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SKILL SPECIALIZATION AND THE FORMATION OF
COLLABORATION NETWORKS

KATHARINE A. ANDERSON

Abstract. In recent years, there has been increased interest among funding organizations

and administrators in supporting the acquisition of interdisciplinary skills in collaborative

communities, such as universities, national labs, and knowledge-based firms. However,

there has been relatively little work exploring the effects of interdisciplinarity on the struc-

ture and function of these communities. In this paper, I use a collaboration network–in

which the nodes are individuals, and two nodes are connected if they’ve collaborated on a

problem–to formalize the structure of collaborative relationships. Using a formal model of

the collaborative process, I examine the effects of increased interdisciplinarity on the struc-

ture of this collaboration network. I show that when collaborative communities become

more interdisciplinary, the links in the network become more concentrated among a few,

high-degree individuals, and superstars emerge. These individuals, who are so productive

that their contributions dominate the overall community, are a potential unintended con-

sequence of policies intended to increase interdisciplinarity. I then define a specialist to

be an individual whose skills cluster in a single area, and a generalist to be an individual

whose skills span several areas, and I examine the roles that specialists and generalist play

in the network. I show that while specialists have more links in the collaboration network,

generalists are more likely to bridge between different communities. Given that individuals

in these communities tend to benefit from being highly connected, while the community as

a whole benefits from bridging activities, this result suggests that generalists may be un-

dersupplied, which lends support to policies that fund the acquisition of interdisciplinary

skills in situations where bridging activities are valued by the community at large but are

not individually rational.

Collaborative problem-solving is vital to the generation of new knowledge in universities,

national labs, and within industry. The organization of these problem-solving communities

is important because it governs the flow of information and ideas, and can ultimately help

determine the pace of innovation. A collaboration network captures the organization of a

collaborative community, highlighting both overall structure and the role of the individual.

1
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Nodes in these networks are individual problem solvers, and two individuals are connected

if they have worked together on a problem.

Collaboration is particularly important in knowledge-generation, because it allows in-

dividuals with different sets of skills to work together and solve problems that no single

individual in the community could solve alone. This suggests that individuals with different

skill sets should have different roles in the collaborative community. In particular, suppose

we have two individuals: a specialist, whose skills are tightly clustered in a single area, and a

generalist, whose skills span several different areas. What role will those two individuals play

in the collaborative community? Will they occupy different positions in the collaboration

network? And how does the mixture of these two types in the problem-solving population

affect the overall structure of the collaboration network? Will the collaboration network of

a population with more generalists differ substantially from the collaboration network of a

population with more specialists?

In this paper, I use a model of collaboration network formation to make predictions

about the role of skill specialization in individual network position and the structure of

collaboration networks. I show that the collaborative process exaggerates small differences in

skill level–individuals with a small number of additional skills have dramatically more links,

leading to an empirically-familiar "hub and spoke" network structure. I show that when

collaborative communities become more interdisciplinary, the links in the network become

more concentrated among a few, high-degree individuals, and superstars emerge. These

individuals are so productive that their contributions dominate the overall community. On

an individual level, a person’s position in the collaboration network differs depending on

whether they are a specialist or generalist. Specialists are much more likely to be the high-

degree hubs in the network, while generalists are much more likely to be bridges between

different communities.

This work has some interesting implications for the funding of interdisciplinary researchers.

In the past few decades, there has been considerable interest, both within funding organi-

zations and among the ranks of university, hospital, and national lab administrators, in

increasing the number of interdisciplinary researchers in academic institutions. Implicitly, it

is assumed that 1) interdisciplinary researchers have positive affects on the productivity of
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the field as a whole, and 2) the number of interdisciplinary researchers is lower than is opti-

mal. However, there is relatively little research to back up either of these assumptions. This

work provides some support for both of these claims. There is some research which indicates

the importance of bridging activity in the flow of information through organizations.1 This

research suggests that generalists are more likely to fill those bridging roles, making them

valuable to the field as a whole. Moreover, considering that high degree is correlated with

high productivity in collaborative communities, while bridging activity is not, this work

suggests that there is not much individual incentive to be an interdisciplinary researcher,

and thus absent the intervention of a central authority, there may be an under-supply of

interdisciplinary researchers in the population.

