Using Gel Based Proteomics to Study Signaling, Physiology, and Behavior in Drosophila Melanogaster

Malachi Andrew Blundon
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/dissertations

Recommended Citation
Blundon, Malachi Andrew, "Using Gel Based Proteomics to Study Signaling, Physiology, and Behavior in Drosophila Melanogaster" (2017). Dissertations. 1078.
http://repository.cmu.edu/dissertations/1078

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Research Showcase @ CMU. It has been accepted for inclusion in Dissertations by an authorized administrator of Research Showcase @ CMU. For more information, please contact research-showcase@andrew.cmu.edu.
USING GEL BASED PROTEOMICS TO STUDY SIGNALING, PHYSIOLOGY, AND BEHAVIOR IN DROSOPHILA MELANOGASTER

by

Malachi Andrew Blundon

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy
Department of Biological Sciences
Carnegie Mellon University
Pittsburgh, PA

September 2017

Dr. Brooke M. McCartney
Advisor
Department of Biological Sciences

Dr. Jonathan S. Minden
Advisor
Department of Biological Sciences

Dr. Aaron Mitchell
Department Head
Department of Biological Sciences

Dr. Rebecca Doerge
Dean of Mellon College of Science
ACKNOWLEDGEMENTS

I would like to thank both my advisors, Dr. Brooke McCartney and Dr. Jonathan Minden, for your guidance, encouragement, and friendship. Thank you for everything. The opportunity I was given at Carnegie Mellon would not have been possible without you two helping me make it a reality.

To Brooke:

Thank you for your dedication and support. It was your drive that inspired me time and time again to keep pushing on during the multiple times I felt like giving up. I hope one day I become as smart of a scientist as you.

To Jon:

Thank you for your guidance and understanding. You never had to say much, but you have given me the life skills necessary to continue to make me a better person and scientist. If I turn out half as successful as you, I will be fortunate.

I would also like to thank the many undergraduates that have worked me over the years. Thank you to Amrithan Parthasarathy, Danielle Schlesinger, David Vinson, Hannah Kolev, Samantha Smith, Azmal Thahireen, and Chris Yang for assisting me with the APC project. Thank you to Anna Pyzel, Tiffany Lau, and Jennifer Huang for assisting me with the microbiota project. Without your help and tireless efforts most of the data in this dissertation would not have existed.
I would like to extend my gratitude to both past and present members from both the McCartney and Minden labs for the many ideas, suggestions, and support and helping me further advance my science. Many of the ideas and hypotheses in this dissertation were influenced by you guys. Thank you to Ezgi Kunttas-Tatli, Stacy Oliver, Olivia Molinar, Scott Keith, and Ashley Leslie from the McCartney lab. Thank you to Emily Furbee, Phu Van, Vinitha Ganesean, Ardon Shorr, Brendan Redler, and Amber Lucas from the Minden Lab. I am very glad that I met you all. We definitely had some good times and made some bad decisions along the way, but it was all worth it. Good luck to you all with your future!

Last and most importantly, I would like to thank my family. Without their love and support, I would not have pursued a higher education. You guys were always the foundation to my success. Thanks to my mother, Denise Blundon, for all your support and love during the speed bumps in my life (and I am sure there will be plenty more). Thanks to my sister, Jerika, my brother, Jeremiah, and to my baby brother, Joshua, for visiting me Pittsburgh throughout the years and supporting me throughout my graduate career. And finally, I would like to thank my father, John Blundon, for always being an inspiration in my life. I miss you. May this dissertation also make you proud.
PREFACE

Many aspects of my graduate career have been unique when compared to the “typical graduate.” To continue this theme, I have structured this dissertation a bit differently. The main motivation behind this decision was to unite two wildly different projects together in the same dissertation. This dissertation first introduces the proteomics research field and Two-Dimensional Difference Gel Electrophoresis (2D-DIGE); the major technique used in my projects. Following the introduction, are two major chapters that include published and continued unpublished work for each project. These two chapters include their own Introduction, Discussion, and Future Work sections.

Chapter Two explains my first proteome screen, in which I identified a number of proteins that respond to the loss of APC, a well-known Wnt signaling tumor suppressor, in fly embryos. This proteome screen identified a metalloaminopeptidase as a novel regulator of β-catenin, Aminopeptidase P (ApepP). This work also begins to explore the interaction between APC and ApepP proteins and discuss how this interaction is important for APC-dependent cellular processes.

Chapter Three explains my second proteome screen, where I identified a number of head proteins that respond to the loss of the microbiota in adult flies. I discovered that Alcohol Dehydrogenase (ADH) protein levels were elevated in fly heads from flies that contained no microbiota. This works further characterizes alcohol related phenotypes in sterile flies, and begins to uncover the mechanism by which the microbiota influences ADH protein abundance and alcohol induced physiology and behavior.
TABLE OF CONTENTS

Title Page.. 1

Acknowledgements.. 2

Preface.. 4

Table of contents.. 5

List of figures.. 9

List of tables.. 10

Chapter 1: Introduction to proteomics... 11

 Human implication.. 11

 Top down vs. bottom up proteomics... 13

 Top down proteomics.. 14

 Bottom up proteomics.. 17

 Two-Dimensional Difference Gel Electrophoresis (2D-DIGE) .. 18

Chapter 2: Proteomic analysis reveals APC-dependent post-translational modifications and
identifies a novel regulator of β-catenin.. 23

 Summary... 23

 Introduction... 24

 Methods.. 32

 Fly work... 32

 Single Embryo work.. 32

 Two-dimensional difference gel electrophoresis (2D-DIGE)... 33
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D-DIGE imaging analysis and protein quantification</td>
<td>34</td>
</tr>
<tr>
<td>Protein identification</td>
<td>35</td>
</tr>
<tr>
<td>Phosphatase treatment</td>
<td>36</td>
</tr>
<tr>
<td>Immuno-blotting</td>
<td>36</td>
</tr>
<tr>
<td>Aminopepidae P proteolytic assay</td>
<td>37</td>
</tr>
<tr>
<td>Results</td>
<td>40</td>
</tr>
<tr>
<td>Comparison of the APC2 null and wild-type proteomes</td>
<td>40</td>
</tr>
<tr>
<td>Identification of difference-protein isoform pairs in APC2 null and wild-type proteomes</td>
<td>41</td>
</tr>
<tr>
<td>Comparison of the APC null proteomes</td>
<td>44</td>
</tr>
<tr>
<td>The difference-protein isoform pairs are due to multiple types of PTMs</td>
<td>45</td>
</tr>
<tr>
<td>Controlling for genetic background effects</td>
<td>48</td>
</tr>
<tr>
<td>Validating the APC-dependent difference-protein isoform pairs</td>
<td>48</td>
</tr>
<tr>
<td>The APC-dependent difference-protein isoform pairs do not require β-catenin transcription</td>
<td>50</td>
</tr>
<tr>
<td>ApepP is a novel regulator of β-catenin levels during embryogenesis</td>
<td>53</td>
</tr>
<tr>
<td>APC2 regulates ApepP proteolytic activity</td>
<td>56</td>
</tr>
<tr>
<td>Discussion and future directions</td>
<td>59</td>
</tr>
<tr>
<td>Loss of APC proteins impacts phosphorylation and other PTMs</td>
<td>60</td>
</tr>
<tr>
<td>ApepP regulates β-catenin abundance</td>
<td>62</td>
</tr>
<tr>
<td>Wild-type variable, APC-like difference-protein isoforms</td>
<td>64</td>
</tr>
<tr>
<td>Concluding remarks</td>
<td>65</td>
</tr>
<tr>
<td>Future directions</td>
<td>71</td>
</tr>
</tbody>
</table>
Is ApepP part of the destruction complex?.. 71
Identify the APC-dependent PTM modification(s) for ApepP............. 73
Creation of an ApepP null fly line... 73

Chapter 3: Microbiota-dependent dysregulation of Alcohol Dehydrogenase in Drosophila is associated with changes in alcohol-induced hyperactivity and alcohol preference............. 79

Summary.. 79
Introduction.. 80
Methods.. 85

Creation of Top Banana Conventional (CV), Axenic (AX), and Reconstituted cultures.. 85
Verification of AX cultures... 86
Two-dimensional difference gel electrophoresis (2D-DIGE), imaging analysis and protein quantification... 86
Immuno-blotting of ADH protein... 87
qRT-PCR analysis of Adh gene expression levels....................................... 88
Assessing alcohol induced hyperactivity.. 89
Assessing alcohol induced sedation.. 89
Assessing alcohol food preference using the Two-choice Capillary Feeder (CAFE) assay... 90
BARCODE alcohol preference... 91
Measuring alcohol levels.. 92
Alcohol dehydrogenase enzymatic levels.. 93
Primers used in this study... 93

Results.. 96

The *Drosophila* head proteome is responsive to microbial condition.......... 96

Alcohol Dehydrogenase protein level is elevated in the head of AX male flies... 97

AX male flies have altered physiological responses to alcohol............... 98

ADH protein activity is required for the microbiota-dependent alcohol induced hyperactivity... 101

AX males flies have altered alcohol food preference............................ 102

Discussion.. 111

Future directions.. 118

Identify specific bacteria strains necessary to restore CV responses to alcohol.. 118

Identify host brain regions and genes required for the microbial-dependent alcohol food preference... 119

Dissecting the connection between the microbiota, host fat body, and ADH-dependent lipid metabolism... 119

Appendix A: APC project supplement material...................................... 121

Appendix B: ADH-Microbiota project supplement material...................... 131

Bibliography... 137
LIST OF FIGURES

Figure 1.1. Comparing top down, middle down, and bottom up proteomics......................... 15
Figure 1.2. The Two Dimensional Difference Gel Electrophoresis (2D-DIGE) work flow..21
Figure 2.1. Summary of the Wnt signaling pathway and 2D-DIGE work flow..................28
Figure 2.2. 2D-DIGE of APC2 null versus wild-type Drosophila embryos....................... 39
Figure 2.3. Quantification of the APC2 difference-proteins.. 42
Figure 2.4. MS Identification of the APC2-dependent difference-proteins....................... 47
Figure 2.5. Immuno-blott confirmation that Calcium-Binding Protein 1 isoform distribution is an
APC2-dependent difference-protein.. 52
Figure 2.6. APC2-dependent isoform changes are due to phosphorylation and other
PTMs.. 58
Figure 2.7. Validating the APC-dependent difference-proteins in APC2 null embryos......61
Figure 2.8. ApepP^{EV} embryos display Wnt activation phenotypes similar to APC2 mutant
embryos.. 67
Figure 2.9. APC2 regulates ApepP proteolytic activity... 70
Figure 2.10. A proposed model for APC2 and ApepP β-cat regulation in Wnt signaling.... 72
Figure 2.11. ApepP targets Arm (β-cat) independently of the destruction complex......... 74
Figure 2.12. Screening the ApepP CRISPR mutant fly stocks... 77
Figure 3.1. The AX head proteome is different from the CV head proteome................. 83
Figure 3.2. Alcohol Dehydrogenase (ADH) proteins levels are elevated in AX heads....... 99
Figure 3.3. AX male flies are less sensitive to alcohol vapor exposure.......................... 103
Figure 3.4. The microbiota-dependent hyperactivity requires ADH enzymatic activity but not
ethanol metabolism.. 109
Figure 3.5. AX male flies prefer alcohol more than their CV male siblings...................... 116
LIST OF TABLES

Table 2.1: APC-dependent differences in APC mutant embryos, APC knockdown (dsRNA) embryos, and APC-independent β-cat stabilized embryos.. 63
Table 2.2: Genetic interaction between ApepP and APC2 is reflected in adult viability......69
Table 2.3 Adult viability ratios for two putative ApepP null fly lines........................... 78
Table 3.1: Summary of flies tested for ethanol induced hyperactivity.......................... 106
CHAPTER 1: INTRODUCTION TO PROTEOMICS

Human implication

In the last two decades, the fields of genomics and transcriptomics have dominated large-scale biological studies, both at the basic and translational research fronts (Hawkins, Hon, and Ren 2011; McGettigan 2013). These studies have provided transformative insight for many aspects of biological research that has ultimately led to a richer understanding of the molecular basis of diseases and therapeutic strategies. Some highlighted include a better understanding of human heterogeneity and its contribution to various diseases (Venter et al. 2001; Burrell et al. 2013; McClellan and King 2010), a better understanding of signaling pathway coordination in development (Davidson 2010; Ben-Tabou de-Leon and Davidson 2007; Sauka-Spengler and Bronner-Fraser 2008), as well as the discovery of non-coding gene elements important for biological function (Esteller 2011; Geisler and Coller 2013; Mercer, Dinger, and Mattick 2009). Despite these significant developments, understanding the genome and transcriptome is severely limited in predicting complex biological processes that are important for disease progression and effective therapeutic strategies. This is because proteins functionally govern cellular processes and execute the activities dictated by genes to determine such properties as disease progression and therapeutic targets.

The field of proteomics is the study of large-scale protein networks referred to as proteomes. The study of proteomes provides the missing information not observed in genomic or transcriptomic approaches (Pradet-Balade et al. 2001). First, the level of transcription from a gene does not always correlate with the level of translation into its respective protein and vice-versa, each protein have their own protein stability based on a number of factors. Two, many transcripts give rise to more than one protein, through mechanisms like alternate splicing. And
three, an individual protein may exist as multiple isoforms resulting from post-translational modifications that can significantly affect protein activity.

Some of the central goals of proteomics include identifying protein changes that differentiate normal and diseased states in cells, tissues or organisms. In the clinical setting, this is achieved by identifying protein signatures, such as protein abundance differences between cellular states, which better describe the molecular pathology of the disease of interest. These protein signatures are often referred to as biomarkers or protein targets. Protein targets are identifying drug targets use for intervention or treatment of a disease. Biomarkers are protein signatures used to predict or monitor a number of complications including but not limited to diabetes (Riaz et al. 2010; X. Liu et al. 2009), heart disease (Kiernan, Nedelkov, and Nelson 2006), infectious diseases (He et al. 2003), Parkinson’s disease (van Dijk et al. 2010), Alzheimer’s disease (Blennow et al. 2010), and various cancers (Minami et al. 2010; Ransohoff et al. 2008; Gemoll et al. 2010; Chong et al. 2010; Al-Ruwaili et al. 2010; Byrne et al. 2009). Additionally biomarkers are used clinically as a screening tool for diseases and drug therapies (Bhatt et al. 2010; Tavakoli, Hull, and Michael Okasinski 2011; Pierrakos and Vincent 2010; Frank and Hargreaves 2003; Belkowski, Polkovitch, and D’Andrea 2005; Blennow 2010; Sim and Ingelman-Sundberg 2011).

