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THE EFFECT OF LATTICE PRUNING ON MMIE TRAINING

Long Qin and Alexander Rudnicky

School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

ABSTRACT

In discriminative training, such as Maximum Mutual Information
Estimation (MMIE) training, a word lattice is usually used as a com-
pact representation of many different sentence hypotheses and hence
provides an efficient representation of the confusion data. However,
in a large vocabulary continuous speech recognition (LVCSR) sys-
tem trained from hundreds or thousands hours training data, the ex-
tended Baum-Welch (EBW) computation on the word lattice is still
very expensive. In this paper, we investigated the effect of lattice
pruning on MMIE training, where we tested the MMIE performance
trained with different lattice complexity. A beam pruning and a pos-
terior probability pruning method were applied to generate different
sizes of word lattices. The experimental results show that using the
posterior probability lattice pruning algorithm, we can save about
40% of the total computation and get the same or more improvement
compared to the baseline MMIE result.

Index Terms— MMIE training, word lattice, lattice pruning

1. INTRODUCTION

Discriminative training schemes, such as Maximum Mutual Infor-
mation Estimation (MMIE) training [1], have been developed to im-
prove the accuracy of speech recognition systems trained using max-
imum likelihood estimation (MLE). To eliminate computation prob-
lems, the word lattice is used as a compact representation of compet-
ing hypotheses [2], and parameter optimization is conducted using
the extended Baum-Welch (EBW) algorithm [3].

The word lattice is usually a by-product of the recognition pro-
cess. It contains a set of word hypotheses with boundary times and
transitions between different hypotheses [4]. If no pruning is done,
the lattice can be highly accurate but also exorbitantly large. One
of the most effective lattice pruning methods is the beam pruning
during decoding [5]. Another very common method is to further
compress the lattice after it has been generated, where a word lattice
is usually converted to a word graph and all the time alignment infor-
mation is discarded, such as the finite state automata determination
and minimization [6] and the confusion network approach [7].

The above lattice pruning methods are not appropriate for the
purpose of lattice pruning for discriminative training. The word lat-
tice used in MMIE training is quite different from the lattice used
for multi-pass decoding: 1) normally a unigram language model is
used for calculating the language model score for word hypotheses
[8][9], 2) the time alignment information needs to be kept for the
EBW computation 3) the Gaussian occupation count is weighted by
the posterior probability of the word hypothesis. In this paper, we
proposed a new lattice pruning method which keeps the boundary
times of word hypotheses in the lattice and prunes unnecessary word
hypotheses by considering their posterior probabilities. The poste-
rior probability of a word hypothesis is calculated in the same way

as in MMIE training by doing the forward-backward computation on
the lattice. Using this method, word hypotheses which do not con-
tribute much to Gaussian count accumulation are removed from the
lattice. Therefore, we can save much EBW computation on the lat-
tice and still have the same performance as training with the original
lattice. Actually in [10], we found MMIE training with the pos-
terior probability lattice pruning can even yield more improvement
than the baseline MMIE results. While it is possible to dispense
with pruning [11], however, from the experiment results, doing so
does not appear to result in better adaptation. Moreover, practical
applications of discriminative training will still benefit from better
managed computational costs.

The rest of the paper is organized as follows. In section 2, an
introduction of MMIE training is given. Then Section 3 describes the
beam pruning method. The details of the posterior probability lattice
pruning algorithm will be presented in Section 4. And in Section 5
and 6 the experiment setup and results are provided. Concluding
remarks are provided in Section 7.

2. MAXIMUM MUTUAL INFORMATION ESTIMATION

As an alternative of the MLE training of HMMs, MMIE training
attempts to optimize the correctness of a model by formulating an
objective function that penalizes the confusable model to the true
model,

F (λ) =

R∑
r=1

log
Pλ(Or|Msr )P (Sr)∑

s Pλ(Or|Ms)P (S)
, (1)

where λ represents the acoustic model parameters, Or are the train-
ing utterances, Ms is the model corresponding to a word sequence s,
and sr is the correct transcription for the rth utterance, while P (S)
is a weakened language model such as a unigram language model.
Thus, MMIE tries to maximize the likelihood of the correct tran-
scription and simultaneously minimize the likelihood of the compet-
ing word hypotheses.