1. Models of Collaboration Network Formation

Collaboration networks provide a useful way of looking at the structure and function of col-

laborative communities. One striking feature of these networks is their great heterogeneity.

Some individuals have very few links, while others have a great many. Some individuals are

firmly ensconced within their communities, while others create bridges between communities.

Moreover, while there are similarities in the overall structure of collaboration networks, the

details of network structure clearly vary from one context to the next. As social scientists,

we would like to believe that these variations in network position and network structure are

due to some underlying heterogeneity between individuals and heterogeneity between collab-

orative communities. Indeed, the models used by empirical networks researchers implicitly

assume such a connection exists. However, most theoretical models of network formation

do not make the connection between individual heterogeneity and network heterogeneity.

The model I use in this paper is explicitly designed to draw this connection, and thus before

moving forward, it is worth taking a step back to look at the variety of models that have

been used to generate social network structures.

These models can roughly be divided into two categories: statistical models and decision-

based models. In statistical models, individual nodes are connected via some kind of sto-

chastic process. The most famous of these models is “preferential attachment”, in which

new nodes connect to existing nodes with a probability that is proportional to the number

of connections a node already has. These models are very good at replicating the large-scale

1Burt (2001)
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structures common to most social networks, including the skewed degree distribution men-

tioned above.2 The disadvantage of these models is that because individuals are not making

decisions about their connections, they do not respond to incentives. Moreover, the pri-

mary factors that distinguish low-degree nodes from high-degree nodes are age and “luck”.3

Although this undoubtedly captures some of the variation in node degree in collaboration

networks, there is surely some additional variation due to individual skill heterogeneity.

A second class of models, called decision-based models, allow individuals to make their

linking decisions based on optimizing some kind of objective function.4 The advantage of

these models is that because individuals make decisions, they can be made to respond to

incentives. However, most decision-based models of network formation assume that indi-

viduals are heterogeneous.5 This means that the networks formed from these models are

symmetric, and bear little resemblance to empirically-observable collaboration networks. In

particular, there are no high-degree nodes. Thus, these models cannot be used to answer

questions about who will end up in what position in the network.

The model in this paper is a member of a class of decision-based models in which het-

erogeneity in individual skill sets is translated into heterogeneity in network structure. The

following section elaborates both on this general class of models, and on the specific model

that I will be using in this paper.

2. Model

2.1. The General Model. The model of network formation that I will use here is based on

the general model of collaboration network formation with heterogeneous skills, presented

in Anderson (2011). In that model, there is a population of heterogeneous problem solvers,

each of whom faces a complex problem. Each individual is endowed with a set of skills

useful for solving the problems faced by the population as a whole. These skills are pieces

of knowledge, abilities, and tools that useful for solving problems, and are not easily passed

2Barabási and Albert (1999) is the seminal paper. A number of follow up papers, including Jackson and
Rogers (2007) make changes to the original model, which create a better match between the degree distri-
bution obtained from the model and empirical reality.
3That is to say, a stochastic element.
4See, for example, Jackson and Wolinsky (1996) and Goyal and Moraga-González (2001)
5An exception is a literature springing from Galeotti et al. (2006), which includes Goeree et al. (2009). This
literature is based on Jackson and Wolinsky (1996) and allows individuals to be heterogeneous in the cost of
making links. However, this heterogeneity is obviously considerably different than heterogeneity over skills.
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from one individual to the next.6Although it is possible that an individual will have all of

the skills required to solve her problem alone, complex problems are unlikely to yield to the

abilities of a single individual. When an individual does not have all of the skills required

to solve her problem by herself, she can collaborate with others. Together, all of these

collaborations form a collaboration network.

More formally, let I = {1, 2, ...N} denote the set of problem solvers, andS = {a1...aM}
denote the (finite) set of all skills. Individuals are endowed with two things: a problem,

ωi ⊆ S, and a skill set, Ai ⊆ S. The problem that a person has to solve is defined by the set

of skills that must be applied in solving it. Her skill set is the human capital (skills) that

she can apply towards solving it. The distribution of problems across individuals is Ω and

the distribution of skill sets is Ψ.

