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Intersection Cuts with Infinite Split Rank

Amitabh Basu1,2, Gérard Cornuéjols1,3,4

François Margot1,5

April 2010; revised April 2011; revised October 2011

Abstract

We consider mixed integer linear programs where free integer variables are expressed
in terms of nonnegative continuous variables. When this model only has two integer
variables, Dey and Louveaux characterized the intersection cuts that have infinite split
rank. We show that, for any number of integer variables, the split rank of an intersection
cut generated from a rational lattice-free polytope L is finite if and only if the integer
points on the boundary of L satisfy a certain “2-hyperplane property”. The Dey-Louveaux
characterization is a consequence of this more general result.

1 Introduction

In this paper, we consider mixed integer linear programs with equality constraints expressing
m ≥ 1 free integer variables in terms of k ≥ 1 nonnegative continuous variables.

x = f +
k

∑

j=1

rjsj

x ∈ Zm

s ∈ Rk
+.

(1)

The convex hull R of the solutions to (1) is a corner polyhedron [11, 12]. In the remainder
we assume f ∈ Qm \ Zm, and rj ∈ Qm \ {0}. Hence (x, s) = (f, 0) is not a solution of (1).
To avoid discussing trivial cases, we assume that R 6= ∅, and this implies that dim(R) = k.
The facets of R are the nonnegativity constraints s ≥ 0 and intersection cuts [2], namely
inequalities

k
∑

j=1

ψ(rj)sj ≥ 1 (2)
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obtained from lattice-free convex sets L ⊂ Rm containing f in their interior, where ψ denotes
the gauge of L− f [4]. By lattice-free convex set, we mean a convex set with no point of Zm

in its interior. By gauge of a convex set L containing the origin in its interior, we mean the
function γL(r) = inf{t > 0 | r

t
∈ L}. Intersection cut (2) for a given convex set L is called

L-cut for short.
When m = 2, Andersen, Louveaux, Weismantel and Wolsey [1] showed that the only

intersection cuts needed arise from splits [6], triangles and quadrilaterals in the plane and a
complete characterization of the facet-defining inequalities was obtained in Cornuéjols and
Margot [7]. More generally, Borozan and Cornuéjols [4] showed that the only intersection
cuts needed in (1) arise from full-dimensional maximal lattice-free convex sets L. Lovász [13]
showed that these sets are polyhedra with at most 2m facets and that they are cylinders, i.e.,
their recession cone is a linear space. These cylinders L ⊂ Rm can be written in the form
L = Q + V where Q is a polytope of dimension at least one and V is a linear space such
that dim(Q) + dim(V ) = m. We say that L is a cylinder over Q. A split in Rm is a maximal
lattice-free cylinder over a line segment.

Let L ⊂ Rm be a polytope containing f in its interior. For j = 1, . . . , k, let the boundary
point for the ray rj be the intersection of the half-line {f + λrj | λ ≥ 0} with the boundary
of L. We say that L has rays going into its corners if each vertex of L is the boundary point
for at least one of the rays rj , j = 1, . . . , k.

The notions of split closure and split rank were introduced by Cook, Kannan and Schrijver
[6] (precise definitions are in Section 2). They gave an example of (1) with m = 2 and k = 3
that has an infinite split rank. Specifically, there is a facet-defining inequality for R that
cannot be deduced from a finite recursive application of the split closure operation. This
inequality is an intersection cut generated from a maximal lattice-free triangle L with integer
vertices and rays going into its corners. That triangle has vertices (0, 0), (2, 0) and (0, 2)
and has six integer points on its boundary. It is a triangle of Type 1 according to Dey and
Wolsey [9]. Dey and Louveaux [8] showed that, when m = 2, an intersection cut has an
infinite split rank if and only if it is generated from a Type 1 triangle with rays going into
its corners. In this paper we prove a more general theorem, whose statement relies on the
following definitions.

A set S of points in Rm is 2-partitionable if either |S| ≤ 1 or there exists a partition of S
into nonempty sets S1 and S2 and a split such that the points in S1 are on one of its boundary
hyperplanes and the points in S2 are on the other. We say that a polytope is 2-partitionable
if its integer points are 2-partitionable.

Let L be a rational lattice-free polytope in Rm and let LI be the convex hull of the
integer points in L. We say that L has the 2-hyperplane property if every face of LI that is
not contained in a facet of L is 2-partitionable. Note that one of the faces of LI is LI itself
and thus if L has the 2-hyperplane property and LI is not contained in a facet of L, then
there exists a split containing all the integer points of L on its boundary hyperplanes, with
at least one integer point of L on each of the hyperplanes.

We illustrate the 2-hyperplane property by giving an example in R3. Consider the tetra-
hedron L ⊆ R3 given in Figure 1. We will show that L has the 2-hyperplane property. Let
T0 be the shaded triangle with corners (0, 0, 0), (2, 0, 0), and (0, 2, 0) and let T1 be the shaded
triangle with corners (0, 0, 1), (1, 0, 1), and (0, 1, 1). For any point q ∈ R3 with 1 < q3 ≤ 2,
let L(q) be the tetrahedron obtained as the intersection of the half-space x3 ≥ 0 with the
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Figure 1: Illustration of the 2-hyperplane property.

cone with apex q and three extreme rays joining it to the corners of T1. Observe that for
t = (0, 0, 2), the vertices of L(t) are t and the corners of T0. The tetrahedron L depicted in
Figure 1 is L(p) for p = (0.25, 0.25, 1.5). As p is in L(t), and the intersection of L(p) with the
plane x3 = 1 is the triangle T1, it follows that the intersection of L(p) with the plane x3 = 0
contains T0. To check whether L has the 2-hyperplane property or not, we need to check if
some of the faces of the convex hull LI of the integer points in L are 2-partitionable or not.
Note that LI is the convex hull of T1 and T0 and that a face of LI that is not contained in
a facet of L is either the triangle T1 (which is 2-partitionable, using for example the split
with boundary hyperplanes x1 = 0 and x1 = 1) or it contains an integer point in the plane
x3 = 1 and an integer point in the plane x3 = 0 (and thus is 2-partitionable using these two
planes as boundary for the split). As a result, L has the 2-hyperplane property. We now give
an example of a polytope L′ that does not have the 2-hyperplane property. Define L′(q) as
L(q) above, except that we change the half-space x3 ≥ 0 to x3 ≥ −1

2 . Let L′ be obtained by
truncating L′(t) by x3 ≤ 3

2 , where t = (0, 0, 2) as earlier. Then L′
I is again the convex hull

of T1 and T0. However T0 is a face of L′
I not contained in a facet of L′. Furthermore, T0 is

not 2-partitionable because it is not possible to find a split and a partition of the six integer
points of T0 into two nonempty sets S1, S2 with the property that S1 lies on one boundary
of the split and S2 on the other. Therefore L′ does not have the 2-hyperplane property.

The main result of this paper is the following theorem.

Theorem 1.1. Let L be a rational lattice-free polytope in Rm containing f in its interior
and having rays going into its corners. The L-cut has finite split rank if and only if L has
the 2-hyperplane property.

Given a polytope L ⊂ Rm containing f in its interior, let LB be the convex hull of the
boundary points for the rays r1, . . . , rk. We assume here that nonnegative combinations of
the rays rj in (1) span Rm. This implies that f is in the interior of LB and that LB has rays
going into its corners. Moreover, the L-cut and LB-cut are identical. Therefore the previous
theorem implies the following.

Corollary 1.2. Assume that nonnegative combinations of the rays rj in (1) span Rm. Let
L be a rational lattice-free polytope in Rm containing f in its interior. The L-cut has finite
split rank if and only if LB has the 2-hyperplane property.

This corollary is a direct generalization of the characterization of Dey and Louveaux for
m = 2, as triangles of Type 1 do not have the 2-hyperplane property whereas all other
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lattice-free polytopes in the plane do, as one can check using Lovász’ [13] characterization of
maximal lattice-free convex sets in the plane.

The paper is organized as follows. In Section 2, we give a precise definition of split
inequalities and split rank, as well as useful related results. In Section 3 we give an equivalent
formulation of (1) that proves convenient to compute the split rank of L-cuts. We prove one
direction of Theorem 1.1 in Section 4 and we prove the other direction in Section 5.

2 Split inequalities and split closure

Consider a mixed integer set X = {(x, y) |Ax + By ≥ b, x ∈ Zp, y ∈ Rq}, where A and
B are respectively m × p and m × q rational matrices, and b ∈ Qm. Let Q = {(x, y) ∈
Rp+q |Ax + By ≥ b} be its linear relaxation.

Let π ∈ Zp and π0 ∈ Z. Note that all points in X satisfy the split disjunction induced by
(π, π0), i.e.,

πx ≤ π0 or πx ≥ π0 + 1 .

The hyperplanes in Rp+q defined by πx = π0 and πx = π0 + 1 are the boundary hyperplanes
of the split. Conversely, two parallel hyperplanes H1 and H2 with rational equations, both
containing points (x, y) with x integer and such that no points (x, y) with x integer are be-
tween them, define a valid split (π, π0). Indeed, only x variables can have nonzero coefficients
in the equation of the planes and we can assume that they are relatively prime integers. An
application of Bézout’s Theorem [15] shows that if, for i = 1, 2, the equation of the hyperplane
H i is given as πx = hi, then |h1 − h2| = 1. Define

Q
≤

= Q ∩ {(x, y) ∈ Rp+q | πx ≤ π0} , Q
≥

= Q ∩ {(x, y) ∈ Rp+q | πx ≥ π0 + 1}

Q(π, π0) = conv(Q
≤

∪ Q
≥

) .

As X ⊆ Q
≤

∪ Q
≥
, any inequality that is valid for Q(π, π0) is valid for conv(X). The facets

of Q(π, π0) that are not valid for Q are split inequalities obtained from the split (π, π0). As
shown in [6], the intersection of all Q(π, π0) for all possible splits (π, π0) yields a polyhedron
called the split closure of Q. Let the rank-0 split closure of Q be Q itself. For t = 1, 2, 3, . . .,
the rank-t split closure of Q is obtained by taking the split closure of the rank-(t − 1) split
closure of Q.

Note that since Q(π, π0) is the convex hull of Q
≤

with Q
≥
, any point (x̄, ȳ) in Q(π, π0) is

a (possibly trivial) convex combination of a point p1 ∈ Q
≤

and a point p2 ∈ Q
≥

. Moreover,

if (x̄, ȳ) is neither in Q
≤

nor in Q
≥
, then the segment p1p2 intersects H i in qi for i = 1, 2.