Now with the accreditation of clinical proteomics, the proteomics field has united with genomic and metabolomic research to create two emerging fields called proteogenomics and metaproteomics (not to be confused with the other metaproteomics definition – the analysis of a particular protein or set of proteins across many proteomics studies) (VerBerkmoes et al. 2009; Seifert et al. 2012; Hettich et al. 2013; Kolmeder and de Vos 2014; Kanazawa et al. 2005; Altelaar, Munoz, and Heck 2012). These collaborative fields provide supporting evidence to
drive each other’s hypothesis to better understand a disease model or drug target. Proteogenomics’ most significant human health contribution to this date has been to the cancer field, providing an improved understanding of cancers like acute myeloid leukemia (Hernandez-Valladares et al. 2017), specific lymphomas (Rolland et al. 2017), breast cancer (Mertins et al. 2016), and colon cancer (Woo et al. 2015), some studies leading to the discovery of new therapeutic options. Contrariwise, the emergence of metaproteomics is driven by the microbiome research field. This field is particularly interested in the scope of metabolites produced by the gut microbiota that influence disease states like obesity (Martinez, Leone, and Chang 2017; Kolmeder et al. 2015) and inflammatory bowel disease (X. Zhang et al. 2017; Martinez, Leone, and Chang 2017; Mayers et al. 2017), as well as normal physiology and health (X. Zhang et al. 2017; Zwittink et al. 2017). The collaborative efforts like the ones described above, will be vitally important for the comprehensive understanding of human health and disease in the future.

Top down vs. bottom up proteomic approaches

Similar to genomic and transcriptomic strategies, proteomics strategies consist of both top down and bottom up approaches for identifying proteins (Moradian et al. 2014; Wehr 2006; Lippolis and De Angelis 2016). The proper definitions of top down and bottom up proteomics are not well established, however. The first convention was described by the mass spectrometry field, where top down approaches focused on samples containing intact proteins, while bottom up approaches fragmented the proteins into peptides and analyzed those peptides to infer identity of the proteins (Wehr 2006). This definition has now been expanded to consider sample complexity due to the introduction of new technology (Wright et al. 2012; Mesri and Mehdi 2014). For the purposes of this dissertation, we will use the new convention, where bottom up
proteomics typically includes separation or simplification of protein mixtures, before enzymatic fragmentation and identification of the protein(s) via mass spectrometry (sometimes referred to as gel based proteomics). Top down approaches work with complex protein samples (< 5 proteins in a sample) and use statistical analyses to identify and quantify meaningful proteins (sometimes referred to as gel free proteomics; Fig. 1.1). Both strategies have their advantages and disadvantages in identifying proteins. Some are highlighted below.

Top down proteomics

Top down proteomics is the newer approach that identifies proteins by breaking intact protein through ionization and subsequent gas-phase fragmentation during the process of mass spectrometry. Because my work focuses on bottom up proteomics, I will not be covering these approaches in any detail. An advance review of the latest top down approaches is described by Toby et al. (Toby, Fornelli, and Kelleher 2016). A clear advantage of these strategies is the potential to scan the entire protein sequence to locate PTMs. Because top down proteomics strategies are relatively new, they suffer from several disadvantages. These approaches often require additional validation, as the intact protein samples produce more complex spectra that make protein identification difficult. As a consequence, these experiments require more powerful mass spectrometry equipment, such as a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer, that are often too expensive for a typical lab. Secondly, these approaches are limited to identifying proteins below 50 kDa, as the technology to analyze larger whole proteins is not yet available.
Figure 1.1. Comparing top down, middle down, and bottom up proteomics.

Principal differences between top down (purple), middle down (brown), and bottom up proteomics (yellow). Top down proteomics identifies proteins by analyzing complex protein samples containing whole intact protein. Fragmentation of whole proteins is performed inside the mass spectrometer. Middle down proteomics first fragments the complex sample, usually by Trypsin digest, before mass spectrometry analysis. This is often referred to as “shotgun proteomics”. Bottom up proteomics first separates the complex protein sample by gel electrophoresis or column chromatography. Here we are showing two examples of two dimensional gel electrophoresis strategies, DIGE which uses fluorescent labeling to compare two samples on the same gel and 2DE, which uses silver stain or Coomassie blue for protein
comparison. After the protein sample has been simplified by gel separation, the samples are digested and the peptide fragments are analyzed to infer the protein present in the sample.
Bottom up proteomics

Bottom up investigations involve more mature proteomics approaches that first began by analyzing peptide fragments from simple protein mixtures that were first separated by gel electrophoresis or column chromatography. The identification of proteins in the sample was deduced by identifying peptides first using peptide mass fingerprinting and later by Tandem MS (MS-MS). Now, with the new development of high-resolution mass spectrometers (Williams et al. 2017; Xian, Hendrickson, and Marshall 2012), complex samples can be digested and analyzed without gel or column separation. This type of approach is a hybrid between top down and bottom up, and is sometimes referred to as a middle down approach or “shot gun” proteomics.

One obvious advantage of a bottom up approach is the ability to identify and quantify proteomic changes before mass spectrometry analysis with the invention of gel separation techniques, like Two Dimension Difference Gel Electrophoresis (2D-DIGE). By identifying proteome changes before mass spectrometry analysis, one can narrow the list of proteins of interest, saving on cost for mass spectrometry experiments. Additionally, there are now quantitative mass spectrometry techniques that use various labeling strategies to quantify peptides from both simple and complex protein samples (Bantscheff et al. 2007). Some of these mass spectrometry strategies, like iTRAQ or SILAC, have been more successful than others. One clear disadvantage of a bottom up strategy is relying on peptide analysis to infer protein identification and quantitative abundance. Typically, full protein sequence coverage is not represented in a peptide mixture and some peptide fragments are often enriched due to Trypsin cleavage bias. These problems make it challenging to accurately quantify differences in protein abundance between two samples and identify structural or regulatory details of the protein, such
as post-translational modifications (PTMs). However, some of these challenges, like the identification of PTMs, are solved by high resolution gel techniques like 2D-DIGE.

Two-Dimensional Difference Gel Electrophoresis (2D-DIGE)

Historically in the Minden lab, we have focused on two-dimensional electrophoresis (2DE) protein separation because of its accessibility to most laboratories. This approach was described simultaneously by several groups in 1975 (Klose 1975; O’Farrell 1975; Scheele 1975). Despite the substantial advances in the technology since its launch — the most notable of which was the introduction of immobilized pH gradients in the first dimension (Görg, Postel, and Günther 1988; Hamdan and Righetti 2005) — some of the more significant systemic shortcomings have remained unsolved. The most troublesome of these is the inherent lack of reproducibility between gels. Efforts to solve these limitations have mostly focused on developing computational methods for gel matching. These approaches have had limited success because the sources of gel-to-gel variation are numerous, complex and difficult to model (Miller et al. 1982; Dowsey et al. 2010; J. M. Park et al. 2014).

Difference gel electrophoresis (DIGE) was developed to overcome the irreproducibility problem in the 2DE methodology by labeling two samples each with a different fluorescent dye prior to running them on the same gel (Fig 1.2; Unlu, Morgan, and Minden 1997; Viswanathan, Unlu, and Minden 2006). The fluorescent dyes used in DIGE, Cy3-NHS and Cy5-NHS (Fig. 1.1), are cyanine based, molecular-weight matched, amine reactive and positively charged. These characteristics, coupled with sub-stoichiometric labeling, result in no electrophoretic mobility shifts arising between the two differentially labeled samples when they are co-electrophoresed. Therefore, in DIGE, every identical protein in one sample superimposes with its differentially
labeled counterpart in the other sample, allowing for more reproducible and facile detection of differences. Furthermore, DIGE is a sensitive technique, capable of detecting as little as 0.2 fmol of protein, and this detection system is linear over a ~10,000-fold concentration range (Unlu, Morgan, and Minden 1997; Gong et al. 2004; Lilley and Friedman 2004; Friedman and Lilley 2008).

The most important considerations in performing DIGE experiments are experimental design and sample preparation (M. M. Shaw and Riederer 2003). DIGE has been used to analyze proteome changes from a wide variety of cell types, tissue types, model organisms, and body fluids including serum (Marouga, David, and Hawkins 2005; H. Wang et al. 2005; Okano et al. 2006; Diez et al. 2010; Martyniuk, Alvarez, and Denslow 2012; Arentz et al. 2015). The sample-preparation protocol depends on the sample type. Most samples require mild homogenization in lysis buffer to extract protein. DIGE is an extremely sensitive method, in which a 15% change in protein abundance is more than two standard deviations (SDs) above the normal variation (Gong et al. 2004). Despite DIGE being sensitive and reproducible, two caveats need to be mentioned. First, 2DE does not efficiently resolve integral membrane proteins. This is due to their hydrophobic domains causing precipitation during isoelectric focusing (IEF). Second, labeling with the amine-reactive DIGE dyes limits one to sub-stoichiometric labeling (also known as minimal labeling), where less than 5% of all proteins carry a single bound dye molecule, and the rest have no bound dye. For proteins that are >25 kDa, there is no appreciable molecular-weight shift between labeled and unlabeled protein, while there is a slight but predictable shift for smaller proteins in which unlabeled proteins run about half a spot diameter faster than their labeled counterparts. This shift problem has been addressed with the development of cysteine-reactive dyes. These dyes allow one to saturation-label all available cysteines, which eliminates
the shift between labeled and unlabeled proteins, as all proteins are maximally labeled (Kondo et al. 2003; Sitek et al. 2006; J. Shaw et al. 2003). Regardless of these limitations, DIGE combined with MS is an economical, sensitive, and robust approach for comparative proteomics. This dissertation provides two examples of how powerful this gel based bottom up proteomics approach can be.
Figure 1.2. The Two Dimensional Difference Gel Electrophoresis (2D-DIGE) workflow.

A schematic of the 2D-DIGE analysis. Extracts are made of two cell samples, denoted ‘A’ and ‘B’. These extracts are separately labeled with Cy3-NHS and Cy5-NHS, which covalently link to lysine residues. The labeled protein extracts are then combined and co-electrophoresed on an
isoelectric focusing strip gel. Following transfer of the IEF strip, proteins are separated based on their size in the 2nd dimension – SDS PAGE. The 2D gel is then imaged on a fluorescent gel imager at the Cy3 and Cy5 emission wavelengths. Shown here is a color overlay of Cy3 (green) and Cy5 (red) images of mitochondria extracts from mouse cell line. Regions of equal Cy3 and Cy5 signals appear yellow.
CHAPTER 2: PROTEOMIC ANALYSIS REVEALS APC-DEPENDENT POST TRANSLATIONAL MODIFICATIONS AND IDENTIFIES A NOVEL REGULATOR OF β-CATENIN

Summary

Wnt signaling generates patterns in all embryos, from flies to humans, and controls cell fate, proliferation, and metabolic homeostasis. Inappropriate Wnt pathway activation results in diseases, including colorectal cancer. The Adenomatous polyposis coli (APC) tumor suppressor gene encodes a multifunctional protein that is an essential regulator of Wnt signaling and cytoskeletal organization. While progress has been made in defining the role of APC in a normal cellular context, there are still significant gaps in our understanding of APC-dependent cellular function and dysfunction. We expanded the APC-associated protein network using a combination of genetics and a proteomic technique called Two-dimensional Difference Gel Electrophoresis (2D-DIGE). We show that loss of APC2 causes protein isoform changes reflecting misregulation of post-translational modifications (PTMs), which are not dependent on β-cat transcriptional activity. Mass spectrometry revealed that proteins involved in metabolic and biosynthetic pathways, protein synthesis and degradation, and cell signaling are affected by the loss of APC2. We demonstrate that changes in phosphorylation partially account for the altered PTMs in APC mutants, suggesting that APC mutants affect other types of PTM. Finally, through this approach Aminopeptidase P was identified as a new regulator of β-catenin abundance in Drosophila embryos. This study provides new perspectives on APC’s cellular effects that may lead to a richer understanding of APC’s role in development.
Introduction

Cell growth, division, and survival are functions that exist in all living organisms. Proper regulation of these functions influences a number of organismal processes such as embryonic development, cellular expansion, and tissue maintenance. These processes require the careful coordination of many signaling pathways. Disruption of these pathways can lead to an array of pathological or disease states such as but not limited to cancer. For instance, it has been demonstrated that uncontrolled or inappropriate cell proliferation is strongly associated with defects in signal transduction proteins (Giancotti 2014). One set of well-studied signaling pathways is the Wnt signaling group. These signaling pathways influence patterns in all embryos, from flies to humans (Clevens and Nusse 2012; Bejsovec 2013). Extensive study of this pathway group has also revealed the importance of Wnt signaling in other cellular processes such as stem cell behavior and cell fate determination, metabolic homeostasis, as well as cytoskeletal dynamics in cell division, migration and adhesion (Holland et al. 2013; Polakis 2012). The clinical importance of this pathway group has been demonstrated by mutations that lead to a variety of cancers and type II diabetes (Welters and Kulkarni 2008).

The Wnt signaling group is comprised of three signal transduction pathways referred to as the canonical Wnt pathway, the non-canonical planar cell polarity pathway, and the non-canonical Wnt/calcium pathway. All three pathways are activated by the binding of a Wnt-protein ligand to a Frizzled family receptor protein on the surface of the cell (Rao and Kühl 2010). The general focus of this study is on the canonical Wnt pathway (Figure 2.1.). Normal canonical Wnt signaling regulates embryonic patterning as a result of controlling stem cell behavior and cell fate determination (Polakis 2012; Kozinski and Dobrzyn 2013). More recently, Wnt’s signaling role in metabolic homeostasis has become appreciated (Ring, Kim, and Kahn
The default state of the canonical Wnt signaling pathway is “off” when no Wnt-ligand is present. In this state, an important transcription factor, β-catenin (β-cat), is down regulated and destroyed by a protein complex called the destruction complex. This protein complex includes the following proteins: Axin (Axn), Adenomatous polyposis coli (APC), protein phosphatase 2A (PP2A), glycogen synthase kinase 3 (GSK3), and casein kinase 1α (CK1α). This complex of proteins binds and phosphorylates β-cat, targeting it for proteosomal degradation. As a result β-cat protein levels remain low in the cytoplasm, effectively keeping downstream Wnt target gene activation off. Activation of the canonical Wnt pathway through ligand/receptor binding removes the negative regulation of β-cat by deactivating the destruction complex and translocating components of the destruction complex to the cell membrane through interactions with scaffolding proteins, Disheveled (Dsh), and Axn. In turn, β-cat protein accumulates in the cytoplasm and translocates into the nucleus where it acts as a transcriptional co-activator with the TCF/LEF family of transcription factors. This results in gene transcription activation of Wnt target genes responsible for many of the aforementioned cellular processes above. The clinical importance of this pathway has been demonstrated primarily by its inappropriate activation, such as in colorectal cancer where mutations in the negative regulator and tumor suppressor Adenomatous polyposis coli (APC) initiate tumorigenesis in the majority of both sporadic and inherited cases (Logan and Nusse 2004; J Schneikert, Grohmann, and Behrens 2007).