The MMIE objective function can be optimized using the EBW
algorithm, and the mean and variance of a particular dimension of
the Gaussian mixture component m for state j can be re-estimated
as follows

µ̂j,m =
{θnum

j,m (O)− θden
j,m(O)}+ Dj,mµj,m

{γnum
j,m − γden

j,m}+ Dj,m
(2)

σ̂2
j,m =

{θnum
j,m (O2)− θden

j,m(O2)}+ Dj,m(σ2
j,m + µ2

j,m)

{γnum
j,m − γden

j,m}+ Dj,m
− µ̂2

j,m,

(3)
where rj,m is the occupation count of the Gaussian mixture com-
ponent, and θj,m(O) and θj,m(O2) are the standard weighted sums
over feature x(t) and x(t)2 respectively. The Gaussian specific
learning rate constant Dj,m is used to control the speed of the



Fig. 1. A lattice corresponding to “<s> YES </s>”

parameter update and is set to be large enough to ensure that all
Gaussian variances remain positive. The above update equations
require accumulating statistics for the numerator and denominator
HMMs by doing the forward-backward computation on the nu-
merator and denominator lattices. The numerator lattice can be
generated by aligning the acoustic data against a network of HMMs
built according to the correct transcription. The denominator lat-
tice corresponds to all possible competing word sequences and is a
by-product of the recognition process of the training utterances.

Fig. 1 gives an example of a lattice generated from the Sphinx
III decoder [12]. In this lattice, each node is associated with a word
and its entry time. An arc is the transition from one node to another.
We can find that even a sentence only has one word, there are many
nodes and arcs in the lattice. For a longer sentence in a LVCSR
system, a lattice may contain thousands of nodes and arcs. The EBW
computation on such lattice can still be very time consuming. In
our experiment, to simplify the EBW implementation, we converted
the numerator lattices and denominator lattices into a simpler format
in which each element contains a word hypothesis and the indexes
for preceding and succeeding hypotheses. In this simplified format,
word hypotheses are sorted by their entry time.

3. BEAM PRUNING

Beam pruning is one of the most effective ways to do lattice pruning.
It is applied during the recognition process of the training data. Dur-
ing decoding, the decoder only expands the HMM states which have
accumulated likelihoods that are greater than a beam width multi-
plied by the best accumulated likelihood so far. By doing this, we
can eliminate those states which have very low likelihoods and get a
very small lattice. But in MMIE training, where the Gaussian mix-
ture occupation count is weighted by the posterior probabilities of
word hypotheses, pruning only by accumulated likelihood is not ap-
propriate. Also in beam pruning, when a state is pruned, all word
sequences ending with that state are pruned out. By doing this, we
may lose many competing word hypotheses which have high pos-
terior probabilities. In fact, the beam pruning method has been re-
ported to reduce the benefit of MMIE training [11]. Here we just
consider it as a baseline result.

4. POSTERIOR PROBABILITY PRUNING

In MMIE training, the Gaussian occupation count from each com-
peting word hypothesis is weighed by the word posterior probability.
Word hypotheses with low posterior probabilities do not contribute

Fig. 2. A lattice corresponding to “<s> YES </s> after the poste-
rior probability arc pruning”

much to the statistics accumulation, so pruning them out should not
affect the MMIE performance. As shown in Fig. 1, nodes and arcs
are two basic elements of a word lattice, and we can thus perform
lattice pruning on those two levels respectively.

4.1. Arc Pruning

Each node in the lattice has a number of outgoing arcs which are
transitions from the current node to succeeding nodes. We can find
an arc which has the highest posterior probability within all those
transitions. Then arcs (transitions) whose posterior probability is
lower than a beam width multiplied by the best one will be pruned.
This can be done in a forward pass from the beginning to the end of
the lattice. Similarly, each node also has many incoming arcs which
are transitions from preceding nodes to the current node. We can
therefore do a backward pass of pruning on those incoming arcs.