By convexity of Q, we have that q1 ∈ Q ∩ H1 = Q
≤

∩ H1 and q2 ∈ Q ∩ H2 = Q
≥

∩ H2. In
summary, we have the following.

Observation 2.1. (i) If (x̄, ȳ) ∈ Q
≤

or (x̄, ȳ) ∈ Q
≥

, then (x̄, ȳ) ∈ Q and (x̄, ȳ) ∈ Q(π, π0);

(ii) If (x̄, ȳ) ∈ Q(π, π0) \ (Q
≤
∪ Q

≥
), then (x̄, ȳ) is a convex combination of (x1, y1) ∈

Q ∩ H1 = Q
≤

∩ H1 and (x2, y2) ∈ Q ∩ H2 = Q≥ ∩ H2.
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Let ax + by ≥ a0 be a valid inequality for conv(X) and let t be the smallest nonnegative
integer such that the inequality is valid for the rank-t split closure of a polyhedron K ⊇ X
or +∞ if no such integer exists. The value t is the split rank of the inequality with respect to
K. It is known that valid inequalities for conv(X) may have infinite split rank with respect
to K [6].

The following lemma gives three useful properties of split ranks of inequalities.

Lemma 2.2. Let Q be the linear relaxation of X = {(x, y) |Ax + By ≥ b, x ∈ Zp, y ∈ Rq}.

(i) Let X ⊆ Q1 ⊆ Q. The split rank with respect to Q1 of a valid inequality for conv(X) is
at most its split rank with respect to Q;

(ii) Let y′ be a subset of the y variables and let Q(x, y′) be the orthogonal projection of Q
onto the variables (x, y′). Consider a valid inequality I for conv(X) whose coefficients
for the y variables not in y′ are all 0. The split rank of inequality I with respect to
Q(x, y′) is identical to its split rank with respect to Q.

(iii) Assume that all points in Q satisfy an equality. Adding any multiple of this equality
to a valid inequality for conv(X) does not change the split rank of the inequality with
respect to Q.

Proof. (i) Let (π, π0) be a split on the x variables. We have

Q
≤

1 ⊆ Q
≤

, and Q
≥

1 ⊆ Q
≥

.

It follows that the split closure of Q1 is contained in the split closure of Q and that, for each
t = 0, 1, 2, . . ., the rank-t split closure of Q1 is contained in the rank-t split closure of Q.

(ii) Let proj be the operation of projecting orthogonally onto the variables (x, y′). It
follows from the definitions of projection and convex hull that the operations of taking the
projection and taking the convex hull commute. Therefore we have, for any split (π, π0) on
the x variables,

proj
(

conv(Q
≤

∪ Q
≥

)
)

= conv
(

proj(Q
≤

) ∪ proj(Q
≥

)
)

= conv
(

Q(x, y′)
≤

∪ Q(x, y′)
≥
)

,

with the validity of the last equality coming from the fact that none of the variables involved
in the disjunction are projected out. Hence, for all t = 0, 1, 2, . . ., the projection proj of the
rank-t split closure of Q is equal to the rank-t split closure of Q(x, y′). The result then follows
from the fact that inequality I is valid for a polyhedron Q′ in the (x, y)-space if and only if
it is valid for proj(Q′).

(iii) For any t = 0, 1, 2, . . ., all points in the rank-t split closure of Q satisfy the equality.
An inequality is valid for the rank-t split closure of Q if and only if the inequality obtained
by adding to it any multiple of the equality is.

Let Qx ⊆ Rp be a polyhedron where Rp is the space of integer variables of the mixed
integer set X. Assume that Qx is rational and full-dimensional. For each facet F of Qx there
exists a split (π(F ), π0(F )) with boundary hyperplanes H1 and H2 parallel to F , with F
between H1 and H2 and with some points in Qx strictly between F and H2. (Note that, if
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the hyperplane supporting F contains an integer point, then H1 supports F .) Let the width
of the split (π(F ), π0(F )) be the Euclidean distance between F and H2.

As earlier, let Q = {(x, y) ∈ Rp+q |Ax + By ≥ b}. Performing a round of splits around
Qx on Q means generating the intersection Q′ of Q(π(F ), π0(F )) for all facets F of Qx. Note
that if Q contains the rank-t split closure of an arbitrary polytope Q∗, then Q′ contains
the rank-(t + 1) split closure of Q∗. Define the width of a round of splits around Qx as the
minimum of the width of the splits (π(F ), π0(F )) for all facets F of Qx.

3 Changing space to compute the split rank

In the remainder of this paper, we will use P to denote the linear relaxation of (1). Given
a lattice-free polytope L ⊆ Rm containing f in its interior, our goal is to compute the split
rank of the L-cut with respect to P . We show that this rank can be computed in another
space that we find convenient.

Let PL(x, s, z) be the polyhedron obtained from P by adding one equation corresponding
to the L-cut (2) with a free continuous variable z representing the difference between its left
and right-hand sides:

x = f +
k

∑

j=1

rjsj

z = 1 −
k

∑

j=1

ψ(rj)sj

x ∈ Rm

s ∈ Rk
+

z ∈ R .

(3)

Clearly, P is the orthogonal projection of PL(x, s, z) onto the (x, s)-space. By Lemma 2.2
(ii), the split rank of (2) with respect to P or PL(x, s, z) are identical. Let PL(x, z) be the
orthogonal projection of PL(x, s, z) onto the (x, z)-space. By Lemma 2.2 (iii), inequalities
(2) and z ≤ 0 have the same split rank with respect to PL(x, s, z). By Lemma 2.2 (ii), the
split rank of the inequality z ≤ 0 for PL(x, s, z) and PL(x, z) are identical. We thus have the
following:

Observation 3.1. Let L ⊆ Rm be a lattice-free polytope containing f in its interior and let
P be the linear relaxation of (1). The split rank of the L-cut (2) with respect to P is equal
to the split rank of the inequality z ≤ 0 with respect to PL(x, z).

Let 0k ∈ Rk be the zero vector and let ej ∈ Rk be the unit vector in direction j. Ob-
serve that PL(x, s, z) is a cone with apex (f, 0k, 1) and extreme rays {(rj , ej , −ψ(rj)) | j =
1, 2, . . . , k}. As (f, 1) is a vertex of PL(x, z), the latter is also a pointed cone. Its apex is
(f, 1) and its extreme rays are among {(rj ,−ψ(rj)) | j = 1, 2, . . . , k}. Note also that if we
embed L in the hyperplane z = 0, then, for all j = 1, 2, . . . , k, the point pj = f + 1

ψ(rj)
rj is

on the boundary of L. The intersection of PL(x, z) with the hyperplane z = 0 is the convex
hull of the points pj for j = 1, . . . , k.

Consider the pointed cone PL with apex (f, 1) and extreme rays joining f to the vertices
of L embedded in the hyperplane z = 0 (Figure 2). Note that PL(x, z) and PL have the
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same apex and that all the extreme rays of PL(x, z) are convex combinations of those of PL.
Thus, PL(x, z) ⊆ PL and PL(x, z) = PL if and only if L has rays going into its corners.

x1

x2

z = 0

z = 1

(f, 0)

(f, 1)

Figure 2: Illustration for the relation between PL, PL(x, z) and L. Polytope L (shaded) is
embedded in the plane z = 0 and contains (f, 0); cone PL has apex (f, 1) and extreme rays
joining (f, 1) to the corners of L; cone PL(x, z) (not drawn) has apex (f, 1) and extreme rays
joining (f, 1) to points on the boundary of L.

Let H be a polyhedron in the (x, z)-space. For any x̄ ∈ Rm, define the height of x̄ with
respect to H as max{z̄ | (x̄, z̄) ∈ H}, with the convention that this number may be +∞ if
{(x̄, z) ∈ H} is unbounded in the direction of the z-unit vector or −∞ if the maximum is
taken over an empty set. Define the height of H as the maximum height of x̄ ∈ Rm in H.
Observe that if the height of H is < +∞ then the height with respect to H is a concave
function over Rm. Note that the split rank of the inequality z ≤ 0 with respect to H is at
most t if and only if the rank-t split closure of H has height at most zero.

By Lemma 2.2 (i), the split rank of z ≤ 0 with respect to PL(x, z) is at most its split
rank with respect to PL. With the help of Observation 3.1, we get:

Observation 3.2. Let L ⊆ Rm be a lattice-free polytope containing f in its interior. If the
rank-t split closure of PL has height at most zero, then the split rank of the L-cut (2) with
respect to P is at most t. Conversely, if L has rays going into its corners and the split rank
of the L-cut with respect to P is at most t, then the rank-t split closure of PL has height at
most zero.

4 Proof of necessity

In this section, we prove the “only if” part of Theorem 1.1. For a polyhedron Q, we denote
by int(Q) (resp. relint(Q)) the interior (resp. relative interior) of Q.

Theorem 4.1. Let L be a rational lattice-free polytope in Rm containing f in its interior
and having rays going into its corners. If the L-cut has finite split rank with respect to P ,
then every face of LI that is not contained in a facet of L is 2-partitionable.

Proof. Assume that the L-cut has split rank k for some finite k. By Observation 3.2, the
height of the rank-k split closure of PL is at most zero. By a theorem of Cook, Kannan and
Schrijver [6], the split closure of a polyhedron is a polyhedron. Therefore there exists a finite
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number t of splits (π1, π1
0), . . . , (π

t, πt
0) such that applying these splits to PL in that order

reduces its height to zero or less. Let Q0 := PL and Qj := Qj−1(πj , πj
0) for j = 1, 2, . . . , t.

Suppose for a contradiction that there exists a face F of LI that is not 2-partitionable
and F not contained in a facet of L. As F is not 2-partitionable, it must contain at least two
integer points and thus relint(F ) 6= ∅. We claim that any point x̄ ∈ relint(F ) has positive
height with respect to Qj for j = 0, 1, . . . , t, a contradiction.

We prove the claim by induction on j. For j = 0, the result follows from the fact that
x̄ ∈ int(L) and every point in int(L) has a positive height with respect to PL. Indeed, any
point x̄ ∈ int(L) can be written as x̄ = λf + (1 − λ)x∗ where x∗ is a point on the boundary
of L with 0 < λ ≤ 1. By convexity of PL, the height of x̄ with respect to PL is at least
λ · 1 + (1 − λ) · 0 > 0, as the height of f (resp. x∗) with respect to PL is 1 (resp. 0).