The most common mutation in colorectal cancers occurs in APC (>80%), which disrupts APC’s Wnt signaling function (Nieuwenhuis and Vasen 2007). A heritable form of colon cancer, Familial adenomatous polyposis (FAP), is caused by inheriting a mutation in the APC gene that usually results in a truncation of the APC protein. Eventually, the cells lose heterozygosity by
acquiring a second APC mutation spontaneously resulting in accelerated formation of polyps that continue to develop and become cancerous (H. Oshima et al. 1997; M. Oshima et al. 1995).

Ligand-independent activation of Wnt signaling due to loss of APC clearly contributes to colon cancer initiation, however, less is known about how disruption of APC’s other cellular functions impacts cancer development. In addition to their role in Wnt signaling, APC proteins also function in actin assembly, cell-to-cell adhesion, and microtubule network formation through interactions with cytoskeletal proteins (I. Nathke 2006). Disruption of these functions has negative consequences including decreased cell migration and differentiation, chromosomal instability, and increased proliferation that may contribute to cancer initiation and progression (I. S. Nathke 2004; I. Nathke 2006). Furthermore, new APC protein domains are still being identified that in turn are uncovering new protein and pathway interactions (Z. Zhang et al. 2010; Ezgi Kunttas-Tatli, Roberts, and McCartney 2014). The most recently identified functional sequence is in APC’s basic domain where an intrinsically disordered region allows APC to bind to RNA targets (Preitner et al. 2014). This discovery extends APC’s interactome to the transcript level, vastly expanding APC’s potential biological roles in the cell.

To better understand the cellular consequences of APC loss that may contribute to cancer initiation, we used Drosophila melanogaster embryogenesis as a model. First, APC proteins are well conserved between mammals and fruit flies, making Drosophila a tractable system to study APC-dependent protein networks. Both mammals and Drosophila have two APC proteins, APC and APCL in humans and APC1 and APC2 in Drosophila, respectively. The Drosophila APC proteins contain many of the same conserved domains as seen in human APC (Jean Schneikert et al. 2013). However, APC, APCL, and APC1 have additional C-terminal domains that APC2 lacks, suggesting both shared and divergent roles between APC proteins in the cell. Among the
shared domains, APC proteins have three important domain repeats required for destruction complex function and Wnt signaling regulation (reviewed in Barua and Hlavacek 2013). The C-terminal SAMP domains facilitate the necessary interaction between APC and Axn. In the center of the protein are the 15 and 20 amino acid repeats (15Rs and 20Rs respectively), which bind directly to β-cat and are thought to recruit β-cat to the destruction complex (Ezgi Kunttas-Tatli et al. 2012). In addition to regulating Wnt signaling, APC proteins regulate cytoskeletal functions through a series of interaction domains: the Armadillo (Arm) repeats, that are binding sites for many cytoskeletal regulators including IQGAP, Rho-GEF, and ASEF (Kawasaki et al. 2009; Kawasaki et al. 2000; Kawasaki, Sato, and Akiyama 2003; I. Nathke 2006; Tirnauer 2004), the basic region, and the EB1 domain. APC, APCL, and APC1 all have a basic domain, a binding site for microtubules and the formin Diaphanous (Wen et al. 2004; Webb, Zhou, and McCartney 2009). APC and APC1 have an EB1 domain that functions as a binding site for the microtubule protein, EB1 (Barth, Siemers, and Nelson 2002). The exception is that APCL can also bind to EB1, although the domain does not share primary sequence with APC (Nakagawa et al. 2000). Lastly, as in humans, the Drosophila genome contains two APC genes (Logan and Nusse 2004).

Our lab and others have demonstrated that Drosophila and vertebrate APC proteins are functionally conserved; both fly APC proteins negatively regulate Wnt signaling (Ahmed et al. 1998; B M McCartney et al. 1999), collaborate with the formin Diaphanous (Webb, Zhou, and McCartney 2009; R Jaiswal et al. 2013), and can localize to microtubules (B M McCartney et al. 2001; Akong et al. 2002). In addition, Drosophila APC1 binds actin monomers,
Figure 2.1. Summary of the Wnt signaling pathway and 2D-DIGE work flow.

(A) The Wnt signaling pathway. When no Wnt ligand is present (left) the destructosome promotes cytoplasmic β-cat degradation. With a Wnt ligand (right), the destructosome is deactivated and cytoplasmic β-cat accumulates, enters the nucleus and activates Wnt target genes. (B) Principal steps in the 2D-DIGE workflow: (1) covalent labeling of protein lysates with either propyl-Cy3 or methyl-Cy5, (2) combine labeled protein lysates, (3) co-electrophorese on a 2DE gel, (4) fluorescent gel imaging of Cy3 (green) and Cy5 (red) (common spots are shown as yellow spots, while difference-proteins appear as green or red), (5) selected spots
shown in the inset are quantified using Source Extractor and concurrently (6a.) genetically validate the difference-proteins and (6b.) identify the proteins by LC-MS/MS.
nucleates F‐actin assembly (Richa Jaiswal et al. 2013), and binds the microtubule plus‐tip protein EB1 (Brooke M McCartney et al. 2006). Previous studies have examined the global cellular consequence of APC disruption using RNA‐seq and 2D‐DIGE proteomics (Chafey et al. 2009; Wu et al. 2012). However, the results of these studies may have reflected chronic changes due to loss of APC’s non‐Wnt activities, as well as the primary and downstream effects of ligand‐independent Wnt target gene activation. The RNA study examined biopsies from stage 3 colorectal cancer patients, where the proteome study examined mouse liver where APC loss was induced 7 days prior to proteomic analysis. We are using the early Drosophila embryo (0‐2 hrs after egg laying) as our model system. At this time in development, zygotic transcription is largely silenced (ref). Thus, our model provides a unique opportunity to see proteome changes that could be masked by the ligand‐independent hyperactivation or misregulation of β‐cat transcription.

Using the early Drosophila embryo and 2D‐DIGE, we show here the initial identification of 16 protein differences between wild‐type and APC2 mutant embryos. All of these difference‐proteins were the result of isoform shifts, rather than changes in abundance, indicating these proteins are post‐translationally regulated, not transcriptionally regulated. Additionally, we identified a number of overlapping changes in APC1 null and APC2 APC1 double null embryos. To demonstrate APC specificity, we screened these 16 difference‐proteins for their ability to be reproduced in an independent APC2 mutant background, and to be rescued by exogenous APC2 expression. LC‐MS/MS was used to identify the APC2‐dependent changes, which include proteins involved in cellular processes such as metabolic and biosynthesis pathways, protein synthesis and degradation, cell signaling and cellular stress response. These results demonstrate that APC post‐translationally influences an array of protein targets, revealing a novel mechanism
to regulate cellular processes at the proteome level. Loss of APC contributes to the acute misregulation of these proteins. This new insight contributes to a deeper understanding of the global cellular consequences of APC loss that may be factors in cancer development.
Methods

Fly work

Stocks: APC2^{g10}/TM6, Tb (Brooke M McCartney et al. 2006); APC2^{33}/TM3, Sb (Takacs et al. 2008); FRT82B APC1^{Q8}/TM6, Tb (Ahmed et al. 1998); FRT82B APC2^{g10} APC1^{Q8}/TM6, Tb (Ezgi Kunttas-Tatli et al. 2012); \(P\{endoP-EGFP-APC2-FL\}; APC2^{g10} \) (Ezgi Kunttas-Tatli et al. 2012), \(P\{EPgy2\}ApepP^{EY02585}/CyO, Mi\{MIC\}ApepP^{Mio1970}/SM6a, Twk^{1} \) (y, w, \(P\{ey-FLP.N\}2; tweek1 P\{y+,ry+\}/25F, P\{neoFRT\}/40A) and \(Twk^{2} \) (y, w, \(P\{ey-FLP.N\}/2; tweek2 P\{y+, ry+\}/25F, P\{neoFRT\}/40A (Verstreken et al. 2009). Homozygous APC1^{Q8} and APC2^{g10} APC1^{Q8} embryos were generated using the FRT/FLP/DFS technique (Chou and Perrimon 1996).

Single embryo work

Wild-type and homozygous mutant ApeP and Twk embryos were collected for 12 hours and incubated for 2 days at 29°C to allow all embryos to fully develop. Cuticle preparations and hatch rate analysis were as described by (Wieschaus & Nusslein-Volhard, 1986). Stage 6-8 (4-6 hrs at 29°C) wild-type and homozygous mutant ApeP embryos were collected, dechorinated, and fixed in a 1:1 heptane:37% formaldehyde solution (B M McCartney et al. 1999). Mouse anti-Armadillo (N27A1, 1:250) antibodies were obtained from the Developmental Studies Hybridoma Bank. Secondary antibodies were conjugated with various Alexa dyes (Invitrogen, 1:1000). Embryos were imaged with a spinning disc confocal microscope (Solamere Technology Group) with a QICAM-IR camera (Qimaging) on a Zeiss Axiovert 200M, using QED In Vivo software. For Fig. 8, Arm image analysis was performed by 5 µm stack projections. Arm striped pattern was quantified using ImageJ (NIH) software.
Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE)

Embryos for 2D-DIGE were collected for 2 hour intervals, following one hour pre-collection period. All samples were visually inspected to remove old (beyond 2 hours) and damaged embryos. Protein samples were prepared by pooling the embryos in standard embryo wash (120 mM NaCl, 0.04% Triton X-100) into one tube. Once sufficient embryos were amassed, they first were dechorionated and transferred to a 1.5 ml centrifuge tube that had a fitted plastic pestle. The standard embryo wash was removed and the embryos were washed three times with DIGE embryo wash (0.01% CHAPS and 5 mM HEPES pH 8.0). The DIGE embryo wash contains low salt and replaces the Triton from the standard embryo wash with CHAPS. High salt and strong detergents interfere with IEF. After the washes, lysis buffer (7 M urea, 2 M thiourea, 4% CHAPS, 10 mM DTT and 10 mM Na-Hepes pH 8.0) was added to 0.5 µl of lysis buffer per embryo, with a maximum of 200 µl per tube. The tube was then transferred to ice and the embryos were homogenized manually with the fitted pestle. Embryo lysates were adjusted to 2 mg/ml protein concentration with lysis buffer. Protein lysate solutions containing a total of 100 µg of protein were labeled with 2 µl of either 1mM propyl-Cy3-NHS or 0.83 mM methyl-Cy5-NHS – referred to as Cy3 and Cy5, respectively (CyDye DIGE Fluors; GE Healthcare) as described previously (Unlu, Morgan, and Minden 1997). We also performed reciprocal labeling experiments to control for dye-dependent changes and to have technical replicates of each sample. Two-dimensional electrophoresis (2DE) was performed. First, isoelectric focusing was carried out on 18 cm, pH 3-10 non-linear Immobiline DryStrip gels according to the manufacturer’s protocol (GE Healthcare). The strips were electrophoresed on an IPGphor apparatus (GE Healthcare) for a total of 28-32 kVhrs. After isoelectric focusing, the strips were loaded onto the second dimension 12% SDS-polyacrylamide gel, overlayed with 1% agarose, 65
mM Tris pH 6.8, 0.1% SDS and 65 mM DTT (Van, Ganesan, et al. 2014). The strips were sealed onto the stacking gel using an agarose sealing gel containing 1% agarose, 65 mM Tris pH 6.8, 0.1% SDS, and 0.002% bromophenol blue. Second dimension electrophoresis was performed at 4 °C at 60 V until the dye front had passed through the stacking gel and 300 V for the remainder of the run.

2D-DIGE imaging analysis and protein quantification

After second dimension electrophoresis, the gels were removed from the glass plates and equilibrated in a solution of 40% methanol and 10% acetic acid for at least one hour. The gels were placed in a Structured Illumination Gel Imager (Van, Bass, et al. 2014) and imaged at two excitation wavelengths (545±10 nm for Cy3 and 635±15 nm for Cy5) using a cooled CCD camera with a 16-bit CCD chip (Roper Scientific). Two separate images for Cy3- and Cy5-labeled proteins were acquired and viewed as a two-frame movie played in a continuous loop. Image manipulation and viewing was done with ImageJ (NIH) software. Protein differences were detected visually by movies containing grey scale images of each channel, and confirmed with a two-color, red-green overly of the Cy3 and Cy5 channels, as shown in Fig. 2.

Protein spots were quantified using an astronomical image analysis software package, Source Extractor (Bertin and Arnouts 1996). To determine the fold-difference between mutant APC and wild-type expression of a protein, the image fragments were summed to generate a composite image. The summed image was submitted to SExtractor as previously described (Van, Bass, et al. 2014). To aid in calibrating protein quantification and for balancing the displayed contrast of the Cy3 and Cy5 images, we measured the intensity ratio for 6 known unchanged spots (referred to Appendix A, Table 1).
Protein identification

Spots of interest from the 2D-DIGE gels were picked robotically from gels containing both APC mutant and wild-type embryo samples (Van, Ganesan, et al. 2014). In-gel digestion of the protein spots was done with trypsin using a standard manual extraction protocol (Speicher et al. 2000). LC-MS/MS analysis was performed at the University of Pittsburgh Genomics and Proteomics Core Facility on a Thermo Scientific LTQ-XL instrument equipped with a Dionex Ultimate 300 HPLC. The detector m/z range was set to 85.00-2000.00 with 400-450 scans per spectrum. The resulting spectra were visually inspected for quality control using Xcalibur 2.2 (Thermo Scientific). Pre-acquisition calibration was performed using Picosure (New Objective) Test Standards (MH+ 985.4577±1, 988.4762±1, 987.5138±1, 1045.5345±1, 1182.5570±1, 986.5549±1, 985.5961±1, 1098.6801±1). MS/MS data were submitted to Mascot 2.4.1 for database searching. The search was performed to query the database (Taxonomy: Drosophila) downloaded from Uniprot (August 2013), allowing one missed cleavage site by trypsin. Carbamidomethyl modification of cysteine and methionine oxidation were set as variable modifications. All matches that occurred above a 95% confidence interval (CI), with significant scores for the peptides defined by Mascot probability analysis greater than “identity” were considered for protein identifications.

Additionally, each protein identified was scrutinized using five criteria: (1) each suspected protein isoform pair should contain peptides corresponding to the same Drosophila melanogaster protein(s), (2) the same set of spots in reciprocally-labeled gels from the same 2D-DIGE experiment should contain the same peptides corresponding to the protein(s) identified in criterion 1 (technical replicate), (3) each protein identified should be represented by more than 2 peptides from at least two independent mass spectrometry experiments (biological replicate), (4)
the observed molecular weight of the protein identified on a 2D-DIGE gel should approximately match the theoretical molecular weight of the identified protein and (5) the observed pI of the protein identified on a 2D-DIGE gel should approximately match the theoretical pI of the identified protein. Criteria 4 and 5 were only approximate because proteins often deviate from their predicted mass and pI on 2DE gels, which is particularly true for pI since the IEF pH gradients were non-linear.