A collaboration is any subset of the problem solvers, C ⊆ I . A problem can be solved

by a given collaboration if that set of problem solvers has all of the required skills–that is,

a collaboration, C, can solve a problem, ω, if ω ⊆ ⋃k∈C Ak . An individual chooses a set of

collaborators, Ci, where i ∈ Ci by default.

For a given set of collaborations, C = {C1...CN}, a collaboration network, g (C), is given

by the set of all individuals linked via those collaborations. That is, ij ∈ g if j ∈ Ci. 7

In equilibrium, an individual chooses her set of collaborators to maximize her payoffs. A

problem yields a payoff of 1 if solved, and 0 if not solved: πi (Ci) =

{
1 if ωi ⊆

⋃
k∈Ci

Ak 0 otherwise .

The individual splits the payoff from the problem with her collaborators–each gets πi(Ci)
|Ci| .

An individual will potentially be asked to join other collaborations and solve other individ-

uals’ problems, and therefore her total payoff is given by ui (C) = πi(Ci)
|Ci| +

∑
j 6=i st i∈Cj

πi(Cj)
|Cj |

. Given this payoff structure, it is incentive compatible for the individual to choose the

smallest set of collaborators that will let her solve the problem, and the individual will be

indifferent between any two such minimum sets. 8

6Note that this latter characterization distinguishes skills from information. Whereas information is easily
passed from one person to another and aggregated across multiple individuals, skills are not.
7This network is technically directed. However, Anderson (2011) notes that links are pairwise stable, and
thus it is reasonable to think of the network as being undirected. Here, I will do the same.
8Anderson (2011) notes that any payoff structure that incentivizes minimizing the set of collaborators will
yield the same results. So, for example, if links are costly, the result is the same.
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Let C∗ denote a payoff-maximizing set of collaborations, {C∗1 ...C∗N}. The network that

results from such a payoff-maximizing set of collaborations is called a “complementary skills

network”.

Thus, the inputs to the general model are a population-wide distribution of skills, Ψ, and

a population-wide distribution of problems, Ω. The output is a set of payoff-maximizing

sets of collaborations, denoted C (Ψ,Ω), and a set of equilibrium networks, Γ (Ψ,Ω), where

g (C∗) ∈ Γ (Ψ,Ω) if C∗ ∈ C (Ψ,Ω). In other words, the inputs to the model are a set of

population characteristics, and the output is a set of networks that the problem solvers

might form, given those population characteristics. This direct mapping between individual

heterogeneity (Ψ and Ω) and network structure (Γ (Ψ,Ω)) is the strength of this model,

because it allows one to link the characteristics of a population to the structure of the

network, and an individual’s skill set to her position in the network.

2.2. A population with specialists and generalists. Here, I am considering the link

between skill specialization and network structure, so I will look at a particular specification

for Ψ and Ω. The existence of “generalists”–people whose skills span more than one area–

requires that skills be divided into at least two subcategories. Thus, I will assume that

the set of M skills is divided into two “disciplines”: A and B. Similarly, I will divide the

population in two, with half of the population being part of discipline A and half being part

of discipline B.

The distribution of skills in the population (Ψ) is defined as follows. Skills are distributed

independently.9 An individual has probability pown of having each skill in her own disci-

pline, and a probability pother of having each skill in the other discipline. I assume that an

individual is more likely to have skills in her own discipline, meaning that pown ≥ pother.

Thus, the probability of an individual having k skills in her own discipline and j skills in the

other discipline is pkown (1− pown)
M
2
−k pjother (1− pother)

M
2
−j . In this framework, specialists

and generalists emerge naturally. A specialist is any individual whose skills all fall within

their own discipline, while a generalist is an individual with skills in both disciplines.

For the moment, I will assume that the distribution of problems in the population (Ω) is

such that individuals face discipline-specific problems. That is, individuals in discipline A

9This is similar to the assumption of the Bernoulli Skills Model, which is outlined in Anderson (2011). In
the Bernoulli Skills Model, all M skills are distributed independently with probability p.
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all face the same problem, requiring all of the discipline A skills: ωA =
{
a1...aM

2

}
, while

individuals in discipline B all face the same problem requiring all of the discipline B skills:

ωB =
{
aM

2
...aM

}
. Note that this strict division of problems into “discipline A problems”

and “discipline B problems” will be relaxed later.