Suppose now that j > 0 and that the claim is true for j − 1. If F is contained in
one of the boundary hyperplanes of (πj , πj

0) then F is contained in Qj−1≤ or Qj−1≥ and
Observation 2.1 (i) shows that the height of any x̄ ∈ relint(F ) with respect to Qj and Qj−1

is identical, proving the claim for j. Otherwise, as F is not 2-partitionable, there exists an
integer point p̄ of F that is not on the boundary hyperplanes of (πj , πj

0). Since p̄ is integer,
it is strictly on one of the two sides of the split disjunction implying that there exists a point
x∗ ∈ relint(F ) that is also strictly on one of the two sides of the split disjunction. The height
of x∗ with respect to Qj and Qj−1 is identical and positive by induction hypothesis. All points
on the relative boundary of F have non-negative height with respect to Qj as they are convex
combinations of vertices of F that have height zero, and the height is a concave function. As
any point x̄ ∈ relint(F ) is a convex combination of x∗ and a point on the boundary of F with
a positive coefficient for x∗, the height of x̄ with respect to Qj is positive. This proves the
claim.

5 Proof of sufficiency

Recall that P denotes the linear relaxation of (1). In this section, we prove the following
theorem.

Theorem 5.1. Let L be a rational lattice-free polytope in Rm containing f in its interior. If
L has the 2-hyperplane property, then the L-cut has finite split rank with respect to P .

Before giving the details of the proof, we present the main ideas. The first one is pre-
sented in Section 5.1, where we prove that Theorem 5.1 holds when there is a sequence of
“intersecting splits” followed by an “englobing split”. These notions are defined as follows.

Let Q be a polytope in Rm and let (π, π0) be a split. The part of Q contained between
or on the boundary hyperplanes πx = π0 and πx = π0 + 1 is denoted by Q(π, π0). The
split (π, π0) is a Q-intersecting split if both of its boundary hyperplanes have a nonempty
intersection with Q. The split is Q-englobing if Q = Q(π, π0). Note that a split can be
simultaneously englobing and intersecting, as illustrated in Figure 3.

Let (π1, π1
0), (π

2, π2
0), . . . , (π

t, πt
0) be a finite sequence of splits. Recall the definition of

Q(π, π0) from Section 2. The polytopes Q0 := Q, and Qj := Qj−1(πj , πj
0) for j = 1, . . . , t are

the polytopes obtained from the sequence and Qt is the polytope at the end of the sequence.
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H1

H2

H3 H4

H5

H6

Figure 3: Illustration for intersecting and englobing splits. Polytope Q is shaded. Split
with boundary hyperplanes H1 and H2 is Q-intersecting; split with boundary hyperplanes
H3 and H4 is Q-englobing; split with boundary hyperplanes H5 and H6 is simultaneously
Q-intersecting and Q-englobing.

When S denotes the sequence (π1, π1
0), (π

2, π2
0), . . . , (π

t, πt
0) of splits, we will use the notation

Q(S) to denote the polytope Qt. We say that this sequence is a sequence of Q-intersecting
splits if, for all j = 1, . . . , t, we have that (πj , πj

0) is Qj−1-intersecting.
Our approach to proving Theorem 5.1 is to work with PL, as introduced at the end of

Section 2, instead of with P directly. By Observation 3.2, to show that an L-cut has finite
split rank with respect to P , it is sufficient to show that the height of PL can be reduced to at
most 0 in a finite number of split operations. Lemma 5.7 guarantees a reduction of the height
of PL when applying repeatedly a sequence of intersecting splits followed by an englobing
split. A key result to proving this lemma is Lemma 5.5, showing that, for an intersecting
split, we can essentially guarantee a constant reduction in height for the points cut off by
the split. A consequence of these results is Corollary 5.8 that provides a sufficient condition
for proving that the L-cut obtained from a bounded rational lattice-free set L has finite split
rank. It is indeed enough to exhibit a finite sequence of L-intersecting cuts followed by a
final englobing cut.

Sections 5.2-5.4 deal with the unfortunate fact that it is not obvious that a sequence of
intersecting splits followed by an englobing split always exists. However, since it is possible to
reduce L to LI using Chvátal cuts, the result is proved by replacing each of the Chvátal cuts
by a finite collection of intersecting splits for enlarged polytopes, and using the 2-hyperplane
property for proving that a final englobing split exists. Section 5.2 shows how to enlarge
polytopes so that they have desirable properties. Section 5.3 proves a technical lemma about
Chvátal cuts. In Section 5.4, induction on the dimension is used to prove that the region
removed by a Chvátal cut can also be removed by a finite number of intersecting splits for
enlarged polytopes.

We now present details of the proof.

5.1 Intersecting splits

The Euclidean distance between two points x1, x2 is denoted by d(x1, x2). For a point x1 and
a set S, we define d(x1, S) = inf{d(x1, y) | y ∈ S}. The diameter of a polytope Q, denoted by
diam(Q), is the maximum Euclidean distance between two points in Q.

Let Qx be a rational polytope in Rm of dimension at least 1, and let M0 < M be two
finite numbers. Define R(Qx, M, M0) (see Figure 4) as the nonconvex region in the (x, z)-

9



space Rm×R containing all points (x̄, z̄) such that x̄ is in the affine subspace aff(Qx) spanned
by Qx and

z̄ ≤

{

M if x̄ ∈ relint(Qx)

M0 −
d(x̄,Qx)

diam(Qx)
(M − M0) otherwise.

Note that this definition implies that z̄ ≤ M0 if x̄ is on the boundary of Qx.

x

M

M0

Qx

z

Figure 4: Illustration for the definition of R(Qx, M, M0) (shaded area).

The purpose of R(Qx, M, M0) is to provide an upper bound on the height of points outside
Qx with respect to any polyhedron Q of height M having the property that the height with
respect to Q of any x̄ 6∈ relint(Qx) is at most M0, as shown in the next lemma.

Lemma 5.2. Let M0 < M be two finite numbers, let Q0 ∈ Rm+1 be a rational polyhedron of
height M in the (x, z)-space, and let Qx ∈ Rm be a rational polytope containing {x | ∃z >
M0 with (x, z) ∈ Q0} in its relative interior. Then Q0 ⊆ R(Qx, M, M0).

Proof. Let (x̄, z̄) ∈ Q0. As the height of Q0 is M , we have z̄ ≤ M . If x̄ ∈ relint(Qx) then
it follows that (x̄, z̄) ∈ R(Qx, M, M0). Otherwise x̄ 6∈ relint(Qx) and therefore z ≤ M0 by
definition of Qx. Let xM be a point in Qx with height M with respect to Q0. Let x0 be the
intersection of the half-line starting at xM and going through x̄ with the boundary of Qx.
Notice that this intersection is on the segment xM x̄. As the height of a point with respect
to Q0 is a concave function, the height of xM is M , and the height of x0 is at most M0 by
choice of Qx, we have that

z̄ ≤ M0 −
(M − M0)

d(xM , x0)
d(x̄, x0) .

The result follows from d(xM , x0) ≤ diam(Qx) and d(x̄, x0) ≥ d(x̄, Qx).

We define a (Qx, H1, H̄) triplet as follows: Qx is a full-dimensional rational polytope in
Rm with m ≥ 2; H1 ⊆ Rm is a hyperplane with Q1

x := H1 ∩Qx 6= ∅; H 6= H1 is a hyperplane
in Rm supporting a nonempty face of Q1

x and H̄ is a closed half-space bounded by H not
containing Q1

x (Figure 5). Such a triplet naturally occurs when using a Qx-intersecting split
(π, π0) when both Qx and Qx(π, π0) are full dimensional: H1 is one of the two boundary
hyperplanes of the split, H is a hyperplane supporting a facet of Qx(π, π0) that is not a facet
of Qx, and H̄ is the half-space bounded by H that does not contain Qx(π, π0).

10



θ
θ

H

H
H1

H1
H2

H∗

H∗

H̄

H̄

x̄

x̄

Q1
x

Q1
x

Figure 5: Illustration of the definition of θ(Qx, H1, H̄) for m = 2. Polytope Qx is shaded,
polytope Q1

x is the bold segment, part of H̄ is lightly shaded. On the left, rotating H1 around
H ∩ H1 to get a hyperplane supporting a face of Qx yields a facet of Qx and H2 = H∗. On
the right, such a rotation could give the depicted hyperplane H2, and an additional rotation
gives H∗.

Given a (Qx, H1, H̄) triplet, we claim that there exists a hyperplane H∗ separating int(Qx)
from H̄ ∩ H1 with H∗ ∩ H1 = H ∩ H1 and maximizing the angle between H1 and H∗. This
maximum value is denoted by θ(Qx, H1, H̄).

To see that the claim holds, let x̄ be a point in the relative interior of H̄ ∩H1. As H ∩H1

is a hyperplane of H1 separating x̄ from Q1
x, we can rotate H1 around H ∩ H1 to get a

hyperplane H2 supporting a face of Qx. Then, we can possibly rotate H2 around H ∩H1 to
increase the angle between H2 and H1 while keeping the resulting hyperplane H∗ supporting
a face of Qx. This rotation is stopped either if an angle of π

2 is obtained, or if H∗ gains a
point of Qx outside of H ∩ H1.

Observation 5.3.

d(x̄, Qx) ≥ d(x̄, H ∩ H1) · sin θ(Qx, H1, H̄) . (4)

Proof. The observation follows from

d(x̄, Qx) ≥ d(x̄, H∗) = d(x̄, H∗ ∩ H1) · sin θ(Qx, H1, H̄) = d(x̄, H ∩ H1) · sin θ(Qx, H1, H̄) . (5)

Indeed, the first inequality comes from the fact that H∗ separates x̄ from Qx, the first equality
is pictured in Figure 6, and the last equality follows from H∗ ∩ H1 = H ∩ H1.

θ

H1

H∗

x̄

d(x̄, H∗)
d(x̄, H∗ ∩ H1)

Figure 6: Illustration for the proof of Observation 5.3.

Lemma 5.4. Consider a (Qx, H1, H̄) triplet. Let M∗
0 < M∗ be two finite numbers and let

Q ⊆ R(Qx, M∗, M∗
0 ) be a rational polyhedron of height M ≤ M∗. Let x̄ ∈ H1 ∩ H̄. The

height z̄ of x̄ with respect to Q satisfies

z̄ ≤ M∗
0 − sin θ(Qx, H1, H̄) ·

(M∗ − M∗
0 )

diam(Qx)
· d(x̄, H ∩ H1) .
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Proof. As Q ⊆ R(Qx, M∗, M∗
0 ) and x̄ 6∈ relint(Qx), we have that

z̄ ≤ M∗
0 −

d(x̄, Qx)

diam(Qx)
(M∗ − M∗

0 ) . (6)

If x̄ is on the boundary of Qx, then z̄ ≤ M∗
0 , and the result holds since d(x̄, H ∩ H1) = 0.