Phosphatase treatment

Wild-type and *APC2*^{g10} embryo lysates (100 µl at 5 mg/ml) were made using 1X NEBuffer for PMP supplemented with 2mM MnCl₂ (50 mM HEPES, 100 mM NaCl, 2 mM DTT, 0.01% Brij 35, pH 7.5). Control samples were treated with 1% PhosSTOP Phosphatase Inhibitor Cocktail (Roche). Experimental samples were treated with 300 units of Lambda Protein Phosphatase (New England BioLabs) and incubated at 30°C for 4 hours. The phosphatase reaction was quenched using 50 mM Na₂EDTA at 65°C for 1 hour. Urea, thiourea, CHAPS, HEPES pH 8.0, and DTT were added to the lysates to yield 250 µl of a 2 mg/ml final lysate. The lysates were then analyzed by 2D-DIGE.

Immuno-blotting

Immuno-luminescence was detected using a LAS-300, Fujifilm Luminescent Image Analyzer (Formally Fuji, now GE).

For ApepP analysis: Wild-type, mutant *ApepP*, and mutant *APC2* embryo lysates were prepared in 2X Lammlli sample buffer treated with 0.1% Protease Inhibitor Cocktail (Sigma) and separated by SDS-PAGE. Proteins were transferred to Protran nitrocellulose membranes.
Membranes were immuno-blotted using mouse anti-*Drosophila* Armadillo antibody (1:250) and mouse anti-*Drosophila* tubulin loading control antibody was (1:100) provided by DSHB. Goat anti-mouse HRP² secondary antibody (Jackson Immunoresearch) was used at 1:2,000.

For CaBP1 analysis: Wild-type and mutant APC2 embryo lysates were labeled in separate reactions with Cy3 dye and run on two independent 2DE gels, as described above. Transfer was confirmed by Cy3 imaging. Membranes were immuno-blotted using a Rat anti-*Drosophila* Calcium Binding Protein 1 antibody (1:500) generously provided by Dr. Yoshinobu Nakanishi (Okada et al. 2012). Goat anti-rat HRP² secondary antibody (Jackson Immunoresearch) was used at 1:10,000.

Aminopepidase P proteolytic assay

We performed the ApepP proteolytic assay as described in (Kulkarni and Deobagkar 2002). Single male or female adult flies were homogenized with a fitted plastic pestle in 50 µL of ice cold lysis buffer (1mM MgCl₂, 100mM HEPES at pH 8, 1mM PBS), in a 1.5 mL microcentrifuge tube, until no particulates were visible. The homogenates were centrifuged at 10,000 G for 10 minutes. Five µL of the supernatant was taken and used for the reaction. Reactions were incubated with tri-peptide substrate for one hour at 37 °C, after the reaction was killed using 1mM HCl and the OTPA dye was added to the reaction. 1mM EDTA was used as an ApepP inhibitor. Absorbance measurements were taken at 455nm using a Tecan Safire 2 Plate Reader (Tecan Group Ltd., Männedorf, Zürich, Switzerland). Absorbance values were normalized to total protein concentrations for each sample. Background noise from the OPTA
dye was also subtracted from each sample. Absorbance values were compared to w^{1118} to calculate the relative activity.
Figure 2.2. 2D-DIGE of APC2 null versus wild-type *Drosophila* embryos.

A tiled array of a whole gel comparing of *APC2*

$$2^{g10}$$ embryos (shown in green) and wild-type embryos (shown in red). The 16 *APC2*-dependent difference-protein pairs are demarcated with white boxes. Contrast and brightness were manipulated on the whole-gel images using ImageJ.
Results

Comparison of the APC2 null and wild-type proteomes

To understand the proteome changes that occur when APC protein is absent from the early embryo, we compared lysates of APC2 null and wild-type embryos (Fig. 2.1). Early embryos (0-2 hours AEL) were chosen to characterize the earliest detectable proteome changes associated with APC loss. At this stage, these embryos contain many syncytial nuclei within a single cell, where transcription is strongly inhibited with the exception of some patterning and housekeeping genes (Qin et al. 2007; Tadros and Lipshitz 2009). Thus, we predicted that the differences between the APC2 and wild-type proteomes would mostly appear as post-translational changes, rather than protein abundance changes resulting from transcriptional activation of Wnt targets. Lysates from mutant and wild-type embryos were separately labeled with either Cy3 or Cy5 DIGE dyes, shown as green and red, respectively. The separately labeled lysates were combined and run on the same 2DE gel. Protein spots that are common to both lysates are yellow, while proteins that are enriched in one lysate will appear more red or more green. PTM differences appear as closely spaced reciprocally changing spots: one protein spot increases while its neighbor decreases (Fig. 2.1, step 4, white box).

APC2 is the most abundant of the two APC proteins during early embryogenesis and functions in Wnt signaling and cytoskeletal regulation (B M McCartney et al. 1999; B M McCartney et al. 2001; Webb, Zhou, and McCartney 2009; Zhou et al. 2011; Ezgi Kunttas-Tatli et al. 2012; Ezgi Kunttas-Tatli, Roberts, and McCartney 2014; E. Kunttas-Tatli et al. 2015). 2D-DIGE comparison of APC2^{g10} (APC2 null) and wild-type embryos revealed 16 prominent protein changes that were observed in 100% of the trials (n = 30), all of which appeared to be PTMs as evidenced by two or more protein spots horizontally arranged changing reciprocally (Fig. 2.2,
white boxes). Such horizontal shifts indicate a change in isoelectric point (pI) or net protein charge, but not protein mass. Ten of the 16 difference-proteins showed an increase in the acidic isoform in APC2 mutants and the remainder showed a decrease in the acidic isoform. This set of protein changes was observed in 30 high-quality biological replicates and is composed of moderately to highly abundant proteins. Other lower abundance protein changes were observed, but not as consistently, likely due to gel-to-gel variation.

The 16 difference-protein pairs in the APC2g10 embryos were quantified using an open-source astronomy software package, SourceExtractor, previously described (Bertin and Arnouts 1996; Gong et al. 2004; Van, Bass, et al. 2014, Appendix, Table 1). The typical variation in measured abundance of common protein spots is less than 4% for 2D-DIGE, thus the cutoff for significant total abundance change was set to > ±10%, which is 2.5 standard deviations from the typical variance (Gong et al. 2004). Just over half of the difference-protein pairs (9 of 16) were close to being perfectly reciprocal changes (< 10% total protein change) (Fig. 2.3A). The remaining 7 exhibited total abundance changes of >10% (Fig. 2.3B), where there was a reduction in the total abundance of each isoform pair, suggesting increased protein degradation in APC2g10 embryos. None of the difference-protein pair regions showed a significant increase in total isoform abundance. Thus the loss of APC2 in early embryos, where there is no Wnt pathway activation and very little transcription, leads to significant protein changes affecting PTMs that may decrease the stability of a subset of these proteins.

Identification of difference-proteins isoform pairs in APC2 null and wild-type proteomes

The difference-protein pairs were analyzed by MS to identify the proteins and confirm that each pair of protein spots represented protein isoforms. Protein spots were cut out of the gels
Figure 2.3. Quantification of the APC2 difference-proteins.

(A) Plots the measured fold-change for each difference-protein pair that was calculated using the Cy3 and Cy5 raw fluorescence intensities as exemplified in panel A. Cy3/Cy5 ratios <1 were converted to negative fold-change. (B) The total protein abundance, defined as the sum of the fluorescent intensities of putative difference-protein isoforms, was calculated for each protein region in wild-type and APC2^{g10} embryos. The percent difference of the total protein isoform fluorescence was then calculated. Difference-proteins that displayed a > 10% change in total abundance were marked with an asterisks (*).
by a robotic cutting tool incorporated into the gel imager and in-gel trypsin digestion was performed on each gel fragment. The peptide fragments were recovered and analyzed by LC-MS/MS. MS analysis revealed that some difference-protein pairs contained more than one protein species. A list of protein identifications for the 16 difference-protein isoform pairs was generated from at least two biological replicates (Fig. 2.4A, Table 2). In addition, protein spots from gels containing reciprocally-labeled samples were analyzed to provide technical replicates, further validating the protein identifications. All identified proteins had predicted masses and isoelectric points that were relatively well matched to the observed difference-proteins on the 2DE gel. The combined MS data from the technical and biological replicates was used to generate a list of most-likely protein candidates for the 16 difference-protein pairs observed in the APC2 null vs. wild-type comparison (Fig. 2.4A). The identified proteins span a range of cellular functions, from metabolic proteins being the most prominent difference-proteins to RNA binding proteins, proteases and chaperones (Fig. 2.4B).

We used immunoblot analysis to confirm the identity of one of the difference-proteins for which a Drosophila-specific antibody was available. Calcium Binding Protein 1 (CaBP1) shifts to a more basic isoform in APC2 mutants (Fig. 2.2, Region 10; Fig. 2.5.1, Table 2C). Wild-type and APC2^{g10} lysates were independently labeled with Cy3 dyes and electrophoresed on separate 2DE gels. Fluorescence images were captured of the proteins before being transferred to nitrocellulose membranes (Fig. 2.5.2). The fluorescence and immunoblot images (Fig. 2.5.3) were superimposed to show that the acidic isoform is in greater abundance in wild-type embryos, while the basic isoform is more abundant in APC2^{g10} mutant embryos (Fig. 2.5.4), confirming our MS identification of CaBP1, and that its isoform distribution is altered in APC2 null mutants.
Comparison of the APC null proteomes

Drosophila APC2 and APC1 proteins both function in the destructosome and exhibit redundancy in the regulation of Wnt signaling during embryogenesis (Akong et al. 2002; Ezgi Kunttas-Tatli et al. 2012). Thus, we predicted that at least some of the proteome changes seen in APC2 null mutants would also be observed in APC1 null embryos. To understand the interplay between APC2 and APC1 on a proteome-wide level, we compared lysates from APC2^{g10} embryos to APC1^{Q8} embryos (Appendix A, Table 3C), as well as APC2 APC1 double null (APC2^{g10}APC1^{Q8}) embryos (Appendix A, Table 3C). Since APC1 and APC2 APC1 null females are not viable, germ line mosaics from heterozygous mutant APC1^{Q8} or APC2^{g10}APC1^{Q8} females were made using the FLP/FRT system (Chou and Perrimon 1996). A total of 14 changes in APC1^{Q8} embryos and 23 changes in APC2^{g10}APC1^{Q8} embryos were observed in comparison to wild-type embryos. We do not think that the increase or decrease in the total number of changes compared to APC2^{g10} is significant, owing to the experimental variability. Comparing the difference-protein pairs between APC2 null embryos versus wild-type and APC1 null embryos versus wild-type showed that these two mutants shared eleven of APC’s difference-proteins, five were unique to APC2 null embryos (Appendix A, Table 3C). None of the difference-proteins were specific to APC1 null embryos. Comparing the difference-protein pairs between APC2 null embryos versus wild-type and APC2 APC1 double null embryos versus wild-type showed that these two mutants shared ten of APC2’s difference-protein pairs, six were unique to APC2 null embryos and 11 were specific to APC2 APC1 double null embryos.

Of the eleven common difference-protein pairs between APC2 and APC1 mutants and the ten common difference-protein pairs between APC2 and APC2 APC1 mutants, six were shared by all three mutant-types being compared. Five additional difference-proteins were common only to
APC1 and APC2-these were not observed in the APC2 APC1 mutants; while four difference-proteins were common only to APC2 and APC2 APC1 mutants, not observed in APC1 null versus wild-type alone. Overall, there was one difference-protein that was unique to APC2 mutants, none were unique to APC1 mutants, and ten were unique to the APC2 APC1 double mutants. These data suggest that there is a complex interplay between APC1, APC2, and the APC2 APC1 double mutants that is neither purely additive, nor synergistic, indicating the APC1 and APC2 proteins serve both individual and shared functions. An alternative explanation for some of these results is that some of these unique changes may be independent of the APC genes, and instead be due to differences in genetic background. This may explain why the six APC2 null unique changes were not observed in the APC2 APC1 double mutant embryos.

The difference-proteins isoform pairs are due to multiple types of PTMs

Because phosphorylation is the most common post-translational modification (Khoury, Baliban, and Floudas 2011), and the APC-containing destructosome possesses two kinases, GSK3β and CK1α, we tested the hypothesis that many of the observed difference-proteins were due to phosphorylation changes by treating wild-type and APC2g10 embryo lysates with a broad spectrum phosphatase, Lambda Protein Phosphatase (λPP). 2D-DIGE was used to compare λPP-treated wild-type or APC2 mutant embryo lysates versus untreated lysates. Dephosphorylated proteins shift to the right (more basic) relative to untreated lysates, while non-phosphorylated (or λPP refractory) protein will be unaffected. The efficacy of phosphatase treatment was confirmed by observing the entire yolk protein population shifting to the right (data not shown). Unfortunately, the λPP reaction conditions interfered with isoelectric focusing in the basic region of the 2DE gels preventing analysis of 7/16 of the difference-proteins isoform pairs. The acidic
half of the gels was well resolved, and we were able to assess 9/16 of the difference-proteins isoform pairs. Surprisingly, phosphorylation was found to play a minor role in generating the isoform changes. Below are two examples of what we observed.

Dp1 difference-protein isoforms displayed phosphatase sensitivity (Fig. 2.6A). Dp1 has two isoforms on 2DE gels: the acidic L isoform, which is elevated in wild-type embryos (Fig. 2.6A’, left panel) and the basic R isoform that is elevated in *APC2* mutant embryos (Fig. 2.6A”, left panel). The L isoform shifted to the right upon λPP treatment, indicating that this isoform is phosphorylated (Fig. 2.6A’, right panel). The R isoform did not shift due to λPP treatment, indicating that it is not phosphorylated (Fig. 2.6A”, right panel). Interestingly, in both wild-type and *APC2* mutant embryos conversion of the L isoform to the R is incomplete, suggesting that Dp1 may be partially refractory to λPP or that some fraction of the L protein spot bears a different PTM.