In this model of skill specialization, the distribution of skills and problems in the pop-

ulation is defined by three parameters: M , pown, and pother. Together, pown and pother

define the total amount of interdisciplinarity within the skill population. On one extreme,

if pother = 0, then nobody obtains skills in another discipline, and the two populations are

entirely separate. As pother → pown, there are more people with skills in multiple disciplines,

and the two populations merge. Thus, these two parameters adjust the mixture of specialists

and generalists in the population.

2.3. Model Implementation. The heterogeneity of collaboration networks makes them a

great tool for examining the function of collaborative problem solving communities. How-

ever, this heterogeneity also makes proving analytical results extremely difficult. This is

especially true for "global" network measures (those that depend on the structure of the

network as a whole, rather than just the local neighborhood of a node). Fortunately, in this

case there is little detail lost by simulating the model.10 For each set of parameters, I run

1000 simulations, generating 1000 possible networks. All results that follow are obtained

by averaging over those 1000 runs.11 Although I present results for only a handful of rep-

resentative parameter combinations, experiments indicate that the results hold across the

relevant range of parameter values.

2.4. An Example. Figure 2.1 illustrates the outcome of a single run with N = 100,M = 5,

pown = 0.25, and pother = 0.15.

3. Results

3.1. Network Structure and Specialization. First, consider the effect of specialization

on the overall structure of the collaboration network. There has been considerable interest

10As a check on this, I have simulated the Bernoulli Skills Model, laid out in Anderson (2011). For reasonably
large populations (N = 100), the results are similar to those obtained via analytical methods
11This differs only slightly from the procedure that would be required to obtain closed form solutions. In an
analytical environment, one would still average over the ensemble of networks that results from a particular
distribution of skills. In this case, I am also averaging over a number of draws from the same family of skill
distributions, represented by the parameter values.
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Figure 2.1. An example of a collaboration network with N = 100, M = 5,
pown = 0.25, and pother = 0.15.

among funding organizations in supporting the acquisition of interdisciplinary skills in aca-

demic communities. There has also been considerable money and institutional power devoted

to this goal among the administrators of research labs and academic institutions. However,

there is little understanding of how encouraging the acquisition of interdisciplinary skills

in individuals would impact the collaborative community as a whole. Thus, one question

with important implications is how increasing the prevalence of people with interdisciplinary

skills (generalists) affects the structure of the collaborative community. The amount of in-

terdisciplinarity in the problem-solving population is controlled by two parameters, pown

and pother. As pother → pown, there is more and more overlap in the skill sets of the two

disciplines, and thus more interdisciplinary workers. As pother → 0, there is less overlap,

and there are fewer interdisciplinary workers in the population. (See Figure 3.1 for an

illustration).

One measure of network structure that is particularly interesting is the degree distribution.

Empirically, the degree distribution of collaboration networks (and, indeed, most social

networks of all types) is skewed–the majority of the links are concentrated among a few,
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A B A BA B

pother = 0 pother ! pown

Figure 3.1. An illustration of the effects of adjusting pown and pother.

high-degree individuals, while most individuals have very few links.12 The resulting network

has a distinctive "hub-and-spoke" structure. However, the amount of skew in the degree

distribution differs from one population to another. For example, the degree distribution

of coauthorship networks in the medical community is much less skewed than the degree

distribution of coauthorship networks in the physics community.13 This has implications

for the way that these two communities function–in the physics community, the average

characteristics of the field is determined by a few, high-degree "superstars", whereas in the

biomedical community, the average characteristics are determined by the masses. Thus, it

would be valuable to know how the underlying characteristics of the community impact the

resulting degree distribution.

Overall, the degree distribution of a network that results from a population with in-

dependent skills tends to be skewed towards a few high-degree nodes, much as empirical

collaboration networks are. The source of this skew is explored in greater detail below.