Otherwise, the result follows from using Observation 5.3 to replace the term d(x̄, Qx) in (6)
by d(x̄, H ∩ H1) · sin θ(Qx, H1, H̄).

H1 H2

HF

H̄F

Qx

Figure 7: Illustration of the definition of δ(Qx, (π, π0), H̄
F ) for m = 2. Polytope Qx is shaded,

part of H̄F is lightly shaded, and Qx(π, π0) is depicted in bold line.

Let Qx be a full-dimensional rational polytope in Rm with m ≥ 2 and let (π, π0) be a
Qx-intersecting split with boundary hyperplanes H1 and H2 (see Figure 7). Assume first that
Qx(π, π0) is full-dimensional and strictly contained in Qx, and that the width w of a round of
splits around Qx satisfies w < diam(Qx). Recall that the width of a round of splits is defined
at the end of Section 2. Let HF be a hyperplane supporting a facet F of Qx(π, π0) that is
not a facet of Qx and let H̄F be the closed half-space not containing Qx(π, π0) bounded by
HF . As mentioned earlier, we have that, for i = 1, 2, (Qx, H i, H̄F ) is a triplet. Let

δ(Qx, (π, π0), H̄
F ) =

w

diam(Qx)
· min{sin θ(Qx, H1, H̄F ), sin θ(Qx, H2, H̄F )} .

Define the reduction coefficient for (Qx, (π, π0)), denoted by δ(Qx, (π, π0)), as the minimum
of δ(Qx, (π, π0), H̄

F ) taken over all hyperplanes HF supporting a facet F of Qx(π, π0) that
is not a facet of Qx. As Qx(π, π0) has a finite number of facets, this minimum is well-defined
and its value is positive and at most one. Assume now that Qx(π, π0) is not full-dimensional
or that Qx = Qx(π, π0) or that w ≥ diam(Qx). The reduction coefficient for (Qx, (π, π0))
is then defined as the value 1. Note that the reduction coefficient depends only on Qx and
(π, π0) and always has a positive value smaller than or equal to 1.

Lemma 5.4 can be used to prove a bound on the height of some points x̄ after applying
an intersecting split. Given a set S ⊆ Rn we denote its closure by cl(S). (We mean the
topological closure here, not to be confused with the split closure.)

Lemma 5.5. Let Qx be a full-dimensional rational polytope in Rm with m ≥ 2. Let (π, π0)
be a Qx-intersecting split and let S be the sequence of a round of splits around Qx followed
by (π, π0).
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Then, for any two finite numbers M∗
0 < M∗ and for any rational polyhedron Q ⊆

R(Qx, M∗, M∗
0 ), the height with respect to Q(S) of any point in cl(Qx \ Qx(π, π0)) is at

most max {M∗
0 , M − δ(Qx, (π, π0)) · (M

∗ − M∗
0 )}, where M is the height of Q.

Proof. Let w be the width of the round of splits around Qx. Observe that if w ≥ diam(Qx)
then all the splits used during the round of splits around Qx are Qx-englobing. It follows
that the height of Q(S) is at most M∗

0 and the result holds (recall that if Q(S) = ∅ then its
height is −∞). Similarly, if Qx(π, π0) is not full-dimensional, then (π, π0) is Qx-englobing
and the result holds. Finally, if Qx(π, π0) = Qx then the result trivially holds.

H1 H2

HF

H̄F

x1

x2

x̄

Figure 8: Illustration of the proof of Lemma 5.5. Polytope Qx ⊆ R2 is shaded, part of H̄F is
lightly shaded, and Qx(π, π0) is depicted in bold line. Point x̄ is a convex combination of x1

and x2.

We can thus assume that w < diam(Qx) and that Qx(π, π0) is full-dimensional and
strictly contained in Qx. Let H1 and H2 be the boundary hyperplanes of (π, π0). Let
x̄ ∈ cl(Qx \ Qx(π, π0)) with maximum height z̄ with respect to Q(S). If x̄ is in a facet F
of Qx(π, π0), let HF be a hyperplane supporting F . Otherwise, let HF be a hyperplane
supporting a facet of Qx(π, π0) separating x̄ from Qx(π, π0). Let H̄F be the half-space
bounded by HF not containing Qx(π, π0). We may assume z̄ > M∗

0 as otherwise the result
trivially holds. Thus x̄ is in int(Qx) and strictly between H1 and H2 (Figure 8). Therefore,
as shown in Observation 2.1 (ii), (x̄, z̄) is a convex combination of a point (x1, z1) ∈ Q(S)
with x1 ∈ H1 and a point (x2, z2) ∈ Q(S) with x2 ∈ H2, namely

(x̄, z̄) =
d(x2, x̄)

d(x1, x2)
· (x1, z1) +

d(x1, x̄)

d(x1, x2)
· (x2, z2) . (7)

As all points in H̄F ∩H i for i = 1, 2 are not in int(Qx) and thus have height at most M∗
0 ,

one of the points xi is in Qx \ H̄F . Moreover, as x̄ ∈ H̄F , the other one is in H̄F . Without
loss of generality, we assume that x2 ∈ Qx \ H̄F . For i = 1, 2, let pi be the closest point
to xi in HF ∩ H i and let di = d(xi, pi). We thus have d2 > 0. As z1 ≤ M∗

0 < z̄, we have
z2 > z1 and points on the segment joining (x1, z1) to (x2, z2) have increasing height as they
get closer to (x2, z2). We thus have that x̄ is on HF , implying that d1 > 0. Using (7) and

the similarity of triangles x1p1x̄ and x2p2x̄, implying d(xi,x̄)
d(x1,x2)

= di

d1+d2
, we get

(x̄, z̄) =
d2

d1 + d2
· (x1, z1) +

d1

d1 + d2
· (x2, z2) . (8)
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To simplify notation in the remainder of the proof, we use δ instead of δ(Qx, (π, π0)). By
Lemma 5.4 and the definition of δ, the height z with respect to Q of any point x ∈ H̄F ∩H i

is at most M∗
0 − δ

w
· (M∗ − M∗

0 ) · d(x, HF ∩ H i).
It follows that we have

z1 ≤ M∗
0 −

δ

w
· (M∗ − M∗

0 ) · d1 . (9)

Using (9) in (8), we get

z̄ ≤
d2

d1 + d2
·

(

M∗
0 −

δ

w
· (M∗ − M∗

0 ) · d1

)

+
d1

d1 + d2
· z2 . (10)

Assume first that d2 ≥ w. As z2 ≤ M = M∗
0 + (M − M∗

0 ), (10) becomes

z̄ ≤ M∗
0 +

d1

d1 + d2

(

(M − M∗
0 ) − δ ·

d2

w
· (M∗ − M∗

0 )

)

.

As we have that z̄ > M∗
0 , the expression in brackets above is positive. Since the fraction in

front of it is at most 1, we get

z̄ ≤ M∗
0 + (M − M∗

0 ) − δ ·
d2

w
(M∗ − M∗

0 ) ≤ M − δ · (M∗ − M∗
0 ) ,

which proves the result.
Assume now that d2 < w. We claim that

z2 ≤ M∗
0 +

d2

w
· (M − M∗

0 ) . (11)

To show this, we first claim that there exists a facet F 1 of Qx with d(x2, F 1) ≤ d2. Recall that
p2 is the point in HF ∩H2 closest to x2. If p2 is on the boundary of Qx, then any facet F 1 of
Qx containing p2 proves the claim. Otherwise, as HF ∩ H2 supports Qx ∩ H2, the segment
x2p2 intersects the boundary of Qx ∩ H2 in a point that is on a facet F 1 of Qx, proving the
claim. Let H(F 1) and H ′(F 1) be the boundary hyperplanes of the split (π(F 1), π0(F

1)) such
that H(F 1) ∩ int(Qx) = ∅ (Figure 9).

By definition of the width of a round of splits around Qx, the distance k between F 1 and
H ′(F 1) is at least w. By Observation 2.1 (ii), the point (x2, z2) is a convex combination of
a point (x3, z3) ∈ Q ∩ H(F 1) and a point (x4, z4) ∈ Q ∩ H ′(F 1). The hyperplane J in Rm

supporting F 1 can be lifted in the (x, z)-space to the hyperplane J ′ = {(x, z) ∈ Rm+1 | x ∈
J} orthogonal to the x-space. Similarly, the hyperplane H ′(F 1) ∈ Rm can be lifted to a
hyperplane H ′′(F 1) in Rm+1 orthogonal to the x-space. The segment joining (x3, z3) to
(x4, z4) intersects J ′ in a point (x5, z5) ∈ Q and thus

(x2, z2) =
d(x2, x5)

d(x4, x5)
· (x4, z4) +

d(x2, x4)

d(x4, x5)
· (x5, z5) . (12)

Let q′ (resp. q′′) be the closest point to (x2, z2) in J ′ (resp. H ′′(F 1)) and let ℓ =
d((x2, z2), q′). Note that ℓ is at most the distance between x2 and F 1 and recall that we
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x3

x4 x5

ℓ ≤ d2

H ′(F 1)

H(F 1)

k ≥ w J

x2

Figure 9: Illustration of the proof of Lemma 5.5.

have shown above that this is at most d2. Using similar triangles (x2, z2)q′(z4, z4) and
(x2, z2)q′′(z5, z5), we have

d(x2, x5)

d(x4, x5)
=

ℓ

k
and

d(x2, x4)

d(x4, x5)
=

k − ℓ

k
. (13)

Note that, trivially, z4 ≤ M and that z5 ≤ M∗
0 as all points x on J are either on the

boundary or outside of Qx. Using these inequalities and (13) in (12), we get

z2 ≤
ℓ

k
· M +

k − ℓ

k
· M∗

0 =
ℓ

k
· (M − M∗

0 ) + M∗
0 ≤

d2

w
· (M − M∗

0 ) + M∗
0 , (14)

proving (11). Using (11) in (10), we obtain

z̄ ≤ M∗
0 +

d1

d1 + d2
·
d2

w
· ((M − M∗

0 ) − δ · (M∗ − M∗
0 )) .

Since z̄ > M∗
0 , the expression in brackets above is positive and each of the two fractions in

front of it are positive and at most 1. We thus get

z̄ ≤ M − δ · (M∗ − M∗
0 ) ,

proving the result.