ApepP appears to be insensitive to phosphatase treatment (Fig. 2.6B). ApepP has three isoforms on 2DE gels. In wild-type embryos the more basic, R, isoform is elevated (Fig. 2.6B’, left panel), while in *APC2* mutant embryos it is the acidic L isoform that is elevated (Fig. 2.6B”, left panel). The middle isoform does not significantly change in *APC2* mutant embryos compared to wild-type (Fig. 2.6B, ApepP). Surprisingly, none of the isoforms shifted upon λPP treatment, suggesting that none of the ApepP isoforms are phosphorylated, or ApepP is completely resistant to λPP. We observed this to be true for the majority of the resolved difference-proteins isoforms (8 of 9) suggesting that phosphorylation is not the major post-translational modification altered in *APC2* null embryos.
A Identified proteins for APC2 null protein-differences

| Region | Gene | Protein name | Isoform in APC2
tg | Mol. mass (kDa) | pI* | Molecular Function |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CG2918</td>
<td>N/A</td>
<td>Basic</td>
<td>103</td>
<td>5.1</td>
<td>Protein chaperone</td>
</tr>
<tr>
<td>2</td>
<td>ade2</td>
<td>Phosphoribosylformylglycinamidine synthase</td>
<td>Basic</td>
<td>148</td>
<td>6.6</td>
<td>Metabolic protein</td>
</tr>
<tr>
<td>3</td>
<td>Irp-1B</td>
<td>Iron binding protein 1</td>
<td>Acidic</td>
<td>99</td>
<td>5.7</td>
<td>RNA-binding</td>
</tr>
<tr>
<td>4</td>
<td>Dpf</td>
<td>Dodeca-satellite-binding protein 1</td>
<td>Basic</td>
<td>144</td>
<td>5.9</td>
<td>DNA-binding</td>
</tr>
<tr>
<td>5</td>
<td>CG1516</td>
<td>Pyruvate carboxylase</td>
<td>Basic/Acidic</td>
<td>133</td>
<td>6.2</td>
<td>Metabolic protein</td>
</tr>
<tr>
<td>6</td>
<td>CG14476</td>
<td>N/A</td>
<td>Acidic</td>
<td>106</td>
<td>6.1</td>
<td>Metabolic protein</td>
</tr>
<tr>
<td>7</td>
<td>GlyP</td>
<td>Glycogen phosphorylase</td>
<td>Acidic</td>
<td>97</td>
<td>6.1</td>
<td>Metabolic protein</td>
</tr>
<tr>
<td>8</td>
<td>Aats-gly</td>
<td>Glycyl-IRNA synthetase</td>
<td>Basic</td>
<td>76</td>
<td>6.0</td>
<td>Metabolic protein</td>
</tr>
<tr>
<td>9</td>
<td>ApepP</td>
<td>Aminopeptidase P</td>
<td>Acidic</td>
<td>63</td>
<td>5.6</td>
<td>Protease</td>
</tr>
<tr>
<td>10</td>
<td>CaBP1</td>
<td>Calcium binding protein 1</td>
<td>Basic</td>
<td>47</td>
<td>5.5</td>
<td>Signaling</td>
</tr>
<tr>
<td>11</td>
<td>mRps30</td>
<td>Mitochondrial ribosomal protein S30</td>
<td>Basic</td>
<td>65</td>
<td>8.5</td>
<td>RNA-binding</td>
</tr>
<tr>
<td>12-1</td>
<td>Cbs</td>
<td>Cystathionine beta-synthase</td>
<td>Basic</td>
<td>57</td>
<td>6.6</td>
<td>Metabolic protein</td>
</tr>
<tr>
<td>12-2</td>
<td>CG8231</td>
<td>TCP-1zeta</td>
<td>Acidic</td>
<td>58</td>
<td>6.2</td>
<td>Protein chaperone</td>
</tr>
<tr>
<td>13</td>
<td>La</td>
<td>La autoantigen-like protein</td>
<td>Acidic</td>
<td>45</td>
<td>7.7</td>
<td>RNA-binding</td>
</tr>
<tr>
<td>14</td>
<td>blw</td>
<td>Bellwether, ATP synthase subunit</td>
<td>Acidic</td>
<td>59</td>
<td>9.1</td>
<td>Metabolic protein</td>
</tr>
<tr>
<td>15</td>
<td>Uch</td>
<td>Ubiquitin carboxy-terminal hydrolase</td>
<td>Acidic</td>
<td>26</td>
<td>5.3</td>
<td>Protease</td>
</tr>
<tr>
<td>16</td>
<td>CG1633</td>
<td>Jafra 1</td>
<td>Acidic</td>
<td>22</td>
<td>5.5</td>
<td>Metabolic protein</td>
</tr>
</tbody>
</table>

B Overall protein identification synopsis

![Bar chart showing the percentage of identified proteins across different functions](image)

Figure 2.4. MS Identification of the APC2-dependent difference-proteins.

(A) A list of the most likely protein identifications for the 16 difference-proteins observed in APC2^{tg} versus wild-type embryos comparisons. (B) Graphical representation of the molecular functions performed by the identified difference-proteins (see Appendix for full details).
Controlling for genetic background effects

Controlling for genetic variability has always been a concern when determining differential expression of proteins in proteomic comparisons between two conditions. We asked if any of the 16 difference-protein isoforms were variably expressed across multiple wild-type strains, by comparing the proteome of our lab’s w^{1118} wild-type strain (w^{Mc}) to two other closely related, yet independently segregated w^{1118} lines: w^D and w^P (Fig. 2.7A, Table S3A). The w^P wild-type strain is originally from the Peifer lab (University of North Carolina at Chapel Hill), from which the McCartney w^{1118} line was derived and used for outcrossing of the $APC2^{g10}$ stock. The w^D strain was obtained from the Duke University Model Systems Genomics Facility where our $APC2-FL$ transgenic line was generated in this genetic background (Brooke M McCartney et al. 2006), and subsequently crossed into the $APC2^{g10}$ background for genetic rescue experiments. Thus these two independent wild-type w^{1118} strains were the most relevant wild-type genotypes to determine if the protein changes that are found in our original w^{Mc} vs. $APC2^{g10}$ comparison are variable. From this analysis, we found that w^D shares 3 difference proteins with $APC2^{g10}$ and w^P shares an additional 6 difference proteins with $APC2^{g10}$ (Appendix A, Table 3A). Because of the possibility that the changes to these 9 difference-proteins are not specific to $APC2^{g10}$ and instead result from common background effects, we chose to continue our analysis with the remaining wild-type independent (WTI) difference-proteins (1, 4, 7, 9, 11, 12, and 16) that did not appear as changes in any of our three wild type w^{1118} strains.

Validating the APC-dependent difference-protein isoform pairs

We next asked if exogenous expression of full-length APC2 protein was able to rescue the remaining seven WTI difference-proteins in APC2 null embryos (1, 4, 7, 9, 11, 12, and 16)
(Appendix A, Table 3A). First, the proteome of APC2^g10 embryos was compared to APC2^g10 embryos carrying two copies of a full length APC2 transgene (FL-GFP-APC2;APC2^g10). This APC2 transgene, which is driven by the native APC2 promoter, is expressed at endogenous levels (Brooke M McCartney et al. 2006) and it rescues both the cytoskeletal defects seen in the early embryo and Wnt signaling defects observed later in embryogenesis (Zhou et al. 2011; Ezgi Kunttas-Tatli et al. 2012). Surprisingly, only five of the seven WTI difference-proteins – CG2918, Dp1, GlyP, ApepP, and Cbs/TCP were reverted by ectopic expression of APC2 (e.g. Fig. 2.7B, ApepP, left panel vs. middle panel). Further evidence for the effect of ectopic APC2 expression in FL-GFP-APC2 embryos was confirmed by the presence of these five difference-protein changes when compared to APC2 null embryo lysates (Fig. 2.7B, ApepP, left panel vs. right panel). The remaining two WTI difference-protein pairs, mRpS30 and Jafrac1, were not reversed by ectopic APC2 expression (e.g. Fig. 2.7B, Irp-1B).

There are two possible explanations for why FL-GFP-APC2 failed to rescue two of the WTI difference-protein pairs in APC2^g10: (1) these protein differences are due to genetic background differences in APC2^g10 that were not present in the other wild-type w^{118} lines, or (2) the FL-GFP-APC2 protein has reduced function compared to wild type APC2, and that the proteomic changes are highly sensitive to APC2 activity. To distinguish between these two possibilities, an independent APC2 null allele, APC2^33, was analyzed. APC2^33 was created by imprecise excision of a P-element within APC2, deleting a large portion of the 5’ end of the gene, spanning from the promoter to the fifth Armadillo repeat (Takacs et al. 2008). All WTI difference-proteins, except #16-Jafrac1, were observed in the APC2^33 versus wild-type comparison, suggesting that they are bona fide APC2-dependent protein changes. Thus, the failure of FL-GFP-APC2 to compensate for some of the WTI difference-proteins is likely due to
insufficient activity (Appendix, Table 3B). To further support that these changes are APC-dependent, a variety of these changes can be reproduced in various APC knockdown situations (Fig. 2.7C; Appendix A, Table S3). Isoform differences in proteins Dp1, GlyP, ApeP, and mRpS30 recapitulated by knocking down APC2 with a dsRNA driven by a strong maternal driver (MTD) as compared to \(w^{Mc} \). CG2918, Dp1, GlyP, and ApeP displayed isoform differences when comparing \(APC^{Q8} \) null germ line clone embryos to \(w^{Mc} \) embryos. Isoform changes in CG2918, ApeP, and mRpS30 were observed when comparing \(APC^{2\text{g}10APC^{Q8}} \) null germ line clone embryos. Together, these data strongly support that six of the seven WTI difference-protein isoform pairs are indeed APC-dependent changes and not due to genetic background mutations.

The APC-dependent difference-proteins isoform pairs do not require β-cat transcription

Previously published proteome studies of APC mutant tissue identified a number of proteins with elevated levels, presumably resulting from the transcriptional activation of Wnt target genes via β-cat (Chafey et al. 2009). In our analysis, only two of the APC-dependent difference-proteins displayed a total abundance change and in both cases it was a decrease in protein abundance in the \(APC^{2} \) mutant, likely associated with decreased protein stability (mRpS30 and Cbs/TCP; Fig. 2.3B). This observation, coupled with the strong suppression of zygotic transcription in 0-2 hr embryos, suggested that the APC-dependent protein isoform differences were not a result of β-cat dependent transcriptional activation. To test this hypothesis directly, we asked if the APC-dependent isoform differences required the activation of Wnt target genes by expressing a dominant negative form of TCF (TCFΔN), a transcription factor essential for β-cat mediated transcription, in embryos reduced for \(APC^{2} \). The complexity of the
genetics prevented us from performing this experiment in the APC2 null background, and instead we reduced APC2 activity using dsRNA. Embryos derived from MTD-GAL4>UAS-APC2_{dsRNA} females exhibited the same protein isoforms differences for Dp1, GlyP, ApepP, and mRpS30 as APC2 null embryos do (Fig. 2.7C). It is likely that CG2918 and Cbs/TCP are unchanged due to insufficient knockdown of APC2 with the dsRNA. Next, we generated embryos derived from MTD-GAL4>UAS-TCFΔN; UAS-APC2_{dsRNA} females to simultaneously knock down APC2 and block Wnt dependent transcription from the start of oogenesis. When we compared the proteome of TCFΔN;APC2_{dsRNA} embryos to APC2_{dsRNA} embryos, we found that the four APC2-dependent protein changes we observed in both APC2 null and APC2_{dsRNA} embryos are unaffected by the blockade of Wnt dependent transcription (Fig. 2.7C). Importantly, if we crossed the MTD-GAL4>UAS-TCFΔN; UAS-APC2_{dsRNA} females to males carrying a tubulin-GAL4 to drive ubiquitous expression of both TCFΔN and APC2_{dsRNA} zygotically past 2 hours of development, we find that a portion of these embryos die with a cuticle phenotype consistent with the TCFΔN block of Wnt dependent transcription (a lawn of denticles, data not shown; Parker, Jemison, and Cadigan 2002). Although we cannot rule out the possibility that CG2918 and Cbs/TCP may behave differently, these results strongly support the hypothesis that the APC-dependent difference-protein isoform pairs are not a consequence of transcriptional activation through β-cat and TCF. Interestingly, GlyP, ApepP, mRpS30, and Cbs/TCP exhibit APC-dependent protein isoform changes in embryos knocked down for GSK3β (Sgg in Drosophila), or expressing a stabilized form of β-cat (arm^{st10}), two APC independent ways to accumulate stabilized β-cat (Fig. 2.7C; Pai et al. 1997). This suggests that the accumulation of stabilized β-cat, but not β-cat dependent transcriptional activation, is required for these protein isoform changes.
Figure 2.5. Immuno-blot confirmation that Calcium-Binding Protein 1 isoform distribution is an APC2-dependent difference-protein.

(1) 2D-DIGE image of the region containing Calcium-Binding Protein 1 isoforms. (2) Fluorescent images of wild-type and \(APC2^{g10} \) embryo lysates that were separately labeled with Cy3 DIGE dye, resolved on different 2DE gels and transferred to nitrocellulose. (3) Immuno-blot images of proteins stained with anti-DmCaBP1 antibody. (4) Superimposed images of total, Cy3-labeled protein (red) and the CaBP1 2D-immuno-blot (green) confirm protein identification by LC-MS/MS. The predominant isoform found in wild-type lysate is the left isoform, while is right isoform is the predominant isoform seen in \(APC2 \) null embryos.
Aminopeptidase P is a novel regulator of β-cat levels during embryogenesis

To investigate the functional relationship between APC2 and our APC-dependent difference-proteins, we asked if mutants in any of the WTI difference-proteins could affect APC-dependent processes, such as regulating the stability of β-cat (Armadillo (Arm) in Drosophila). Because ApepP was affected in all backgrounds where components of the Wnt pathway were manipulated, we predicted that ApepP might be responding to changes in the destructosome or to the accumulation of stabilized Arm, and consequently, ApepP itself may play a role in the Wnt pathway. To test this hypothesis, we examined the effect of two P-element insertions into ApepP, ApepP\(^{EY02585}\) (ApepP\(^{EY}\)) and ApepP\(^{MI01970}\) (ApepP\(^{MI}\)), on Wnt dependent patterning and morphogenesis in the embryo. ApepP\(^{EY}\) is a maternal effect embryonic semi-lethal allele (Appendix A, SFig. 2.1F, 54% of progeny die as embryos) bearing a P-element insertion in the gene’s 5’-UTR that reduces ApepP protein abundance and alters its isoform distribution (Fig. 2.8G). The cuticles of these maternally and zygotically ApepP\(^{EY}\) dead embryos resembled those of embryos with mild hyper-activation of the Wnt pathway (Brooke M McCartney et al. 2006; Swarup and Verheyen 2012). These phenotypes include a reduction in body length, defects in head morphogenesis and head holes, and loss of denticles (Fig. 2.8B). In addition, fusion of the first and second denticle rows was frequently observed (Fig. 2.8B’, yellow arrow), and is known to result from the expression of stabilized Arm in these rows of cells (Pai et al. 1997), although we do not see this in APC2 mutants (Brooke M McCartney et al. 2006). ApepP\(^{EY}\) cuticles also exhibited large body holes that we do not find in APC2 mutants (Fig. 2.8C & C’, yellow circle). All of these defects were also visible in ApepP\(^{MI}\) embryos carrying an independent P-element insertion in the 5’-end of the ApepP coding region and in ApepP\(^{EY}/ApepP^{MI}\) transheterozygotes, suggesting that these defects are due to ApepP disruption (Appendix A, SFig. 1B-D).
The *ApepP* gene lies within an intron of the gene *tweek (twk)* that plays critical roles in synaptic vesicle recycling in larval to adult stages (Verstreken et al. 2009). The *EY02585* insertion fails to complement point mutants specifically affecting *twk* (*twk*¹ and *twk*²; Verstreken et al. 2009), suggesting that *EY02585* disrupts both *ApepP* and *twk*. This work on *twk* showed that the primary lethal phase is larval through pharate adult. Because rescuing transgenes do not exist to separate *ApepP* and *twk* function, we asked whether the embryonic lethal phenotypes we observed in *EY02585* embryos could be the result of *twk* disruption. We assessed embryonic lethality in the progeny of *twk*¹/+ or *twk*²/+ parents (Appendix A, SFig. 2B). While there was some embryonic lethality (*twk*¹ = 4% and *twk*² = 16%), the cuticle phenotypes do not resemble those of *EY02585* embryos (Appendix A, SFig. 3B). Therefore, our data strongly suggest that the embryonic lethality and cuticle phenotypes associated with *EY02585* are the result of disrupting *ApepP*, and not *twk*, during embryogenesis.

