fth summands by O2;1; O2;2; O2;3; O2;4
and O2;5 respectively.

We can write

O2;1 =

Z 1

0

r (v) (1� F (v))2 g (r (v)) r0 (v) dv

and

O2;2 =

Z 1

0

�Z 1

v

Z v

v�r(v)
(r (v)� v + v2) dF (v2) dF (v1)

�
g (r (v)) r0 (v) dv

=

Z 1

0

�Z 1

v

((r (v)� v) (F (v)� F (v � r (v))) + L (v)� L (v � r (v))) dF (v1)
�
g (r (v)) r0 (v) dv

=

Z 1

0

((r (v)� v) (F (v)� F (v � r (v))) + L (v)� L (v � r (v))) (1� F (v)) g (r (v)) r0 (v) dv

and

O2;3 =

Z 1

0

�Z v

0

maxfr (v)� v + v1; 0g (1� F (v)) dF (v1)
�
g (r (v)) r0 (v) dv

=

Z 1

0

�Z v

v�r(v)
(r (v)� v + v1) dF (v1)

�
(1� F (v)) g (r (v)) r0 (v) dv

=

Z 1

0

((r (v)� v) (F (v)� F (v � r (v))) + L (v)� L (v � r (v))) (1� F (v)) g (r (v)) r0 (v) dv

= O2;2

and

O2;4 =

Z 1

0

�Z 2v

v

maxfr (v)� 2v + tv; 0gdHv (tv)
�
g (r (v)) r0 (v) dv

=

Z 1

0

�Z 2v

2v�r(v)
(r (v)� 2v + tv) dHv (tv)

�
g (r (v)) r0 (v) dv

=

Z 1

0

((r (v)� 2v) (Hv (2v)�Hv (2v � r (v))) +Kv (2v)�Kv (2v � r (v))) g (r (v)) r0 (v) dv

9



and lastly,

O2;5 =

Z 2

1

�Z 2

v

maxfr (v)� 2v + t; 0gdH (t)
�
g (r (v)) r0 (v) dv

=

Z 2

1

�Z 2

2v�r(v)
(r (v)� 2v + t) dH (t)

�
g (r (v)) r0 (v) dv

=

Z 2

1

((r (v)� 2v) (1�H (2v � r (v))) +K (2)�K (2v � r (v))) g (r (v)) r0 (v) dv

Adding all the terms up, we obtain

O =

Z 1

0

(K (v) g (r (v)) r0 (v)� (1�G (r (v))) r (v)h (v)) dv (17)

+

Z 1

0

r (v) (1� F (v))2 g (r (v)) r0 (v) dv

+

Z 1

0

2 ((r (v)� v) (F (v)� F (v � r (v))) + L (v)� L (v � r (v))) (1� F (v)) g (r (v)) r0 (v) dv

+

Z 1

0

((r (v)� 2v) (Hv (2v)�Hv (2v � r (v))) +Kv (2v)�Kv (2v � r (v))) g (r (v)) r0 (v) dv

+

Z 2

1

(K (v) g (r (v)) r0 (v)� (1�G (r (v))) r (v)h (v)) dv

+

Z 2

1

((r (v)� 2v) (1�H (2v � r (v))) +K (2)�K (2v � r (v))) g (r (v)) r0 (v) dv

This problem is now of the formZ 2

0

A (r (v) ; r0 (v) ; v) dv

In the following two subsections, we numerically solve above calculus of variations prob-

lem for two pairs of distribution functions that have been considered in Ausubel and Baranov

(2010). We solve a discrete version of the problem using the Newton-Cotes formulas to eval-

uate integrals numerically. We divide the interval of integration to n pieces, and convert r(v)

function to a vector of n+1 elements (this corresponds to n+1 decision variables). We use

the following approximation formulaZ b

a

f (x) dx �
Xn

i=0
f

�
a+ i

b� a
n

�
b� a
n

10



to evaluate the integrals in the objective function. We then use MATLAB�s fmincon function

to optimize the provided objective function.