The next lemma plays an important role in the proof of Theorem 5.1. Before stating the
lemma, we make the following observation, which will be used in its proof.

Observation 5.6. Let C1 be a full-dimensional convex set and let C2 be a closed set in Rm.
Then C1 \ C2 is either full-dimensional or empty.

Proof. Suppose that C1 \ C2 is not empty and let x ∈ C1 \ C2. Since C2 is closed, there
exists ǫ > 0 such that the closed ball B(x, ǫ) = {y ∈ Rm | d(y, x) ≤ ǫ} does not intersect
C2. Therefore, C1 ∩ B(x, ǫ) ⊆ C1 \ C2. But C1 ∩ B(x, ǫ) is full-dimensional, as x ∈ C1,
x ∈ int(B(x, ǫ)), and C1 is convex and full-dimensional.
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The next lemma applies Lemma 5.5 iteratively n times, with a polytope Li ⊆ Rm playing
the role of Qx for i = 1, . . . , n. For application i, this creates a region Di = cl(Li \Li(πi, πi

0))
for which a guaranteed height reduction is obtained. This guarantee is applied to a polyhedron
Q ⊆ R(L, M∗, M∗

0 ) where L is a polytope contained in L1. The statement of the lemma is
illustrated in Figure 10.

H1 H2 H3 H4

D1

D2

Figure 10: Illustration of the statement of Lemma 5.7 in a simple case. Polytope L = L1 is
shaded, L2 = L \ D1, L3 = L \ (D1 ∪ D2), the boundary hyperplanes of (π1, π1

0) are H1 and
H2, and the boundary hyperplanes of (π2, π2

0) are H3 and H4. The statement of the lemma
is more general, as Li must merely contain L \ (D1 ∪ . . .∪Di−1) instead of being equal to it,
as in this illustration.

Lemma 5.7. Let L be a full-dimensional rational polytope in Rm with m ≥ 2. For i =
1, . . . n, let Li be a rational polytope in Rm, let (πi, πi

0) be an Li-intersecting split and let
Di = cl(Li\Li(πi, πi

0)) for i = 1, . . . n. Assume that L ⊆ L1 and that L\(D1∪. . .∪Di) ⊆ Li+1,
for i = 1, . . . , n − 1. Then there exists a finite sequence S of splits and a value ∆ > 0 such
that, for any two finite numbers M∗

0 < M∗ and any rational polyhedron Q ⊆ R(L, M∗, M∗
0 ),

one of the following cases holds

(i) the height of all points in D1 is at most M∗
0 with respect to Q(S);

(ii) the height of all points in D1 ∪ . . . ∪ Dn is at most M − ∆ · (M∗ − M∗
0 ) with respect to

Q(S), where M is the height of Q.

Proof. Let q be the smallest index {1, . . . , n − 1} such that L \ (D1 ∪ . . . ∪ Dq) is not full-
dimensional and let q = n if no such index exists. This ensures that Lj is full-dimensional for
j = 1, . . . , q. For j = 1, . . . , q, let Rj denote the round of splits around Lj . Let the sequence
S be S = (R1, (π1, π1

0), R
2, (π2, π2

0), . . . , R
q, (πq, πq

0)).

Let Q1 = Q and let Qj+1 = Qj(Rj , (πj , πj
0)), and let 0 < δj ≤ 1 be the reduction

coefficient for (Lj , (πj , πj
0)) for j = 1, . . . , q. Let ∆1 = δ1, let ∆j = δj · ∆j−1 for j = 2, . . . , q,

and observe that ∆1 ≥ ∆2 ≥ . . . ≥ ∆q > 0. Let ∆ := ∆q.
Since Q ⊆ R(L, M∗, M∗

0 ) and L ⊆ L1, we trivially have Q ⊆ R(L1, M∗, M∗
0 ). If M∗

0 ≥
M − ∆1 · (M∗ − M∗

0 ), then Lemma 5.5 applied to L1, (π1, π1
0), and Q proves that (i) holds

for Q2, proving the result for Q(S) as Q(S) ⊆ Q2. Therefore we may assume that M∗
0 <

M − ∆1 · (M∗ − M∗
0 ).
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We claim that the height of any point in D1 ∪ . . . ∪ Dj is at most M − ∆j · (M∗ − M∗
0 )

with respect to Qj+1 for j = 1, . . . , q. We prove this claim by induction on j.
For j = 1, this is implied by Lemma 5.5 as it shows that the height of all points in D1 is

at most M − ∆1 · (M∗ − M∗
0 ) with respect to Q2.

Assume now that the claim is true for some 1 ≤ j < q and we prove it for j +1. Let M j+1

be the height of Qj+1. If M j+1 ≤ M − ∆j · (M∗ − M∗
0 ), then the claim holds for j + 1 as

∆j ≥ ∆j+1. Otherwise, as L\(D1∪. . .∪Dj) ⊆ Lj+1, the induction hypothesis implies that all
points on the boundary or outside of Lj+1 have height at most M−∆j ·(M∗−M∗

0 ) with respect
to Qj+1. Therefore Lemma 5.2 shows that Qj+1 ⊆ R(Lj+1, M j+1, M −∆j · (M∗−M∗

0 )). We
can thus use Lemma 5.5 to get that the height of any point in Dj+1 with respect to Qj+2 is
at most

max{M − ∆j · (M∗ − M∗
0 ), M j+1 − δj+1 · (M j+1 − (M − ∆j · (M∗ − M∗

0 )))} . (15)

The second term can be rewritten as

(1 − δj+1) · M j+1 + δj+1 · (M − ∆j · (M∗ − M∗
0 ))

≤ (1 − δj+1) · M + δj+1 · (M − ∆j · (M∗ − M∗
0 ))

= M − δj+1 · ∆j · (M∗ − M∗
0 ).

As 0 < δj+1 ≤ 1, we obtain that the maximum in (15) is at most M−δj+1 ·∆j ·(M∗−M∗
0 ).

Thus, the height of any point in D1 ∪ . . . ∪ Dj+1 is at most M − ∆j+1 · (M∗ − M∗
0 ) with

respect to Qj+2, proving the claim for j + 1. This completes the proof of the claim.
If q = n, then point (ii) in the statement of the lemma is satisfied, as we have shown that

the height of any point in D1∪ . . .∪Dq is at most M −∆q · (M∗−M∗
0 ) = M −∆ · (M∗−M∗

0 )
with respect to Qq+1 = Q(S). If q < n then, by definition of q, we have that L\(D1∪. . .∪Dq)
is not full-dimensional. Observe that, as the Di’s are closed sets, (D1∪. . .∪Dq) is a closed set.
Then Observation 5.6 implies that L\(D1∪. . .∪Dq) is empty. Since M∗

0 ≤ M−∆q ·(M∗−M∗
0 )

and since the height of all points outside L is at most M∗
0 with respect to Q(S), this shows

that the height of any point in the x-space is at most M − ∆q · (M∗ − M∗
0 ) with respect to

Q(S), proving that (ii) is satisfied.

This lemma is sufficient to prove the following corollary.

Corollary 5.8. Consider a mixed integer set of the form (1) with m = 2. Let L ⊆ R2

be a rational lattice-free polytope containing f in its interior. Let (π1, π1
0), . . . , (π

n, πn
0 ) be a

sequence of L-intersecting splits and let Ln be the polytope obtained by applying the sequence
on L. Let (π, π0) be an Ln-englobing split. Then there exists a finite number q such that the
height of the rank-q split closure of PL is at most zero.

Proof. We prove the following more general result. Let Qx be a full-dimensional rational
polytope in Rm with m ≥ 2 and let M∗

0 < M∗ be two finite numbers. Let Q ⊆ R(Qx, M∗, M∗
0 )

be a rational polyhedron of height M such that the height of any integer point in Qx is at
most M∗

0 . Let (π1, π1
0), . . . , (π

n, πn
0 ) be a sequence of Qx-intersecting splits and let Qn

x be
the polytope obtained by applying the sequence on Qx. Let (π, π0) be a Qn

x-englobing split.
Then there exists a finite number q such that the height of the rank-q split closure of Q is at
most M∗

0 .
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Let Qi
x for i = 1, . . . , n be the polytopes obtained from applying the sequence of splits on

Qx. Let S and ∆ be obtained by applying Lemma 5.7 for L := Qx, L1 := Qx, Li+1 := Qi
x

for i = 1, . . . , n − 1, M∗, M∗
0 and Q. Assume that M − M∗

0 ≥ ∆ · (M∗ − M∗
0 ). Then all

points on the boundary of Qn
x have height at most Mn := max{M∗

0 , M − ∆ · (M∗ − M∗
0 )}

with respect to Q(S). Thus the height with respect to Q(S) of any point on one of the
boundary hyperplanes of the disjunction (π, π0) is at most Mn, and the height of Q(S)(π, π0)

is at most Mn. Applying the sequence (S, (π, π0)) on Q at most ⌈
M−M∗

0

∆·(M∗−M∗
0
)⌉ times, we get a

polyhedron Q1 of height M1 and for which all points in cl(Qx \Q1
x) have height at most M∗

0 .
We can then iterate the above argument, applying Lemma 5.7 in iteration j = 1, . . . , n− 1 to
L := Qj

x, Li := Qi+j−1
x for i = 1, . . . , n − j, M∗ := M j , M∗

0 and Q := Qj . After these n − 1
iterations, we get a polyhedron Qn whose height is at most M∗

0 .
The proof of the statement of the corollary follows by setting in the above proof Qx := L,

Q := QL, M∗ := 1 , and M∗
0 := 0.

We note that this result can be used to prove the Dey-Louveaux theorem stating that the
split rank of any L-cut is finite whenever L ⊆ R2 is a maximal lattice-free rational polytope
distinct from a triangle of Type 1 with rays going into its corners. Indeed, for each case
(quadrilateral, triangles of Type 2 or 3, and triangles of Type 1 with at least one corner
ray missing), one can exhibit explicitly the intersecting splits (at most two of them) and the
englobing split required by Corollary 5.8. However, to handle the general case where L ⊂ Rm

with m ≥ 3, a generalization of this corollary is presented in Section 5.4.

5.2 Enlarging the polyhedron

The purpose of this section is to prove Theorem 5.12 showing that it is possible to enlarge a
lattice-free rational polytope L ⊂ Rm to a rational lattice-free polytope L′ such that, for all
facet F of L′, the split (π(F ), π0(F )) is L′-intersecting and such that L has the 2-hyperplane
property if and only if L′ does. This is a useful result, as this allows us to show that the
effect of a Chvátal split on a polytope can be obtained by a sequence of intersecting splits
for the enlarged polytope. This is developed in Section 5.3.