The posterior probability of each arc is calculated in the same
way as doing the forward-backward computation on the lattice in
MMIE training. Assuming in a word lattice, we have q = 1...Q
arcs sorted in time. And we have already calculated the pre-scaled
language model score lm(q) and acoustic likelihood ac(q) for each
arc. In this paper, the language model score lm(q) comes from a
unigram language model, while the acoustic likelihood ac(q) is es-
timated using Viterbi. Then the posterior probability of each arc can
be computed as:

1. Initialize α(1) = β(Q) = 1.0

2. for arc q = 1...Q, for arc r preceding q,
α(q)+ = α(r) ∗ ac(q) ∗ lm(q)

3. for arc q = Q...1, for arc r following q,
β(q)+ = β(r) ∗ ac(q) ∗ lm(q)

4. for arc q = 1...Q,
γ(q) = α(q) ∗ β(q)/(ac(q) ∗ lm(q) ∗ β(1))

Fig. 2 shows the posterior probability arc pruning result of the
Fig. 1 lattice. It can be observed that the lattice now contains much
fewer arcs. And some nodes in the lattice have also been removed as
a result of the pruning of all its incoming or outgoing arcs.

4.2. Node Pruning

Aside from the large number of arcs in the word lattice, we can also
find many duplicate nodes with the same word hypothesis but differ-
ent entry times, such as node “YES/28”, node “YES/30” and node
“YES/32” as well as node “YET/28” and node “YET/30” in Fig. 1.
In some lattices, the number of such duplicate nodes might be hun-
dreds. So in addition to the posterior probability arc pruning, we can
also apply the posterior probability pruning on the node level. First,



the posterior probability of each node is calculated as the sum of the
posterior probability of all its outgoing arcs. Then from the begin-
ning to the end, the search of the duplicate nodes is done in the range
of a 20-frame window, which is actually +/-10 frames around a node.
Among those duplicate nodes, the node whose posterior probability
is lower than a beam width multiplied by the best one will be pruned.

Clearly, these two levels of posterior probability pruning can
be combined together to get the best result. To do this, we fixed
the beam width for the node pruning and then tried different beam
widths for the arc pruning.

5. EXPERIMENT SETUP

To investigate the effect of above lattice pruning methods on MMIE
training, we worked with the WSJ-SI84 data set, which contains
about 15 hours speech from 84 different speakers. The input data
was 13-order mel-scale frequency cepstral coefficients (MFCC) in-
cluding c0, and then the delta and delta-delta coefficients were cal-
culated for training. The initial MLE-trained HMMs had 2932 states
with 8 mixture components per state. The testing data was the Nov.
’92 5k-word task development and evaluation set. And the recogni-
tion used the Lincoln Labs 5k-word closed vocabulary trigram lan-
guage model from WSJ0. The numerator lattices were generated by
doing forced alignment between the correct transcription and the cor-
responding HMM network. The denominator lattices were generated
by decoding the training utterances using a 64k-word vocabulary un-
igram language model trained from the WSJ0 language model data.
The same unigram language model was also used for lattice proba-
bility computation. The numerator lattice was always incorporated
into the denominator lattice to ensure that the denominator lattice
contain the correct transcription of the utterance. In this paper, the
lattices were only generated once and then used in each iteration of
the EBW computation.

All experiments were performed in a Linux cluster environment,
where each machine has a 3.0 GHz 4-core Xeon CPU and 16 GB
memory. And we used 20 CPUs of it to run our experiments.

6. EXPERIMENT RESULTS

6.1. Computation Analysis

The computation of MMIE training mainly comes from three parts:
the lattice generation, the lattice format conversion and the EBW
computation. In our experiments, the lattice format conversion usu-
ally costs much more than the other two parts. Furthermore, the
computation from the latter two parts is proportional to the number
of word hypotheses in the lattice. For example, if we pruned the lat-
tice to half of its original size, then we can save about 50% of the
running time for the lattice format conversion and the parameter up-
date using EBW. Table 1 shows the comparison of running time for
MMIE training on WSJ-SI84 data set. The size of the lattice gener-
ated from beam pruning or the posterior probability pruning is about
half of the lattice used in the baseline MMIE training. Step 1, 2, 3
corresponds to the lattice generation, the lattice format conversion
and 4-iteration EBW run, respectively. And step 4 is the posterior
probability pruning. In this paper, the reported execution times are
the CPU time averaged across all 20 processors and should be con-
sidered approximate. It can be found, we can save about 40% to 50%
of the overall MMIE running time when performing MMIE training
with beam pruning or the posterior probability pruning. Generally,
the smaller the lattices, the less computation we would need.