4.1 Uniform case

Suppose now that both F and G are uniform: F (v) = v; G (v) = v
2
. By using the formulas

(12), (13), (14), (15), and (16), we obtain

L (v) = v2

2
; H (t) =

(
t2

2
if t 2 [0; 1]

2t� 1� t2

2
if t 2 [1; 2]

;

K (t) =

(
t3

3
if t 2 [0; 1]

t2 � t3

3
� 1

3
if t 2 [1; 2]

; h (t) =

(
t if t 2 [0; 1]
2� t if t 2 [1; 2]

:

Moreover, for v 2 [0; 1] ;

Hv (t) =

(
v2

2
if t 2 [0; v]

2vt� v2 � t2

2
if t 2 [v; 2v]

; hv (t) =

(
v if t 2 [0; v]
2v � t if t 2 [v; 2v]

;

Kv (t) =

(
t3

3
if t 2 [0; v]

vt2 � t3

3
� v3

3
if t 2 [v; 2v]

:

After substituting above functions in (17), we solve the numerical calculus of variations

problem. Interestingly, the numeric solution for this case (which is the case that Goeree and

Lien (2009) analyzed) is virtually the Vickrey Auction with r (v) = v :

Figure 1: Optimal r for uniform case.

Optimized value is 0:1262:

11



4.2 Power case

Suppose now that both G is uniform, but we have F (v) = v2: Again, by using the formulas

(12), (13), (14), (15), and (16) we obtain

L (v) = 2
3
v3; H (t) =

(
1
6
t4 if t 2 [0; 1]
1� 8

3
t+ 2t2 � 1

6
t4 if t 2 [1; 2]

;

K (t) =

(
2
15
t5 if t 2 [0; 1]

� 2
15
t5 + 4

3
t3 � 4

3
t2 + 4

15
if t 2 [1; 2]

; h (t) =

(
2
3
t3 if t 2 [0; 1]
�8
3
+ 4t� 2

3
t3 if t 2 [1; 2]

:

Moreover, for v 2 [0; 1] ;

Hv (t) =

(
1
6
t4 if t 2 [0; v]
v4 � 8

3
tv3 + 2t2v2 � 1

6
t4 if t 2 [v; 2v]

; hv (t) =

(
2
3
t3 if t 2 [0; v]
�8
3
v3 + 4tv2 � 2

3
t3 if t 2 [v; 2v]

;

Kv (t) =

(
2
15
t5 if t 2 [0; v]

� 2
15
t5 + 4

3
t3v2 � 4

3
t2v3 + 4

3
v3 � 4

3
v2 + 4

15
if t 2 [v; 2v]

:

After substituting above functions in (17), we solve the numerical calculus of variations

problem. For this case, the optimal r (v) is given by the below graph:

Figure 2: Optimal r for F (v) = v2; G (v) = v
2

with optimized value 0:1754: For this case objective function value for Vickrey auction,

r (v) = v is only 0:2777. Hence, the optimal solution as compared to Vickrey auction

improves the objective approximately by 37%:
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5 Conclusion and Discussion

In a stylized model with complementarities, we ask how close can we get to the core among

the strategy proof mechanisms. If the allocation function of the mechanism compares the

sum of local bidders�values and global bidder�s value, it turns out that this problem can be

reduced to a calculus of variations problem which can be solved at least numerically. We

consider two speci�c examples. When both F and G are uniform, it turns out that Vickrey

auction is the core deviation minimizing auction, whereas if we consider F (v) = v2 and

G (v) = v
2
; the optimal solution improves the objective by approximately 37% as compared

to Vickrey auction.

Although we worked on the stylized model, core deviation minimizing auction problem

can be de�ned for more general settings. Consider an auctioneer who has k di¤erent items

to sell and n bidders (f1; :::; ng = N) who have combinatorial valuations over these items.
More speci�cally, for a vector q =

�
q1; :::; qk

�
2 f0; 1gk; let vi (q) represent the value of player

i when he/she wins the set of items as de�ned by q (that is, when she is awarded item j�s

with qj = 1.) Consider a deterministic direct mechanism, which as a function of announced

valuations, allocates qi to bidder i; and charges him/her ti: Let us consider a deviation by

the seller and subsetM of agents. Denote the aggregate value generated by the most e¢ cient

allocation of k items among bidders in M by V dM . That is

V dM = max
X

i2M
vi (eqi)

subject to
X

i2M
eqi = I

where I is the unit vector. Moreover, denote the sum of utilities of the seller and the players

in set M given by the mechanism by VM : That is,

VM =
X

i2N
ti +

X
i2M

(vi (qi)� ti)

The surplus from a core deviation that involves the seller and subset M of agents is then

given by

V sM � maxf0; V dM � VMg

Thus, the highest surplus from any deviations is given by

max
M�N

V sM :

13



Hence, for the general case, the core deviation minimizing auction minimizes the expected

value of maxM�N V
s
M subject to the standard dominant strategy incentive compatibility and

individual rationality constraints.
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