A lattice subspace of Rm is an affine space x + V where x ∈ Zm and V is a linear space
generated by rational vectors. Equivalently, an affine space A ⊆ Rm is a lattice subspace if it
is spanned by the integer points in A (see Barvinok [3] for instance). We need the following
technical result.

Lemma 5.9. Let L be a full-dimensional rational polytope in Rm with m ≥ 2 given by
{x | Ax ≤ b}, where A is an integral matrix and b is an integral vector. The rows of A are
denoted by a1, . . . , an. Suppose a1x ≤ b1 defines a facet of L with no integer point contained
in its affine hull {x | a1x = b1}. Let Ã be the matrix obtained from A by removing row a1

and let b̃ be the vector obtained from b by removing its first component b1. Then there exists
a rational inequality a′x ≤ b′ such that L̃ := {x | Ãx ≤ b̃, a′x ≤ b′} contains the same set of
integer points as L, L ⊆ L̃, and the hyperplane {x | a′x = b′} contains integer points.

Proof. Let G be the greatest common divisor of the coefficients in a1. As {x | a1x = b1}
does not contain any integer points, b1

G
is fractional by Bézout’s Theorem [15]. Consider

the set L′ = {x | Ãx ≤ b̃, a1x = G · ⌈ b1
G
⌉}. As rec(L′) ⊆ rec(L) (where rec(L) denotes
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the recession cone of L), L′ is a polytope contained in the hyperplane {x | a1x = G · ⌈ b1
G
⌉}.

Since {x | a1x = G · ⌈ b1
G
⌉} is an m − 1 dimensional lattice subspace, its integer points can

be partitioned into infinitely many parallel lattice subspaces of dimension m − 2. As L′ is
bounded, one of them is an m− 2 dimensional lattice subspace A that does not intersect L′.
(See Figure 11.) This implies that we can choose a rational hyperplane H ⊆ Rm containing
A and such that H separates L from L′ and does not contain a point in L′ (note that if L′

is empty, then we choose H containing A and such that L is contained in one of the two
half-space bounded by H). Let H = {x | a′x = b′} and such that the half-space a′x ≤ b′

contains L.

AL′

H

a1x = b1

a1x = G ·
⌈

b1
G

⌉

Figure 11: Illustration of the proof of Lemma 5.9. Polytope L is shaded, polytope L′ is a
segment.

By construction, the hyperplane {x | a′x = b′} contains integer points from A.
Suppose for a contradiction that there exists an integer point p ∈ L̃ \ L. Then p satisfies

a1x ≥ G · ⌈ b1
G
⌉ and a′p ≤ b′. This implies that the segment joining p to any point p̄ in L

intersects the hyperplane a1x = G⌈ b1
G
⌉ at some point p′ (with, possibly, p′ = p). Then p′ ∈ L′

and, as all points in L′ violate the inequality a′x ≤ b′, we have p′ /∈ L̃. This is a contradiction
with the fact that the segment pp̄ is contained in L̃.

We next make a couple of observations that are used in the remainder of the paper. The
proof of the first observation can be found in [10].

Observation 5.10. Let M be a unimodular transformation of Rm. Then integer points are
mapped to integer points and (π, π0) is a split if and only if it is mapped to a split.

Observation 5.11. Let L and L′ be two polytopes having the same dimension, such that
L ⊆ L′ and LI = L′

I . If L′ has the 2-hyperplane property, then so does L.

Proof. Consider any face F of LI that is not contained in a facet of L. Face F is not contained
in a facet of L′, as the intersection of any facet of L′ with L is contained in a facet of L. Since
L′ has the 2-hyperplane property, F is 2-partitionable.

So far, we essentially dealt with full-dimensional lattice-free polytopes. For the remainder
of the paper, we need to extend a couple of definitions to non-full dimensional polytopes. Let
L be a convex set in Rm. We say that L is lattice-free in its affine hull if L does not contain
an integer point in its relative interior. Note that when L is full-dimensional, this definition
is equivalent to L being lattice-free.

Recall the definition of the split (π(F ), π0(F )) given at the beginning of Section 5 for
a facet F of a full-dimensional rational lattice-free polytope L ⊂ Rm. When L is not full-
dimensional, we consider the same definition restricted to the affine hull A of L. This split
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is uniquely defined in A and it will be denoted by (πA(F ), πA
0 (F )). Note that the split

(πA(F ), πA
0 (F )) can be extended (in a non-unique way) to a split (π(F ), π0(F )) of Rm.

Theorem 5.12. Let L be a rational polytope in Rm that is lattice-free in its affine hull A.
Assume that dim(A) ≥ 1 and that A contains integer points. Then it is possible to enlarge
L to a rational lattice-free polytope L′ ⊆ A such that L has the 2-hyperplane property if and
only if L′ does, and such that for each facet F of L′

(i) the affine hull of F contains integer points;

(ii) the split (πA(F ), πA
0 (F )) is L′-intersecting.

Proof. The affine space A is a lattice-subspace of dimension t = dim(A) ≥ 1 and therefore by
choosing a lattice basis to define new coordinates, we may assume that L is full-dimensional
in Rt. Observe that if t = 1, then L always has the 2-hyperplane property and the result
holds when L′ is taken as the smallest segment with integer endpoints containing L. Hence,
in the remainder of the proof, we assume t ≥ 2. We obtain L′ in two phases.

Phase 1: We first exhibit a rational lattice-free polytope L1 containing L, such that
L ∩ Zt = L1 ∩ Zt and every L1-englobing split is L1-intersecting.

If L is such that every L-englobing split is L-intersecting, then L1 is trivially taken to be
L. Otherwise, consider an L-englobing split that is not L-intersecting and let H1 and H2 be
its two boundary hyperplanes. We assume without loss of generality that H2 ∩ L = ∅. Let
C ⊆ Rt be the image of the unit hypercube C̄ in Rt under a unimodular transformation M,
such that all its vertices are in H1 ∪ H2, and such that the following condition (*) holds.

(*) If L∩H1 has dimension at least 1, then C is chosen such that C∩L∩H1 has dimension
at least 1. If L∩H1 is a single point, then C is chosen such that C ∩L∩H1 = L∩H1.

Note that if L∩H1 is empty, we are free to choose M as any unimodular transformation
mapping the vertices of C̄ to integer points in H1 ∪ H2. We now apply the inverse of the
unimodular transformation M so that C is transformed back into C̄, L is transformed into a
polytope Q, and H i is transformed into hyperplane H̄ i for i = 1, 2. Without loss of generality,
we can assume that H̄1 and H̄2 are the hyperplanes {x ∈ Rt | x1 = 0} and {x ∈ Rt | x1 = 1}.
Observation 5.10 shows that condition (*) still holds for C̄ and Q. Let v̄ be the center of the
hypercube C̄, i.e. v̄ = (1

2 , . . . , 1
2). If Q ∩ H̄1 has dimension at least 1, let p1 be a rational

fractional point in C̄ ∩ Q ∩ H̄1. If Q ∩ H̄1 is of dimension less than 1, let p1 be any rational

fractional point in C̄ ∩ H̄1. Let q1 be the point in C̄ ∩ H̄2 such that p1+q1

2 = v̄. Moreover
we consider the set of the 2(t− 1) centers of the facets of C̄ other than the two supported by
H̄1 and H̄2, i.e.,

pi
j =

{

1
2 j 6= i
0 j = i

qi
j =

{

1
2 j 6= i
1 j = i

for i = 2, . . . , t, j = 1, . . . , t.

Let S be the set of 2t points pi, qi for i = 1, . . . , t and let Q1 = conv(S ∪ Q). Clearly,
Q ⊆ Q1 and Q1 is rational. We now show that Q∩Zt = Q1∩Zt. Notice that integer points in
Q1 are either on H̄1 or H̄2. Since Q1 ∩ H̄2 is reduced to a single fractional point q1, Q1 ∩ H̄2
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does not contain integer points. When Q ∩ H̄1 has dimension at least 1, our choice of p1

implies that Q ∩ H̄1 = Q1 ∩ H̄1. When Q ∩ H̄1 has dimension less than 1, our choice of p1

guarantees that the only integer point (if any) in Q1 ∩ H̄1 is also in Q ∩ H̄1. Therefore, in
both cases, Q ∩ Zt = Q1 ∩ Zt.

We claim that the split closure of Q1 contains the point v̄ defined above. Since v̄ is an
interior point of Q1, this shows that every Q1-englobing split is Q1-intersecting.

We prove the claim by showing that for any split (π, π0), we have v̄ ∈ Q1(π, π0). This is
obvious if π · v̄ ≤ π0 or π · v̄ ≥ π0 + 1, so we may assume that π0 < π · v̄ < π0 + 1. Since π is
integer and v̄ has all coordinates equal to 1

2 , we have that π · v̄ = π0 + 0.5. If πj 6= 0 for some
j 6= 1, then

π · pj = π · v̄ − 0.5 · πj = π0 + 0.5 − 0.5 · πj

π · qj = π · v̄ + 0.5 · πj = π0 + 0.5 + 0.5 · πj .

The integrality of π implies that |πj | ≥ 1, and thus pj ∈ Q1(π, π0) and qj ∈ Q1(π, π0) and

v̄ = pj+qj

2 ∈ Q1(π, π0). On the other hand, if πj = 0 for all j 6= 1, then the split disjunction
must be {x1 ≤ 0 ∨ x1 ≥ 1} (since π0 < π · v̄ < π0 + 1). But then, p1 ∈ Q1(π, π0) and

q1 ∈ Q1(π, π0) and v̄ = p1+q1

2 ∈ Q1(π, π0). This completes the proof of the claim.
Let L1 := M(Q1). Since M is a one-to-one map of splits into splits by Observation 5.10,

any L1-englobing split is L1-intersecting.
If L = L1 then, trivially, L has the 2-hyperplane property if and only if L1 does. Oth-

erwise, consider the L-englobing split defined by H1, H2. Recall that this split is not L-
intersecting, therefore LI is contained in H1 and as H1 defines a face of L and a face of L1,
both L and L1 have the 2-hyperplane property. Thus, L has the 2-hyperplane property if
and only if L1 does.

Phase 2: At the end of Phase 1, we obtain L1 such that any L1-englobing split is
L1-intersecting and L ∩ Zt = L1 ∩ Zt. Let L′ := L1 and apply the following algorithm to L′.