Because defects in *ApepP* resembled the effects of mild inappropriate Wnt pathway activation, we predicted that reduction of *APC2* in *ApepP*³⁸ homozgyous embryos might enhance the *ApepP*³⁸ phenotypes. To test this, we first assessed the cuticle phenotypes of the progeny of *ApepP*³⁸/*ApepP*³⁸; *APC2*⁸¹⁰/+ parents. Because the progeny of *APC2*⁸¹⁰/+ parents are 97% embryonic viable with no visible cuticle defects in the few embryos that fail to hatch (data not shown), any phenotypes that we see in embryos from *ApepP*³⁸/*ApepP*³⁸; *APC2*⁸¹⁰/+ parents will be due to the *ApepP*³⁸/*ApepP*³⁸ genotype or its genetic interaction with *APC2*⁸¹⁰. Dose reduction of *APC2* did not enhance the embryonic lethality of *ApepP*³⁸ homozgyous embryos (Appendix A, SFig. 1F, 48% progeny die), but the *ApepP*³⁸ homozgyous cuticle defects were modified. The large *ApepP*³⁸/*ApepP*³⁸ body holes were almost completely absent, denticle row fusion was strongly reduced, but defects in head morphogenesis, like those in *APC2* mutants, were more
prevalent (Fig. 2.8D). While the resulting phenotype is complex, and does not precisely resemble either the \textit{ApepP} or the \textit{APC2} phenotype, it is consistent with a genetic interaction as \textit{APC2}^{g10} appears to modify the effects of \textit{ApepP}^{EY}. We found a more clear and striking example of genetic interaction between \textit{ApepP} and \textit{APC2} in adults; while both \textit{ApepP}^{EY}/\textit{ApepP}^{EY} and \textit{APC2}^{g10}/\textit{APC2}^{g10} are separately adult viable (although not at the expected Mendelian ratios, Table 2.1; this work and Brooke M McCartney et al. 2006; Ezgi Kunttas-Tatli et al. 2012) neither \textit{ApepP}^{EY}/\textit{ApepP}^{EY}, \textit{APC2}^{g10} nor \textit{ApepP}^{EY}/\textit{CyO}; \textit{APC2}^{g10} are adult viable or even survive to pupal stages (n = 151; Table 2.1). This suggests that any disruption of \textit{ApepP} drives \textit{APC2} null homozygotes to complete zygotic lethality, and that a simple dose reduction of \textit{APC2} significantly suppresses the adult viability of \textit{ApepP}^{EY}/\textit{ApepP}^{EY} (Table 2.1). Together, these data suggest that \textit{ApepP} and \textit{APC2} interact genetically and that their functional relationship may be in the negative regulation of \textit{Wnt} signaling.

Consistent with this hypothesis, \textit{ApepP}^{EY} mutants exhibited dramatically elevated levels of Arm similar to \textit{APC2} mutants (Fig. 2.8H). At 0-2 hours AEL, \textit{ApepP} mutants exhibited a ~6-fold increase in Arm protein relative to wild-type (Fig. 2.8I). \textit{APC2} null mutants exhibited a ~15-fold Arm increase (Fig. 2.8J). Wild-type embryos at 4-6 hours AEL accumulate Arm in ectodermal stripes due to \textit{Wnt} signaling that leads to destructosome deactivation. In strong \textit{APC2} hypomorphs, this pattern of Arm accumulation is lost and all cells appear to accumulate uniform levels of Arm (Brooke M McCartney et al. 2006). Similarly, 92% of \textit{ApepP}^{EY}/\textit{ApepP}^{EY} embryos (n=51) show a visible disruption in the pattern of Arm accumulation, with a decrease in stripe (peak)/inter-stripe (valley) ratio (Fig. 2.8E vs. F plot profiles) consistent with a more uniform pattern of Arm accumulation. Surprisingly, both \textit{ApepP} mutants and \textit{APC2} null mutants show a decrease in overall Arm protein levels at this time compared to wild-type (~2 and ~ 4-fold
respectively; Fig. 8J,K). Overall, these data strongly support the hypothesis that like APC2, ApepP plays an important role in regulating β-cat protein levels to prevent ligand-independent activation of Wnt signaling during embryogenesis.

APC2 regulates ApepP proteolytic activity

To begin to understand the connection between ApepP and APC2, we asked if APC2 influences ApepP proteolytic activity. Because APC2 and ApepP genetically interact (Table 2.2), ApepP^{EY} mutants resemble embryonic defects of mild inappropriate Wnt pathway activation (Fig. 2.8A-C), and APC2 regulates ApepP PTM-isforms (Fig. 2.8G), we predicted that APC2 protein regulates proteolytic activity by modifying PTM-isforms of ApepP. To test this, we used a well-established ApepP proteolytic assay first developed by Simmons and Orawski for bovine work, and later adapted by Kulkarni and Deobagkar for Drosophila (Fig. 2.9A; Kulkarni and Deobagkar 2002; Simmons and Orawski 1992). This assay measures endogenous ApepP proteolytic activity by adding a saturating amount of cleavable Arg-Pro-Pro tri-peptide substrate. ApepP recognizes the Pro-Pro motif and cleaves off the Arg residue, which has a high affinity for a specific fluorescent dye (OPTA), producing a fluorescent signal proportional to the amount of ApepP activity present. We tested both male and female adults (Fig. 2.9B,C). Relative to wild-type activity (100%), we observed a significant decrease in ApepP activity in APC2^{x10} mutant lysates (~23%; Fig. 2.9B,C). The activity was restored by reintroducing the FL-APC2 gene in the APC2 null background. ApepP activity was also present, but lower in APC2 heterozygous mutant embryos (50-60%), suggesting ApepP function is sensitive to the amount of APC2 protein present. Interestingly, we did observe 30-40% ApepP proteolytic activity in ApepP^{EY} mutants, confirming that the P-element insertion does not completely abolish ApepP protein activity. This observation is consistent with our 2D-DIGE results showing that ApepP protein...
was still present in $Apep^{EY}$ mutant embryos with a different isoform distribution. (Fig. 2.8G). Overall, these data support that APC2 protein function can influence ApepP’s proteolytic activity.
Figure 2.6. APC2-dependent isoform changes are due to phosphorylation and other PTMs.

(A) A model for the PTM responsible for Dodeca-satellite-binding protein 1 (Dp1) isoforms.

(A') Dp1 isoforms are affected by phosphorylation, as the left isoforms collapses to the right isoform after λPP treatment for both wild-type and APC2^{g10} embryo lysates.

(B) A model for the PTM(s) responsible for Aminopeptidase P (ApepP) isoforms.

(B') ApepP isoforms were not affected by λPP treatment, as there were no isoform shifts observed after phosphatase treatment. White dashed circles indicate the difference-protein isoforms.
Discussion

APC proteins exhibit remarkable functional breadth, playing key roles in such diverse areas of cell biology as Wnt signaling, microtubule stability, and actin assembly (Brooke M. McCartney and Näthke 2008; Cadigan and Peifer 2009; Ring, Kim, and Kahn 2014). Surprisingly, new roles for APC proteins are still being discovered (Preitner et al. 2014). This functional complexity makes it challenging to develop a comprehensive understanding of the cellular consequences of APC mutations, and how these changes affect cancer initiation and progression. To address these gaps, we conducted a comparative proteomic analysis using 2D-DIGE in *Drosophila* embryos null for APC proteins and discovered a set of APC-dependent protein isoform changes due to PTMs. 2D-DIGE comparisons of livers isolated from wild-type and APC knockout mice 7 days post-knockout revealed significant protein abundance changes (Chafey et al. 2009). Many of these changes likely result from transcriptional activation by β-cat. In 0-2 hour *Drosophila* embryos, transcription is largely silent, and more acute difference-protein isoforms were revealed as a result of changes in PTMs. We genetically validated that a subset of these difference-protein isoforms were due to the loss of APC activity. Remarkably, we also demonstrated that the validated APC-dependent difference-protein isoform pairs are very likely not the direct or indirect result of β-cat transcriptional activation. First, none of the difference-protein isoform pairs had elevated total protein abundance. Secondly, of the APC-dependent difference-protein isoforms we reproduced four out of six of the protein isoform changes (GlyP, ApepP, mRpS30, and Cbs/TCP) when also expressing a dominant negative form of the TCF protein in an APC2 reduced background (the remaining 2 could not be assessed; Fig. 2.7C). This fact suggested to us that the APC dependent protein isoform changes were likely the result of disrupting APC’s non-destructosome functions. However, when we examined proteomic changes
in embryos reduced for GSK3β activity, or expressing a stabilized form of Arm we were surprised to find that GlyP, ApepP, mRpS30, and Cbs/TCP exhibit an APC mutant isoform profile. These data suggest that the modifications of these four difference-proteins may be a result of merely elevating β-cat in the cytoplasm. If this is the case, it suggests that during normal development in cells where the Wnt pathway is activated, the destructosome deactivated, and Arm is stabilized, GlyP, ApepP, mRpS30, and Cbs/TCP will undergo the same protein isoform changes that we are observing here during ligand-independent stabilization of β-cat. This raises the intriguing possibility that these protein isoform changes play a role in the cellular response to Wnt pathway activation via a non-transcriptional mechanism. The remaining two APC-dependent difference-protein isoforms, CG2918 and Dp1, did not respond to either β-cat manipulation, suggesting that these may result from disruption of APC’s other activities such as their cytoskeletal functions.

Loss of APC proteins impacts phosphorylation and other post-translational modifications

Phosphorylation is the predominant PTM in eukaryotic cells (Khoury, Baliban, and Floudas 2011). Because APC proteins are complexed with kinases GSK3β and CK1 in the destructosome, and APC enhances GSK3β activity *in vitro* (Zumbrunn, Kinoshita et al. 2001, Ha, Tonozuka et al. 2004, Rao, Makhijani et al. 2008, Valvezan, Zhang et al. 2012), we predicted that the difference-protein isoforms were primarily due to changes in phosphorylation. Thus, we were surprised to find that this does not appear be the case for the majority of isoform changes: of the 9 difference-proteins (1, 2, 3, 4, 8, 9, 10, 15, 16) that we could assess under the conditions of λPP treatment, only one of the difference-protein isoform changes (#4-Dp1) appears to be due to phosphorylation differences, while the remaining difference-proteins are
Figure 2.7. Validating the APC-dependent difference-proteins in APC2 null embryos.

(A) A decision tree showing the genetic approach taken to validate the APC-dependent difference-proteins. Seven of the 16 difference-proteins were concluded to be APC-dependent and independent of wild-type variation. (B) 2D-DIGE comparisons of FL-GFP-APC2;APC2^{g10} vs. APC2^{g10} and FL-GFP-APC2;APC2^{g10} vs. wild type embryo lysates were performed to test if ectopic APC2 was sufficient to reverse the observed APC2^{g10} vs. wild type proteome changes. Shown here are difference-proteins, ApepP and Irp-1B, that exemplify reversal and failure to compensate, respectively.
thus predicted to be modified by alternative PTMs. As the second most prominent reversible
PTM, acetylation may contribute to some of the difference-protein isoform changes.
Interestingly, acetylation plays a role in β-cat signaling at the level of the TCF complex (Lévy et
al. 2004), and appears to play a role in Wnt-mediated breast cancer proliferation (S. H. Wang et
al. 2014). Finally, ApepP-dependent cleavage of short N-terminal peptides may alter a protein’s
pl, but not its apparent molecular weight on 2DE gels, which would appear as a horizontal shift,
reminiscent of common PTMs. A subset of the APC dependent protein isoform changes also
appear in ApepP mutants, suggesting that these changes could result from changes to ApepP
activity (data not shown). Identifying the mechanisms by which APC regulates these PTMs is
vital to understanding the non-transcriptional effects of APC loss in normal development, as well
as in the onset of cancer.

ApepP regulates β-catenin abundance

ApepP is a metalloaminopeptidase that removes amino acids adjacent to the amino
termini of peptides with a prolyl residue in the second position (Yaron 1987; Yaron and Naider
1993). ApepP is ubiquitous and conserved from bacteria to vertebrates (Kulkarni and Deobagkar
2002; Ersahin, Szpaderska, and Simmons 2003; Ersahin et al. 2005). Mammalian ApepP exists
in two forms, cytosolic and membrane bound, and functions in the maturation of active peptides,
including hormones (Bradykinin), neuropeptides (Substance P), and neurotransmitters (Medeiros
of Drosophila ApepP is functionally conserved with human ApepP, and can hydrolyze both
Bradykinin and Substance P (Kulkarni and Deobagkar 2002). Our results suggest that ApepP is
necessary for β-cat regulation as *ApepP* mutants display an array of Wnt activation phenotypes,
Table 2.1: APC-dependent differences in APC mutant embryos, APC knockdown (dsRNA) embryos, and APC-independent β-cat stabilized embryos

<table>
<thead>
<tr>
<th></th>
<th>FL-GFP-APC2; APC2^{fl10}</th>
<th>APC1^{Q8}</th>
<th>APC2^{g10}</th>
<th>APC1^{Q8}</th>
<th>APC2^{33}</th>
<th>APC2 dsRNA</th>
<th>TCFΔN; APC2 dsRNA</th>
<th>arm^{St10}</th>
<th>sgg dsRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>CG2918</td>
<td>nc (compensated)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>nc</td>
<td>nc</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>(4)</td>
<td>Dp1</td>
<td>nc (compensated)</td>
<td>✓</td>
<td>nc</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>(7)</td>
<td>GlyP</td>
<td>nc (compensated)</td>
<td>✓</td>
<td>nc</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>nc</td>
<td>✓</td>
</tr>
<tr>
<td>(9)</td>
<td>ApepP</td>
<td>nc (compensated)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(11)</td>
<td>mRpS30</td>
<td>✓</td>
<td>nc</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(12)</td>
<td>Cbs/TCP</td>
<td>nc (compensated)</td>
<td>nc</td>
<td>nc</td>
<td>nc</td>
<td>✓</td>
<td>nc</td>
<td>nc</td>
<td>nc</td>
</tr>
</tbody>
</table>

cnc, no change.
accumulate Arm in the early embryo like APC2 mutants, and genetically interact with APC2g10 (Fig. 2.8). Of ApepP’s three isoforms seen in our DIGE analysis comparing wild-type embryos to APC mutant embryos, the right and left isoforms change while the middle isoform does not (Fig. 2.2A, Region 9). These isoform differences in ApepP were also observed with Sgg knockdown and the expression of stabilized Arm (Fig. 2.7C). From these observations, we propose a model where ApepP protein isoforms, presumably a reflection of ApepP’s enzymatic activity, are regulated in part by the stabilization of β-cat. To support this, we show that APC2 influences ApepP function promoting ApepP proteolytic function via PTM modification (Fig. 2.9B,C). However, the fact that disruption of ApepP activity in the P-element insertion mutants appears to stabilize Arm and activate Wnt signaling suggests that this is a complex feed-back driven pathway, and that the proper regulation of ApepP activity is required to prevent the inappropriate stabilization of β-cat and downstream Wnt pathway activation (Fig. 2.10). To further test this model we next we need to identify the APC-dependent PTM modification that regulates ApepP’s proteolytic activity.