Figure 3.2 illustrates the relationship between the shape of the degree distribution, and

the amount of interdisciplinarity in the population (the inset shows just the tail of the degree

distribution, better illustrating the behavior in this region). In all of the curves shown, the

number of skills required to solve the problem (M) is fixed. Similarly, the total fraction

of the skills that the average individual has (pown + pother) is fixed. What varies is degree

to which the collaborative communities overlap (pown − pother). When there aren’t many

12For example, we can see this in networks of interfirm collaboration (Powell et al. (1996), Iyer et al. (2006)),
creative artists in broadway plays (Uzzi and Spiro (2005)), film actors (Barabási and Albert (1999)), jazz
musicians (Gleiser and Danon (2003)), and coauthorship networks in a variety of fields: see Newman (2001)
(physics), Moody (2004) (sociology), Goyal et al. (2006) (economics), and Acedo et al. (2006) (management
science).
13Newman (2000)



SKILL SPECIALIZATION AND THE FORMATION OF COLLABORATION NETWORKS 10

0"

0.5"

1"

1.5"

2"

2.5"

3"

3.5"

4"

4.5"

5"

0" 0.2" 0.4" 0.6" 0.8" 1" 1.2" 1.4" 1.6" 1.8" 2"

0.35/0.05"

0.3/0.1"

0.25/0.15"

0.2/0.2"

log(degree)

lo
g(
fr
eq
ue
nc
y)

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

1.8"

2"

1.35" 1.45" 1.55" 1.65" 1.75"

0.35/0.05"

0.3/0.1"

0.25/0.15"

0.2/0.2"

Figure 3.2. The degree distribution of networks with different levels of in-
terdisciplinarity. As pown → pother, the population contains a larger propor-
tion of generalists, and the degree distribution becomes increasingly skewed
towards a few, high-degree nodes.

generalists (the dark blue line in Figure 3.2), there are more individuals with low degree,

and fewer individuals with high degree. In contrast, when generalists are more prevalent

(the light blue line), the tail of the distribution extends, and there are more high-degree

individuals.

The Gini coefficients for these distributions provide a way of quantifying the shape of

the degree distribution. A higher Gini coefficient indicates a more uneven distribution of

links across individuals. When pown = 0.35 and pother = 0.05, the Gini coefficient of the

degree distribution is 0.72. The Gini coefficient increases across the four distributions, and

when pown = pother = 0.20, the Gini coefficient is 0.87. This indicates that as the level of

interdisciplinarity increases ((pown − pother) → 0), the degree distribution of the network

becomes more skewed towards a few, high-degree nodes. This suggests that if funding

organizations put money into supporting the acquisition of interdisciplinary skills, they may
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Figure 3.3. Specialists have higher degree than generalists with the same
number of skills. Here, M = 20, pown = 0.35, and pother = 0.05. The average
is taken over 1000 networks.

also inadvertently concentrate the productivity of the community in a smaller number of

hands.

3.2. The Network Position of Specialists and Generalists. One of the most striking

features of collaboration networks is their skewed degree distribution–most of the links are

concentrated in a small number of hands. The natural question is: who are these high-degree

individuals going to be? Are specialists or generalists more likely to have a large number of

links? A comparison between specialists and generalists reveals that specialists have more

links, on average, than generalists with the same number of skills. This gap is wider for

highly-skilled individuals (see Figure 3.3).

In order to understand why specialists have more links, consider how an individual’s set of

skills is translated into her expected degree on a network. An individual’s expected degree is

a function of two things: 1) the number of people who need the various subsets of her skills

and 2) the number of other people who have that subset. Thus, the expression for an indi-

vidual’s expected degree on the collaboration network is E [d (A)] =
∑

C⊆A
Ψ(C)∑

D⊆S\C Ψ(C∪D) .
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Figure 3.4. Due to the strong correlation between betweenness and degree
(first panel), specialists also have higher betweenness than generalists with
the same number of skills (second panel). Here, M = 20, pown = 0.35, and
pother = 0.05. The average is taken over 1000 networks.

14 Because of the summation over all possible subsets of the skill set, this quantity is super-

additive in skills. However, only combinations of skills that are in demand by a particular

population contribute to an individual’s degree. Because problems are disciplinary, only

some combinations of skills will be in demand. All subsets of a specialist’s skills will be

demanded by the people in her discipline, whereas only subsets of a generalist’s skills will

be in demand.