1. If there exists a facet F of L′ such that the affine hull AF of F does not contain integer
points, do step 2 below. Otherwise stop.

2. Using Lemma 5.9, enlarge L′ to a polytope L′′. Observe that the integer points in L′′

are exactly those in L′ and that, compared to L′, L′′ has fewer facets whose affine hull
does not contain integer points. Rename L′ := L′′ and go to step 1.

Since L1 has a finite number of facets, the above algorithm terminates. The polytope at
the end of the algorithm satisfies the statement of the lemma. Indeed, first notice that L1 ⊆
L′, where L1 is the polytope obtained at the end of Phase 1. Second, by construction, every
facet F of L′ satisfies condition (i) in the statement of the lemma. Moreover, if (π(F ), π0(F ))
is not L′-intersecting, then it is L′-englobing. As L1 ⊆ L′, this split is also L1-englobing.
By construction of L1, it is L1-intersecting and thus also L′-intersecting, a contradiction.
Therefore (ii) holds.

Finally, we show that L1 satisfies the 2-hyperplane property if and only if L′ does. As
L1 ⊆ L′, L1

I = L′
I and dim(L1) = dim(L′), Observation 5.11 shows one of the two implications.

For the converse, suppose that L1 has the 2-hyperplane property. Observe that any facet of
L1 containing integer points is contained in a facet of L′. This shows that if F is a face of
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L′
I that is not contained in a facet of L′, then F is not contained in a facet of L1 and is thus

2-partitionable. It follows that L′ has the 2-hyperplane property.

5.3 Chvátal splits

Given a polytope Q in Rm, a Chvátal split is a split (π, π0) such that Q ∩ {x ∈ Rm | πx ≥
π0 + 1} = ∅. Note that QI ⊂ Q ∩ {x ∈ Rm | πx ≤ π0}.

The goal of this section is to prove a technical lemma about Chvátal splits. The statement
of the lemma is illustrated in Figure 12.

L
p

HA HB

Figure 12: Illustration for the statement of Lemma 5.13 with m = 2. Polytope Q is shaded
and polytope L is a segment.

Lemma 5.13. Let Q be a full-dimensional rational lattice-free polytope in Rm with m ≥ 2.
Let (π, π0) be a Chvátal split and let HA := {x | πx = π0} and HB := {x | πx = π0 + 1}
be its boundary hyperplanes, with HB ∩ Q empty. Assume that L := HA ∩ Q has dimension
dim(L) = m−1, and for each facet F of L the affine hull of F contains integer points and the

split (πHA
(F ), πHA

0 (F )) is L-intersecting. Let p be any point strictly between HA and HB.
Then there exists a finite sequence S of L-intersecting splits such that Q(S)∩{x ∈ Rm | πx ≥
π0} is contained in the pyramid conv(p ∪ L).

Proof. Let F be a facet of L. By hypothesis, there exists a split (πF , πF
0 ) with boundary

hyperplanes HF
0 and HF

1 such that HF
0 ∩ HA contains F and HF

1 ∩ L 6= ∅. All the integer
points in Rm can be partitioned on equally spaced hyperplanes parallel to HA, and the
integer points in any of these hyperplanes can themselves be partitioned on equally spaced
affine subspaces parallel to HF

0 ∩ HA. Let Ak with k ∈ Z denote these affine subspaces in
HA, where A0 := HF

0 ∩ HA, A1 := HF
1 ∩ HA, and Aj is between Ai and Ak if and only if

i < j < k. Let B0 be an affine subspace in HB parallel to A0. Let a0 ∈ A0, b0 ∈ B0 and let
v be the vector b0 − a0. Define Bk = Ak + v with k ∈ Z to be the translate of Ak. (See an
illustration in Figure 13.)

For all i, j ∈ Z, define Ci,j as the hyperplane containing Ai ∪ Bj . For all k ∈ Z, we
have that C0,k and C1,k+1 are the boundary hyperplanes of a split (πk, πk

0 ). If Q ⊆ {x ∈

Rm | πx ≤ π0}, then the lemma holds. So we assume that int
(

Q(π, π0)
)

6= ∅. Let ℓ be

the largest index k such that C0,k ∩ int
(

Q(π, π0)
)

= ∅. Let t be the finite index such that

p ∈ conv(A0 ∪ Bt) ∪ int
(

conv(A0 ∪ Bt ∪ Bt+1)
)

. Consider the sequence of L-intersecting
splits (πℓ, πℓ

0), . . ., (πt, πt
0). Let Qk for k = ℓ, . . . , t be the polytopes obtained by applying
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A−1

A0

A1

A2

B0

B1

B2

C0,0

C0,1

C1,1

C1,2

Figure 13: Illustration for the proof of Lemma 5.13 with m = 2, ℓ = 0 and t = 1. Polytope
Q is shaded.

this sequence of splits to Q. We claim that p 6∈ Qt and that, in fact, p and Qt(π, π0) are on
opposite sides of the hyperplane C0,t+1. If the claim is correct, applying the same reasoning
to each facet of L in succession yields the lemma.

Let Uk := Qk(π, π0) for k = ℓ, . . . , t and let H̄B be the half-space bounded by HB

containing HA. We prove the claim by induction on k by showing that Qk is contained on
one side of C0,k+1 and that C0,k+1 ∩ Uk = F for k = ℓ, . . . , t.

For k = ℓ, observe that C0,ℓ ∩ Q(π, π0) = F and thus C0,ℓ ∩ Q is contained on one side
of C0,ℓ+1. Observe also that C1,ℓ+1 ∩ Q is contained in the interior of H̄B and thus it is on
the same side of C0,ℓ+1 as C0,ℓ ∩Q. It follows that Qℓ is contained on one side of C0,ℓ+1 and
that the only points of U ℓ on C0,ℓ+1 are points in F . This proves the claim for k = ℓ.

Suppose now that k > ℓ and that the induction hypothesis is true for k− 1. Observe that
C0,k ∩Uk−1 = F and that C1,k+1∩Qk−1 is contained in the interior of H̄B and thus is on the
same side of C0,k+1 as C0,k ∩Qk−1. It follows that Qk is contained on one side of C0,k+1 and
that the only points of Uk on C0,k+1 are points in F . This proves the claim for k > ℓ.

5.4 Proof of the main theorem

Consider a full-dimensional polytope L ⊂ Rm. By a theorem of Chvátal [5], there exists a
finite sequence of Chvátal splits S := ((π1, π1

0), . . ., (πc, πc
0)) such that, when applying the

sequence S to L, the last polytope Lc is the convex hull LI of the integer points in L. If
L = LI , we define c := 0. Otherwise, if L 6= LI , define L0 := L and, for j = 1, . . . , c, let Lj be
the sequence of polytopes obtained from S. We may assume that Lj 6= Lj−1 for j = 1, . . . , c.
If LI is not full-dimensional, we set t to be the smallest index in {0, 1, . . . , c − 1} such that
(πt+1, πt+1

0 ) is Lt-englobing. If no such englobing split exists in the sequence, we set t := c.
It follows that Lj is full-dimensional for j = 0, . . . , t. We say that L has Chvátal-index t if t
is the smallest possible value over all possible sequences of Chvátal splits as described above.

Observation 5.14. If L ⊂ Rm is a full-dimensional polytope with the 2-hyperplane property
and Chvátal-index t, then there exists a sequence S of t Chvátal splits together with a split
(πt+1, πt+1

0 ) that is Lt-englobing.

Proof. If LI is full-dimensional then LI = Lt and LI is not contained in a facet of L. Since
L has the 2-hyperplane property, LI is 2-partitionable and therefore an LI -englobing split
exists. This is the split (πt+1, πt+1

0 ).
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If LI is not full-dimensional, we must have c > t and the definition of t shows that
(πt+1, πt+1

0 ) is Lt-englobing.

We now prove a result that implies Theorem 5.1.

Theorem 5.15. Let L be a full-dimensional rational lattice-free polytope in Rm such that
L has the 2-hyperplane property, and let M0 < M be finite numbers. For any polyhedron
Q ⊂ R(L, M, M0), there exists a finite number q such that the height of the rank-q split
closure of Q is at most M0.

Proof. If there exists an L-englobing split (π, π0), then for any polyhedron Q ⊂ R(L, M, M0),
the height of Q(π, π0) is at most M0 and the theorem holds.

We prove the theorem by induction on the dimension m of L. If m = 1, L cannot contain
more than two integer points and thus an L-englobing split exists and the result holds.

Assume now that L has dimension m ≥ 2 and that the result holds for polytopes with
strictly smaller dimension. Let t be the Chvátal-index of L. We make a second induction on
t. More precisely, the induction hypothesis is that the theorem holds for any full-dimensional
rational lattice-free polytope K ⊂ Rk with either k < m, or k = m and Chvátal-index t′ < t,
for any finite numbers M∗

0 < M∗, and for any Q∗ ⊂ R(K, M∗, M∗
0 ).

Assume first that t = 0. Observation 5.14 shows that there exists an L-englobing split
and therefore the theorem holds. Assume now that t > 0. We consider the first Chvátal split
(π1, π1

0) in a sequence (πi, πi
0), i = 1, . . . , t leading from L to LI . The following claim, if true,

shows that the effect of applying (π1, π1
0) on L can be obtained by applying a finite sequence

of intersecting splits for polytopes satisfying the statement of Lemma 5.7.

Claim 5.16. Let (π1, π1
0) be a Chvátal split for L such that L(π1, π1

0) 6= L. Then there exist
a finite number n ≥ 1, polytopes Li, and splits (µi, µi

0) such that (µi, µi
0) is Li-intersecting

for i = 1, . . . , n, and the following properties hold, where Di = cl(Li \ Li(µi, µi
0)):

(i) L ⊆ L1;

(ii) L \ (D1 ∪ . . . ∪ Di) ⊆ Li+1 for i = 1, . . . , n − 1;

(iii) cl(L \ L(π1, π1
0)) ⊆ D1 ∪ . . . ∪ Dn.