Wild-type variable difference-protein isoform pairs are APC-like difference-protein isoforms

We were surprised to find that over half of the difference-protein isoforms identified in APC2 mutant embryos were also variable in different w^{118} strains (Appendix A, Table 3A). Because all of the original 16 difference-proteins were observed in some form of APC knockdown in multiple genetic backgrounds (Appendix A, Table 3C), we further characterized a subset of variable difference-proteins, Aats-gly, CaBP1, and UCH, by comparing isoform ratios and total abundance within like APC2g10 vs. wild type (ApepP, right panel), while the control FL-
GFP-APC2;APC2^{g10} vs. wild type compensates for the isoform shift (ApepP, middle panel). The converse effect was seen for failed compensations, such as in Irp-1B. the different w¹¹¹⁸ strains and between APC2 null embryos (data not shown). Interestingly, the wild-type variable difference-protein isoforms displayed different types of total abundance and isoform changes relative to APC2 null embryos. This distinction suggests that these variable difference-proteins may be particularly sensitive to developmental perturbations. Further investigation of wild-type to wild-type proteomic variability is required to elucidate this intriguing observation.

Conclusion

Taken together, our results suggest that loss of APC has diverse post-translational consequences to the proteome. The most notable observation from these studies is that even in the absence of a Wnt signal and with limited transcription, the loss of APC2 causes many significant PTM changes, affecting a wide variety of proteins over a relatively short period of development. Identification of these changes provides unique insight into the proteomic and cellular responses to the loss of a single protein. The discovery of these APC-dependent PTM changes was made possible by 2D-DIGE, which maintains proteins in their intact state throughout the separation and detection process. It is very unlikely that this array of PTM-dependent changes would have been detected by bottom-up, MS-based proteomics because proteins are fragmented prior to analysis. A single PTM that alters the charge of a protein will be readily detectable by 2D-DIGE, while this PTM change translates into one modified peptide out of all the peptides generated by trypsin digestion of a whole proteome. The likelihood of detecting a peptide carrying an unknown PTM change is exceptionally low (1 out of tens of thousands of peptides per PTM). Thus, combining 2D-DIGE and MS is the best route to
identifying such PTM changes. This type of analysis may prove useful for dissecting the global cellular consequences of genetic mutations in other oncogenes, tumor suppressors, and disease genes with implications for understanding the etiology of normal and cancer development.
Figure 2.8. *ApepP^{EY}* embryos display Wnt activation phenotypes similar to *APC2* mutant embryos.

Cuticle analysis of: (A) Wild-type, (B) *ApepP^{EY}* head, and cuticle defects. *ApepP^{EY}* mutant embryos exhibit fusion of the first and second denticle rows (compare A’ to B’, yellow arrow) as well as denticle loss (B’, yellow circle). (C) *ApepP^{EY}* body defects. (C’) *ApepP^{EY}* mutant embryos exhibit body holes not associated with *APC2^{g10}* mutant embryos. (D) A homozygous *ApepP^{EY}* mutant embryo with reduced APC2 protein expression. (E) β-cat protein localization and accumulation in a wild-type embryo shows a pronounced striping pattern, while (F) shows that *ApepP^{EY}* mutant embryos exhibit a more uniform distribution of β-cat protein. (G) 2D-DIGE comparison of wild-type versus *ApepP^{EY}* embryos showing that total ApepP protein is decreased in mutant embryos and that there is a shift in isoform distribution toward the left isoform in *ApepP^{EY}* mutant embryos. (H) Displays the quantification of three replicates of the experiments shown in panels H and I. (I) Shows anti-Arm immuno-blots of 0-2 hour AEL wild-type, *APC* and *ApepP* mutant embryos, where β-cat levels increase in the mutants. (J) Shows anti-Arm
immuno-blots of 4-6 hour AEL wild-type, APC and ApepP mutant embryos, where β-cat levels slightly decrease in the mutants relative to wild-type.
Table 2.2: Genetic interaction between *ApepP* and *APC2* is reflected in adult viability

<table>
<thead>
<tr>
<th>Parental genotype</th>
<th>Genotype of adult progeny</th>
<th>n</th>
<th>Mendelian Expected</th>
<th>Adjusted Expected*</th>
<th>Observed</th>
<th>Chi-square</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApepP^{EY}/CyO</td>
<td>ApepP^{EY}/CyO</td>
<td>100</td>
<td>66%</td>
<td>N/A</td>
<td>78%</td>
<td>X^2=5.47 Df=1</td>
</tr>
<tr>
<td></td>
<td>ApepP^{EY}/ApepP^{EY}</td>
<td></td>
<td>33%</td>
<td>N/A</td>
<td>22%</td>
<td>p<0.05</td>
</tr>
<tr>
<td>APC2^{g10}/TM6 Tb</td>
<td>APC2^{g10}/TM6, Tb</td>
<td>100</td>
<td>66%</td>
<td>N/A</td>
<td>88%</td>
<td>X^2=19.94 Df=1</td>
</tr>
<tr>
<td></td>
<td>APC2^{g10}/APC2^{g10}</td>
<td></td>
<td>33%</td>
<td>N/A</td>
<td>12%</td>
<td>p<0.001</td>
</tr>
<tr>
<td>ApepP^{EY}/CyO; APC2^{g10}/TM6 Tb</td>
<td>ApepP^{EY}/CyO; APC2^{g10}/TM6, Tb</td>
<td>151</td>
<td>44%</td>
<td>67.50%</td>
<td>87%</td>
<td>X^2=29.01 Df=3</td>
</tr>
<tr>
<td></td>
<td>ApepP^{EY}/ApepP^{EY}; APC2^{g10}/TM6, Tb</td>
<td></td>
<td>22%</td>
<td>22.50%</td>
<td>13%</td>
<td>p<0.001</td>
</tr>
<tr>
<td></td>
<td>ApepP^{EY}/CyO; APC2^{g10}/APC2^{g10}</td>
<td></td>
<td>22%</td>
<td>7.50%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ApepP^{EY}/ApepP^{EY}; APC2^{g10}/APC2^{g10}</td>
<td></td>
<td>11%</td>
<td>2.50%</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

*The observed frequencies of homozygotes in the progeny of *ApepP^{EY}/CyO* and *APC2^{g10}/Tb* parents were used to adjust the expected values of homozygotes in the progeny of *ApepP^{EY}/CyO; APC2^{g10}/TM6, Tb* parents.

N/A, not applicable.
Figure 2.9. APC2 regulates ApepP’s proteolytic activity.

(A) The ApepP proteolytic function assay. (B) Endogenous ApepP proteolytic activity levels in male flies and (C) female flies. The n tested for both males and females is three flies, each bar represents the average of 3 flies. Bars indicate standard error of the mean. Statistical significance was assigned by a One-way ANOVA (Turkey’s multiple comparisons post hoc test) comparing experimental values to wild-type (w^{1118}). * < 0.05, ** < 0.005, *** < 0.0005, **** < 0.0001
Future directions

The published work identified a number of APC-dependent difference-proteins by rigorous validation and discovered that ApepP is a regulator of β-cat protein abundance necessary to prevent ligand-independent activation of Wnt signaling during embryogenesis. We have since further characterized ApepP’s relationship with APC2 by demonstrating that APC2 promotes ApepP’s proteolytic activity. Although great progress has been made, a few important questions remain to be answered to fully understand the relationship between APC2 and ApepP in Wnt signaling.

Is ApepP part of the destruction complex?

Because ApepP’s activity is regulated by APC2, and ApepP is required for normal β-catenin degradation, we predicted that ApepP might be a component of the cytoplasmic destruction complex. We started to investigate this by co-expressing ApepP with various components of the destruction complex in S2 cells, a *Drosophila* derived cell line (Fig. 2.11A), that we have previously shown is a good model system for assessing destruction complex localization and dissecting destruction complex structure (Zhou et al. 2011; Ezgi Kunttas-Tatli, Roberts, and McCartney 2014). Specifically, we over-expressed ApepP protein with APC2, Axin, the scaffolding proteins of the destruction complex, or Arm (β-cat), the main target of the destruction complex. We then asked if ApepP co-localized with any of the three proteins. Preliminarily, ApepP does not co-localize with APC2 or Axin puncta by themselves (Fig. 2.11C). While ApepP and Arm are both cytoplasmic in the absence of excess APC2 or Axin (Fig. 2.11A), there is no evidence of specific colocalization. However, more investigation is required to fully establish Apep’s role in the destruction complex. For example, both scaffolding
Figure 2.10. A proposed model for APC2 and ApepP β-cat regulation in Wnt signaling.

(A) APC promotes ApepP proteolytic function to regulate β-cat protein abundance in a complex feed-back driven pathway. (B) The Wnt signaling pathway. When no Wnt ligand is present (left) the destructosome promotes cytoplasmic β-cat degradation by promoting ApepP proteolytic activity via unidentified PTM modification. With a Wnt ligand (right), the destructosome is deactivated, ApepP proteolytic activity is inhibited by loss of PTM modification, and cytoplasmic β-cat accumulates, enters the nucleus and activates Wnt target genes.
proteins may be required to integrate ApepP into the destruction complex. We are investigating this possibility by performing a triple transfection experiment using ApepP, APC2, and Axin.

Identify the APC-dependent PTM modification(s) for ApepP

Our 2D-DIGE analysis revealed that the ApepP protein isoform distribution was modified in APC2 null mutant embryos (Fig. 2.7B). We ruled out the possibility that this difference in isoform distribution is a result of aberrant phosphorylation modification (Fig. 2.6B-B”). We have attempted to identify the PTM modification(s) by directed mass spectrometry using ApepP protein isolated from embryo lysate separated by 2DE electrophoresis. So far this effort has been unsuccessful in identifying any PTMs. The suspected reason for unsuccessful PTM identification is low protein yield in our mass spectrometry samples, resulting in low coverage of the protein sequence. To this date, our best attempt covered 30% of the ApepP protein sequence. We believe more protein material is necessary in order to achieve the coverage and depth for PTM identification. To do this, we will purify ApepP protein from bacteria, incubate the purified protein with wild-type or APC2 null mutant embryo lysate, and then use directed mass spectrometry to identify the differences in ApepP PTM isoforms.

Creation of an ApepP null fly line

The *ApepP^{EY}* mutation was identified as partial loss of function allele (Fig. 2.9B,C). Although this hypomorphic allele helped us uncover a functional link between APC2 and ApepP, elucidating the precise mechanism by which ApepP regulates β-cat and Wnt signaling is still challenging. As a result, we have made efforts to generate a complete loss of function *ApepP*
Figure 2.11. ApepP targets Arm (β-cat) independently of the destruction complex.

(A) A schematic representation of *Drosophila* APC2, Axin, Arm, and ApepP. APC2, Axin, and Arm were tagged with an enhanced GFP moiety at the N-terminal end, while ApepP was tagged with a mCherry moiety. Over-expressed APC2 localized to the cortex and small puncta in the cytoplasm, Axin creates cytoplasmic puncta, while Arm and ApepP is cytoplasmic. (B) Anti-mCh immunoblot of S2 cell lysate. Expression of the ApepP fusion protein was expressed using two different CuSO₄ induction concentrations. (C) ApepP protein (red) does not co-localize with
APC2 or Axin (green) (top and middle rows), while possible co-localization with Arm protein (bottom row) may be observed.
allele using CRISPR technology (Port et al. 2014). We designed a mutagenesis strategy that targeted the *ApepP* start codon in two different locations (Fig. 2.12A). Putative mutant fly lines were generated by injecting Cas9 embryos with plasmids carrying the guide RNA for target site 1, or target site 2, or a combination of target site 1 and 2. This process created roughly 50 putative *ApepP* mutant lines. We are actively screening these fly lines by assessing adult stock ratios, embryonic lethality, cuticle phenotypes, and *ApepP* proteolytic activity. So far we have screened the stocks produced from the target 1 mutagenesis and identified two fly lines that produce nearly no homozygous adults (Table 2.3), and share similar hyperactive Wnt embryonic phenotypes (Fig. 2.12 C,D). However, these fly lines still have very low *ApepP* proteolytic activity (Fig. 2.12E), similar to *ApepP^{EY}* mutants. Interestingly, additional target 1 cohort fly lines that have skewed adult viability ratios also have reduced *ApepP* proteolytic function (Fig. 2.12E). This trend may suggest that target 1 mutagenesis was not effective. Luckily, we still have two cohorts of putative mutant fly lines to screen through (target 2 mutagenesis, mixed target 1 and target 2 mutagenesis).
Figure 2.12. Screening the ApepP CRISPR mutant fly stocks.