This suggests that if problems are also made interdisciplinary–that is, if some problems

require a mixture of the skills in both disciplines–then the gap between specialists and

generalists should disappear. To illustrate this, consider a modification to the model. Instead

of every individual in a discipline getting the same problem, distribute problems in a way

that allows some problems to be interdisciplinary. For every individual, a problem has M
2

skills. Skills s = 1, 2, ...M2 are drawn from the set of skills from the person’s own discipline

with probability q ≤ 1
2 and from the other discipline with probability 1 − q. When q = 0,

problems are disciplinary, and when q = 1
2 , problems are entirely a-disciplinary. Varying q

between 0 and 1/2 reveals exactly what one would expect: as the community faces more

interdisciplinary problems, the skills of generalists become more useful, and the gap in Figure

3.3 narrows. In the extreme of q = 1
2 , where all problems are interdisciplinary, the gap closes

completely and generalists have equal degree to specialists, on average.

14Anderson (2011)
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Figure 3.5. Generalists have higher betweenness than specialists of the
same degree. Here, M = 20, pown = 0.35, and pother = 0.05. The aver-
age is taken over 1000 networks.

Clearly, degree is not the only network measure of importance to outcomes. Individuals

who form "bridges" between communities have an important role as the brokers of infor-

mation. So a natural question is whether specialists or generalists are more likely to bridge

between communities? One natural measure of how well an individual connects communities

is betweenness–a measure of the number of shortest paths that pass through a particular

individual. However, as can be seen in Figure 3.4, betweenness is highly correlated with

degree. Thus, if we simply look at the betweenness of individuals with the same number

of skills, the fact that specialists have higher degree swamps the results. By looking at the

betweenness of individuals with the same degree, we cancel out this effect. When we do

this, generalists have significantly higher betweenness than specialists in the lower tail of

the degree distribution.15 This effect is illustrated in Figure 3.5.

Together, these two results suggest that while specialists will tend to have more collabo-

rators (and thus, perhaps, be more productive), generalists will tend to play bridging roles

between communities. This is interesting, because it suggests a possible disconnect between

15In the upper tail of the degree distribution, the data is much sparser, so it will always be difficult to draw
conclusions in this region.
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individual incentives and the needs of the community at large. There is a wide-spread belief

that bridges between disciplines play a vital role in the health of the research community as

a whole. Given that generalists are more likely to bridge communities, this means that the

community as a whole benefits from having generalists around. However, if individual suc-

cess is measured via productivity, then it is to the advantage of the individual to specialize.

Together, these two facts mean that fewer people than is optimal may become general-

ists. Thus, to the extend that administers and funding organizations value bridges between

communities, these results may support policies that financially support the acquisition of

interdisciplinary skills.16

4. Conclusion

In this paper, I have used a theoretical model of the formation of collaboration networks

to explore the connection between individual skill specialization and network structure. On

a network-wide level, an increase in the number of generalists in a population will tend

to skew the degree distribution of the network towards a few, high-degree superstars. On

an individual level, specialists are more likely to occupy those high-degree positions in the

network, while generalists are more likely to occupy bridging positions between different

communities. While this model assumes a fixed, exogenous skill population, the results

presented here have implications for the acquisition of skills. In particular, to the extent

that we value the spillover effects of bridging between communities, this work suggests that

the external support of interdisciplinary work might be needed.

16While this model assumes a fixed skill population, it is also interesting to consider what these results
suggest about who would find it optimal to become a specialist or a generalist. For a moment, think of
the number of skills that an individual has as their "ability" level. Individuals with high ability get a large
bump in degree from specializing their skills. In contrast, the increase in their betweenness is relatively
modest. On the other hand, low ability individuals get a relatively modest boost in degree from diversifying
their skills, relative to the boost in betweenness from becoming generalists. This suggests that low ability
individuals may wish to generalize, while high ability individuals may wish to specialize. The crossover point
will depend on the relative weight placed by the individual on higher degree and higher betweenness. If we
consider that the highest-ability individuals in a population might choose to become generalists for reasons
that are outside the model (personality, boredom, natural spillover), then it is plausible that both very high
and very low ability individuals would become generalists. This might explain why generalists tend to have
higher variance in outcomes than specialists.
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