Before proving the claim, we show that it implies the theorem. We use a third level of
induction, this time on the number n from the above claim. We assume that the theorem
holds for any full-dimensional rational lattice-free polytope K ⊂ Rk, for any finite numbers
M∗

0 < M∗, for any Q∗ ⊂ R(K, M∗, M∗
0 ) with either

1. k < m, or

2. k = m and K has Chvátal-index t′ < t, or

3. k = m, K has Chvátal-index t and there is a sequence of length n′ < n satisfying
Claim 5.16 for the first of the t Chvátal splits.
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As above, we assume that L has Chvátal index t > 0 and Q ⊂ R(L, M, M0). Let (π1, π1
0)

be a Chvátal split such that L(π1, π1
0) has Chvátal index t − 1. Consider the sets defined

in Claim 5.16. By Lemma 5.7 for L, Li, (πi, πi
0) := (µi, µi

0) for i = 1, . . . , n, M∗ := M ,
M∗

0 := M0 and Q, we obtain ∆ > 0 and a finite sequence of splits S such that after applying
the sequence S to Q, one of the following cases holds:

(i) the height of all points in D1 = cl(L1 \L1(µ1, µ1
0)) is at most M0 with respect to Q(S).

(ii) the height of all points in D1 ∪ . . . ∪ Dn is at most H − ∆ · (M − M0) with respect to
Q(S), where H denotes the height of Q;

Case (i): We use the induction hypothesis on K := cl(L\D1). Note that, by Lemma 5.2,
Q(S) ⊆ R(K, H ′, M0), where H ′ is the height of Q(S), since the height of all points in D1 is
at most M0 with respect to Q(S), and this is also the case for all points not in the interior
of L.

If n = 1, then K ⊆ L(π1, π1
0) by (iii) of Claim 5.16. Since L(π1, π1

0) has Chvátal index
t − 1, it satisfies the second induction hypothesis and the result holds.

If n ≥ 2, observe that Li and (µi, µi
0) for i = 2, . . . , n show that the claim is satisfied with

a sequence of n − 1 splits for K. By definition of the Chvátal index, K is full-dimensional
and therefore K satisfies the third induction hypothesis.

Therefore, by induction, there exists a finite q′ such that the height of the rank-q′ split
closure Q1 of Q(S) is at most M0. Since the split closure of a polyhedron is a polyhedron [6],
this implies the existence of a finite sequence S′ of splits that gives Q1 when applied to Q(S).
Applying the sequence S followed by the sequence S′ on the polyhedron Q, we reduce its
height to at most M0, proving the theorem.

Case (ii): If M0 ≥ H − ∆ · (M − M0), then in particular the height of all points in
D1 is at most M0 with respect to Q(S) and Case (i) applies. Therefore we may assume
that M0 ≤ H − ∆ · (M − M0). Case (ii) combined with conclusion (iii) in Claim 5.16 that
cl(L \ L(π1, π1

0)) ⊆ D1 ∪ . . . ∪ Dn, implies that the height of all points in cl(L \ L(π1, π1
0))

is at most H − ∆ · (M − M0) with respect to Q(S). Recall that all points not in the
interior of L have height at most M0 ≤ H − ∆ · (M − M0) with respect to Q and thus
also with respect to Q(S). Let H(S) be the height of Q(S). Then, by Lemma 5.2, Q(S) ⊆
R(L(π1, π1

0), H(S), H − ∆ · (M − M0)). Since the Chvátal-index of L(π1, π1
0) is t − 1, we

can apply the second induction hypothesis to Q(S). Therefore, there exists a finite sequence
S1 of splits that gives a polyhedron Q1 of height at most H − ∆ · (M − M0) when applied
to Q(S). We can get Q1 from Q by applying the sequence S followed by S1. Note that
Q1 ⊆ Q ⊆ R(L, M, M0) so Lemma 5.7 can be applied to Q1 with the same ∆ and sequence of
splits S, and Case (i) or (ii) will hold, where the only change in Case (ii) is the height of Q1,
which is at most H−∆ ·(M−M0). Therefore let us apply the sequence S on Q1. If we end up
in Case (i) then we are done by the arguments in Case (i). Otherwise we have the situation
of Case (ii) where the height of all points in D1 ∪ . . . ∪ Dn is at most H − 2∆ · (M − M0)
with respect to Q1(S). If M0 ≥ H − 2∆ · (M − M0), the theorem follows as in Case (i). If
M0 ≤ H−2∆ ·(M −M0), we can apply the second induction hypothesis to Q1(S). Therefore,
there exists a finite sequence S2 of splits that we can apply to Q1(S) to obtain Q2 with height
at most H − 2∆ · (M −M0). We can get Q2 from Q by applying the sequence S followed by
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S1 followed by S followed by S2. Continuing this process at most ⌈ H−M0

∆·(M−M0)⌉ times, we end

up in Case (i) at some point, proving the theorem.

It thus remains to prove the claim.

Proof of Claim 5.16. Let HA and HB be the boundary hyperplanes of the Chvátal split
(π1, π1

0) such that L∗ := HA ∩ L 6= ∅. By assumption, (π1, π1
0) is not L-englobing and

L(π1, π1
0) 6= L. Therefore, L∗ is not a face of L and thus dim(L∗) = m − 1 and L∗ is

lattice-free in its affine space. Moreover, both HA and HB are lattice subspaces.
Let W be obtained using Theorem 5.12 on L∗, and let Ls := conv(L ∪ W ). Let d be

a vector joining an integer point in HA to an integer point in HB. Let q ∈ relint(W ) and
let p be a point on the boundary of Ls between HA and HB such that the line joining q
and p is in the direction d (Figure 14, left). Apply Lemma 5.13 to Q := Ls, L := W , p,
and (π1, π1

0). This yields a sequence (µ1, µ1
0), . . . , (µ

r, µr
0) of W -intersecting splits with the

following property. Let L1 = Ls and, for i = 1, . . . , r, define Li+1 as the polytope obtained
from Li by applying the split (µi, µi

0). Then Lemma 5.13 shows that Lr+1 ∩ {x | π1x ≥ π1
0}

is contained in conv(p ∪ W ).

pq

p′

q′

HA HB

xm

xm = 0

d

W
W ′

Figure 14: Illustration for the proof of Theorem 5.15. On the left, polytope Ls ⊆ R2 is shaded,
W is a segment, and part of cone U is lightly shaded with its boundary in dashed lines. On
the right, the images of W , U , p, and q after applying the unimodular transformation τ are
depicted.

Let U be the cone with apex p and rays joining p to the vertices of W . Observe that
U ⊇ Lr+1. Let T : Rm → Rm be a unimodular transformation mapping the vector d to
(0, . . . , 0, 1) ∈ Rm and mapping HA to Rm ∩ {x | xm = 0} (Figure 14, right). Note that
T (Zm ∩ HA) = Zm ∩ {x | xm = 0} by Corollary 4.3a in Schrijver [14].

Let p′ := T (p), U ′ := T (U), and W ′ := T (W ). As L has the 2-hyperplane property, and
as L∗ is the intersection of L with one boundary hyperplane of a Chvátal split, the convex hull
G of the integer points in L∗ is a face of LI . Moreover, if a face of G is contained in a facet
of L then it is contained in a facet of L∗. It follows that L∗ has the 2-hyperplane property
and by applying Theorem 5.12 to L∗ we obtain that so does W . As T is unimodular,
the transformation T maps splits in HA to splits in Rm ∩ {x | xm = 0}. Therefore, W ′

also has the 2-hyperplane property. We will now apply the first induction hypothesis to
K := W ′ ⊆ Rm−1, Q∗ := U ′ ⊆ Rm, M∗ equals the height of U ′ and M∗

0 = 0. Here,
the crucial point to follow this induction step is to understand that variable xm plays the
role of variable z. Thus, all splits obtained from this induction are parallel to the xm-
axis. Note that, by Lemma 5.2, Q∗ ⊆ R(K, M∗, M∗

0 ). By induction, there exists a finite
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sequence of splits, all parallel to the xm-axis, whose application on U ′ reduces its height to
0, or equivalently, removes conv(p′ ∪ W ′). Using the inverse of T , this yields a sequence
(µr+1, µr+1

0 ), . . . , (µn, µn
0 ) of splits whose boundary hyperplanes are all parallel to d and such

that its application to U removes conv(p ∪ W ). Since −d is in the interior of the full-
dimensional recession cone of U , the sequence (µr+1, µr+1

0 ), . . . , (µn, µn
0 ) is U -intersecting.

One last hurdle remains, as U is unbounded and we need to construct polytopes Li such
that (µi, µi

0) is Li-intersecting. To this end, let U r+1, . . . , Un be the polyhedra obtained by
applying the sequence (µr+1, µr+1

0 ), . . . , (µn, µn
0 ) to U . For j = r + 1, . . . , n, let w1,j and w2,j

be two integer points in U j contained in each of the two boundary hyperplanes of (µj , µj
0)

respectively. It is possible to truncate U into a polytope U∗ by intersecting U with a half-
space bounded by a hyperplane parallel to HA, such that Lr+1 and all the points w1,j , w2,j are
contained in U∗. As all these points are integer, they are contained in the polytope obtained
by applying the sequence (µr+1, µr+1

0 ), . . . , (µn, µn
0 ) of splits to U∗, proving that the sequence

is a U∗-intersecting sequence.
Redefine Lr+1 to be equal to U∗ and note that this redefinition is an enlargement. For

i = r + 1, . . . , n, define Li+1 as the polytope obtained from Li by applying the split (µi, µi
0).

The sequence (µi, µi
0) and polytopes Li for i = 1, . . . , n are those used to show that Claim 5.16

is satisfied. Indeed, by construction, L ⊆ Ls = L1, therefore point (i) holds. Observe that
since L ⊆ L1, L \ (D1 ∪ . . . ∪ Di) ⊆ L1 \ (D1 ∪ . . . ∪ Di) = Li+1 for i = 1, . . . , r − 1.
Moreover, because the redefinition of Lr+1 is an enlargement, Lr \Dr ⊆ Lr+1. Consequently,
L1 \ (D1∪ . . .∪Di) ⊆ Li+1 for i = 1, . . . , r. Also note that Li \Di = Li+1 for i = r +1, . . . , n.
Therefore, point (ii) holds. Finally, point (iii) holds since L1 \ (D1 ∪ . . .∪Dr) is contained in
conv(p ∪ W ) and Dr+1 ∪ . . . ∪ Dn contains conv(p ∪ W ). Therefore D1 ∪ . . . ∪ Dn contains
cl(L \ L(π1, π1

0)).

This completes the proof of Theorem 5.15

We can now prove Theorem 5.1, completing the proof of Theorem 1.1.

Proof of Theorem 5.1. Since f ∈ int(L) and L satisfies the assumptions of Theorem 5.15, we
have that PL ⊂ R(L, 1, 0). Theorem 5.15 implies that there exists a finite number q such
that the height of the rank-q split closure of PL is at most zero. By Observation 3.2, this
implies that the split rank with respect to P of the L-cut is at most q. 2
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