Table 1. Comparison of running time (minutes) for MMIE training
Step 1 Step 2 Step 3 Step 4 Total

baseline 28.3 141.9 78.0 - 258.2
beam 19.6 72.3 36.8 - 128.7

posterior 28.3 72.8 37.0 19.8 157.9

6.2. Baseline MMIE Results

Table 2 shows the recognition results for MMIE training compared
to the initial MLE results. We can find that by applying MMIE train-
ing, the relative improvement of the word error rate (WER) on the
evaluation set and development set was 6.2% and 3.0%, respectively.
The different performances between evaluation set and development
set had been noted in [9]. This might because the training did not
generalize well to the development data.

Table 2. Baseline MLE and MMIE results
Training Word Error Rate (WER) %
Criterion Eval Dev

MLE 6.63 6.99
MMIE 6.22 6.78

6.3. Lattice Pruning Results

The lattice pruning was only applied to the denominator lattices be-
fore they were merged with the numerator lattices. To perform beam
pruning, different beam widths, such as 1E-80, 1E-70, 1E-60, etc.
were used during the decoding of the training utterances. The lat-
tices generated from the beam width of 1E-80 were selected as the
baseline lattices to be further pruned using the posterior probability
lattice pruning method. Beam widths of 1E-70, 1E-50, etc. were
tried for the arc pruning and beam widths of 1E-10 and 1E-5, etc.
were tried for the node pruning. When combining the arc and the
node pruning, beam width of 1E-10 was fixed for the node pruning
and beam widths of 1E-70, 1E-50, etc, were tried for the arc pruning.

We used the following measurements to evaluate the effect of
lattice pruning:

• Lattice density: the number of nodes in the lattice divided by
the actual number of words in the correct transcription. It is
an estimate of the lattice complexity.

• Lattice WER: the best WER of any path in the lattice. It is a
lower bound on WER which can be obtained by rescoring the
lattice. It can be considered as a rough measurement of the
lattice quality.

• The standard WER: the WER of the recognition results on the
evaluation and development set after MMIE training with the
pruned lattices.

Fig. 3 shows the relationship between the lattice density and the
lattice WER of different lattices generated from the beam pruning re-
sults and the posterior probability pruning results. We can find that in
contrast to beam pruning and the arc pruning, the node pruning can
only compress the lattices to a certain degree. This is because node
pruning only removes the duplicate entry times of a word hypothe-
sis, even if we only keep the best one, there is still at least one entry
time for every different word hypothesis. It can also be seen as the
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lattices become smaller, there is a large gap between the beam prun-
ing curve and the arc pruning curve. This indicates that arc pruning
can produce smaller lattices with high quality, while beam pruning
cannot. In addition, when combining the arc and node pruning, the
lattices can be further pruned a little bit.

The relationship between the lattice density and the performance
of MMIE training with different lattices is shown in Fig. 4. For
those four lattice pruning methods, as the lattices become smaller,
the WER increases. Furthermore, compared to the beam pruning
results, using posterior probability lattice pruning, we can perform
MMIE training with lattices only 1/2 or 1/3 of the size of the original
lattices without hurting the MMIE performance. And when combin-
ing the posterior probability arc pruning and node pruning, we can
achieve the best results. In Fig. 4, we can also find that sometimes
the MMIE performance on the evaluation set could be even better
than the MMIE baseline result when trained with smaller lattices.
This might because in a word lattice, there are many word hypothe-
ses with the same word, but different entry or exit times. When
doing MMIE training with such lattices, most of time a model just
competes with itself but not other confusable models. By applying
posterior probability pruning, we actually remove those duplicate
word hypotheses from the lattice. As a result, MMIE training may
penalize the confusable models more and yield a better model. In
addition, it can be seen that the development set curves are not as
smooth as those evaluation set ones. Again, this may because the
training did not generalize well to the development data.

7. CONCLUSION

Considering the use of the word lattices in MMIE training, differ-
ent lattice pruning methods were investigated in this paper. Because
of the special characteristics of the lattices used in MMIE training:
1) unigram language model probabilities are used in training, 2) the
time alignment information needs to be kept for the EBW computa-
tion, 3) the Gaussian occupation count is weighted by the posterior
probability of a word hypothesis, many lattice pruning techniques
can’t be applied. So we proposed a posterior probability lattice prun-
ing method to directly remove unnecessary arcs and nodes with low
posterior probabilities in the lattice. From the experiments, we found
with the benefit of the posterior probability lattice pruning, MMIE
training can save about 40% of the total running time and produce the
same or even more improvement compared to the baseline MMIE re-
sults. And we believe that the techniques described in this paper will
eventually be able to support discriminative training in low-resource
environments and in live systems.
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