(A) A schematic showing the CRISPR target site for ApepP mutagenesis. We targeted the start codon with two different oligos. (B-D) Cuticle analysis showed that ApepP$^{11.2}$/CyO (C), and ApepP$^{11.5}$/CyO (D) mutant embryos exhibit denticle row defects compared to wild type cuticles (B), similar to what we observed in ApepPEY mutant embryos (Fig. 2.8B). (E) Endogenous ApepP proteolytic activity levels in male flies of the genotypes indicated. n = 3. Bars indicate standard error of the mean. Statistical significance was assigned by a One-way ANOVA (Turkey’s multiple comparisons post hoc test) comparing experimental values to wild-type (w^{118}). * < 0.05, ** < 0.005, *** < 0.0005, **** < 0.0001.
Table 2.3 Adult viability ratios for two putative *ApepP* null fly lines

<table>
<thead>
<tr>
<th>Parental genotype</th>
<th>Genotype of adult progeny</th>
<th>n</th>
<th>Mendelian Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApepP11.2/CyO</td>
<td>ApepP11.2/CyO</td>
<td>154</td>
<td>66%</td>
<td>98%</td>
</tr>
<tr>
<td></td>
<td>ApepP11.2/ ApepP11.2</td>
<td></td>
<td>33%</td>
<td>2%</td>
</tr>
<tr>
<td>ApepP11.5/CyO</td>
<td>ApepP11.5/CyO</td>
<td>132</td>
<td>66%</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>ApepP11.5/ ApepP11.5</td>
<td></td>
<td>33%</td>
<td>1%</td>
</tr>
</tbody>
</table>
CHAPTER 3: MICROBIOTA-DEPENDENT DYSREGULATION OF ALCOHOL DEHYDROGENASE IN DROSOPHILA IS ASSOCIATED WITH CHANGES IN ALCOHOL-INDUCED HYPERACTIVITY AND ALCOHOL PREFERENCE

Summary

While we are gaining appreciation for the many roles that the gut microbiota plays in diverse aspects of host biology including metabolism, immunity, and behavior, the scope of those effects and their underlying molecular mechanisms are poorly understood. To address these gaps, we used Two-dimensional Difference Gel Electrophoresis (2D-DIGE) to identify proteomic differences between male and female Drosophila raised with a conventional microbiota (CV) and those raised in a sterile environment (axenic, AX). We discovered 16 microbiota-dependent protein differences in the Drosophila head, and identified a male-specific elevation in Alcohol Dehydrogenase (ADH) in AX animals. Because ADH is a key enzyme in alcohol metabolism, we asked whether physiological and behavioral responses to alcohol were altered in AX males. Here we show that alcohol-induced hyperactivity, the first response to alcohol exposure, is significantly increased in AX males, requires ADH activity, and is modified by genetic background. While ADH activity is required, we did not detect significant microbe-dependent differences in systemic ADH activity or ethanol level. Like other animals, Drosophila can exhibit a preference for ethanol consumption, and here we show significant microbiota-dependent differences in ethanol preference in males. This work is the first to demonstrate that host-microbe interactions can affect host physiological and behavioral responses to ethanol, suggesting that microbial composition could play a role in human alcohol use disorders.
Introduction

The human microbiota, the community of microorganisms including bacteria and fungi that resides in and on our bodies, contributes to human metabolism, immunity, and defense against pathogens (Eloe-Fadrosh and Rasko 2013; Elson et al. 2005). Surprisingly, recent evidence suggests that the bacterial microbiota of the gut can also influence learning, memory, anxiety, depression, and autism-associated behaviors in some animals (Lee and Brey 2013; Gonzalez et al. 2011; Foster and McVey Neufeld 2013; Strati et al. 2017). The number of connections being made between symbiotic bacteria and host physiologies and behaviors is rapidly expanding, making it likely that more associations await discovery. Furthermore, we understand relatively little about the molecular mechanisms that mediate any of these host-microbe interactions.

Drosophila is emerging as an excellent model to dissect the role of the microbiota in animal physiology and behavior. Studies in *Drosophila* benefit from the ability to generate mutants and control genetic homogeneity, and quickly and inexpensively obtain large sample sizes that have significant statistical power. Links between the microbiota and host physiology and behavior are also present in *Drosophila*. The fly microbiota can modulate insulin, insulin-like growth factor, and TOR signaling thereby affecting systemic homeostasis in the fly (S C Shin et al. 2011; Storelli et al. 2011). Fly behaviors such as egg laying behavior, feeding behavior, male competitive behavior, and kin recognition all respond to changes in the microbiota (Fischer et al. 2017; Sharon et al. 2011; Lize, McKay, and Lewis 2014). Furthermore, host-pathogen studies in *Drosophila* have proven invaluable to unraveling the mechanisms of human innate immunity (Bonfini, Liu, and Buchon 2016; Bier and Guichard 2012).
Most large scale studies have probed the host transcriptome (Leulier 2014; Broderick, Buchon, and Lemaitre 2014; Elya et al. 2016; Erkosar et al. 2013). Proteome analysis provides valuable information about post-translational modifications (PTMs) and protein stability, for example, that is invisible at the transcript level (Vogel and Marcotte 2012). Furthermore, there can be remarkably little correlation between changes in mRNA expression and changes in protein abundance (Anderson and Seilhamer 1997; Greenbaum et al. 2003; Maier, Güell, and Serrano 2009; Munoz Descalzo et al. 2012; Gygi et al. 1999). Two-Dimensional Difference Gel Electrophoresis (2D-DIGE) is a powerful technique to reveal proteomic changes between two or three protein samples simultaneously run on the same gel (Gong et al. 2004; Filiou et al. 2011; C., M., and U. 2011). Combined with a high dynamic-range fluorescence imaging system, 2D-DIGE can detect protein over a million-fold concentration range, as low as 0.2 fmol (Minden 2012; Van, Bass, et al. 2014). Typically, difference proteins are then identified using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS).

Here we used 2D-DIGE to identify Drosophila proteins that are responsive to the microbiota. We focused on the Drosophila head proteome in order to bias our screen toward proteins that may have a role in neural function and behavior, as this aspect of host-microbe interactions is not well understood. Furthermore, adjacent to the brain lays a fat body, the main endocrine organ that can directly and indirectly communicate with the brain (Droujinine and Perrimon 2016). By comparing the head proteomes of male or female flies raised with a conventional microbiota (CV) to those raised in a sterile environment (axenic, AX), we identified 16 proteins that are either increasing or decreasing in abundance in the heads of AX flies. Interestingly, some of these differences are sex specific. We identified one of the male-specific difference proteins as Alcohol Dehydrogenase (ADH), a key enzyme in alcohol
metabolism in all animals, and showed that the difference was reversed by reintroducing the conventional microbiota to AX adult males. ADH is elevated in the heads of AX males, suggesting that they may have altered physiological and behavioral responses to alcohol. Indeed, we found that AX males exhibit significantly enhanced alcohol-induced hyperactivity, a response that we show is ADH dependent, male specific, and sensitive to host genetic background. Using different measures of ethanol preference, we found that when offered a choice, AX males prefer to consume food containing alcohol significantly more than their CV siblings. Taken together, our work demonstrates a novel connection between the microbiota and host physiological and behavioral responses to alcohol in Drosophila that may have implications for our understanding of the microbiota’s role in alcohol use disorders (AUD).
Figure 3.1. The AX head proteome is different from the CV head proteome.

(A) The 2D-DIGE screen experimental design. (1) CV, AX, and RC siblings were derived from cohorts of embryos with the same parents. CV embryos were transferred directly to sterile bottles, while AX embryos were first dechorinated (see methods). CV and AX adult flies were collected daily and aged in sterile vials for 5-6 days. For microbial reconstitution, 0-1 day old AX flies were transferred to vials conditioned with Drosophila feces and aged for 5-6 days. Protein lysates were prepared from dry dissected heads and (2) were covalently labeled with
either propyl-Cy3 or methyl-Cy5, combined, and co-electrophoresed on a 2DE gel. Difference proteins were identified by LC-MS/MS. (B) A summary of the reproducible protein differences in the AX head proteome. 200-300 protein spots per gel were detected using SourceExtractor (Bertin and Arnouts 1996), then manually validated and crossed referenced between three biological replicates. The Venn diagram shows a summary of the 16 reproducible protein differences across three biological replicates for male and female data sets. (C) Measured fold-change for each protein difference that was calculated using the Cy3 and Cy5 raw fluorescence intensities. Fold-change ratios <1 were converted to negative fold-change. The color code matches that of panel B.
Materials and methods

Creation of Top Banana Conventional (CV), Axenic (AX), and Reconstituted (RC) cultures

CV and AX cultures were derived from embryos obtained from the same parents. A 4 hour collection of embryos was transferred in standard embryo wash (120 mM NaCl and 0.04% Triton X-100) to a plastic petri dish. For CV cultures, approximately 150 embryos were transferred to a fresh culture bottle containing molasses fly food (7% molasses, 6% corn meal, 0.90% yeast, 0.70% agar, 0.20% proprionic acid, 0.23% methyl-parahydroxybenzoate, 0.23% ethanol). Autoclaved inactive yeast was added to the bottle cultures (0.2-0.3g per bottle). Embryos for AX cultures were prepared as previously described (Koyle et al. 2016; Tech et al. 2015) with a few adaptations. Embryos were transferred to a separate microcentrifuge tube and incubated in filtered sterilized 50% bleach for two minutes, then rinsed with filter sterilized 70% ethanol twice, and once with filter sterilized water to dechorionate the embryos and remove microbes that were associated with the chorion. Approximately 250 AX embryos were transferred to an autoclaved culture bottle containing autoclaved yeast granules as above. The difference in embryo seeding density for the two culture conditions was necessary to ensure consistent larval density and comparable nutritional environments. Adult flies were collected 0-1 day post-eclosion into food vials containing ~0.05g autoclaved inactive yeast granules. The flies remained in these collection vials for 5 days before being used for experiments. For RC flies, 0-1 day old AX adults were placed in food vials that had housed 10-12 day old males for 4 days, and then aged in those preconditioned vials for 5 days. All fly cultures were reared and adult progeny maintained at 22-23°C/70% relative humidity/12-12hr light-dark cycle.
Verification of AX cultures

For culture-dependent characterization, ten 5-6 day old males (CV, AX, or RC) were surface sterilized with 10% bleach for one minute followed by one rinse each in 70% ethanol and filter sterilized water. The flies were homogenized in 125 µL filter sterilized 1X PBS containing 1mm zirconia beads in the bead beater for 30 seconds, until no obvious particulates could be seen. The samples were diluted 10^1, 10^2, 10^3, 10^4, 10^5 in 1X PBS and x µl of each dilution was plated on LB, MRS and/or Ace media. We incubated the plates at 30 °C (LB and Ace) or 37 °C (MRS) for ~48h then counted colonies on plates with 20-100 colonies.

For culture-independent characterization, two 0-1 day old males were homogenized manually in filter sterilized squishing buffer (10 mM Tris @ pH 8.0, 1 mM EDTA @ pH 8.0, and 25 mM NaCl) with a fitted pestle until no obvious particulates could be seen. The homogenates were incubated with Proteinase K for 1 hour and boiled for 5 minutes. 150 ng of total DNA was used as template for PCR amplification (see table for primer information). Amplified DNAs were Sanger sequenced by Genewiz (South Plainfield, NJ).

Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), imaging analysis and protein quantification

Five to six day old flies were dry dissected on a sterile CO₂ pad and the 40 heads were pooled in lysis buffer (7 M urea, 2 M thiourea, 4% CHAPS, 10 mM DTT and 10 mM Na-Hepes pH 8.0) spiked with 1% protease inhibitor (Sigma-Aldrich, St. Louis MO, USA). The heads were homogenized manually with a fitted pestle until no obvious particulates could be seen. Head lysates were adjusted to 2 mg/ml protein concentration with lysis buffer. Protein lysate solutions containing a total of 100 μg of protein were labeled with 2 µl of either 1mM propyl-Cy3-NHS or
0.83 mM methyl-Cy5-NHS (CyDye DIGE Fluors; GE Healthcare) as described previously (Unlu, Morgan, and Minden 1997), resulting in fewer than one dye molecule per protein to prevent changing protein migration in 2DE gels. Reciprocal labeling experiments were performed to control for dye-dependent changes and to have technical replicates of each sample. Two-dimensional electrophoresis (2DE) was performed as previously described (Van, Ganesan, et al. 2014). After second dimension electrophoresis, the gels were fixed in a solution of 40% methanol and 10% acetic acid overnight then imaged in a Structured Illumination Gel Imager (Van, Bass, et al. 2014). Protein differences were determined by quantifying grey scale images of each channel using Source Extractor as previously described (Bertin and Arnouts 1996; Van, Bass, et al. 2014). To determine the fold-difference between CV and AX expression of a protein, the intensity values of each channel were normalized to five “guide star” proteins, protein spots that reliably do not change within the proteome (determined from multiple biological replicates), and analyzed as previously described (Gong et al. 2004; Van, Bass, et al. 2014; Blundon et al. 2016).

Immunoblotting of ADH protein

For standard western blots, CV brain and fat body lysates were prepared in 2X Laemmlli sample buffer treated with 0.1% Protease Inhibitor Cocktail (Sigma-Aldrich, St. Louis MO, USA) and separated by SDS-PAGE. For 2D-Westerns, CV head lysate was labeled with Cy5 dye and run on a 2DE gel, as described above. Gels were equilibrated in a Tris buffer at pH7.5 with 20% glycerol for 30 minutes. Proteins were transferred to Protran nitrocellulose membranes (Whatman, Little Chalfont Buckinghamshire, UK) overnight in carbonate transfer buffer at pH 9.9 (100mM NaHCO₃ and 80uM Na₂HCO₃) at constant 25 V. Membranes were immuno-blotted
using a goat anti-Drosophila Alcohol Dehydrogenase antibody at 1:500 (Santa Cruz Biotechnologies, Dallas TX, USA). Donkey anti-goat HRP secondary antibody (Jackson Immunoresearch, West Grove PA, USA) was used at 1:2,000. Immuno-luminescence (Pierce ECL Western Blotting Substrate, Thermo Scientific) was detected using a ChemiDoc MP Imaging System (Bio-rad).

qRT-PCR analyses of Adh gene expression levels

Five to six day old CV and AX fly heads were dry dissected under CO₂ sedation. Heads were immediately bead beaten with approximately 50µl of 0.5 mm Zirconia/Silica beads in 500µl of Trizol (Invitrogen, Carlsbad CA, USA). The homogenates were immediately frozen at -20ºC until RNA extraction (stored no longer than 2 weeks).

RNA was extracted from Drosophila heads with Direct-zol RNA mini kit (Zymo, Irvine CA, USA). 500 ng of high quality RNA (A₂₆₀/₂₈₀ ~1.8-2.0) was used as template for the synthesis of first strand of cDNA using SuperScript VILO synthesis kit (Invitrogen, Carlsbad CA, USA). After first strand cDNA synthesis, 100 ng of the cDNA product was directly used for qRT-PCR using PowerUp SYBR Green Master Mix in a 7300 Real Time PCR System (Applied Biosystems, Foster City CA, USA) using Sequence Detection Software (v1.4.0.25, Applied Biosystems, Foster City CA, USA).

Housekeeping genes, rpl32 (ribosomal protein L32) and ef1 (elongation factor 1), were used for normalization (Ponton et al. 2011). Data were analyzed with rpl32 and data analysis was carried out using the Pfaffl-ΔΔCT method (Pfaffl 2001) in Fig. 2. We also determined the primer efficiencies for all primer sets used to calculate the fold-change between CV and AX flies. Fold
changes presented are the mean results from six biological replicates for males and four for females.

Assessing alcohol induced hyperactivity

Locomotor activity was analyzed with a Drosophila Activity Monitor 2 (Trikinetics, Waltham, MA, USA). Single 5-6 day old adults were placed under mild CO₂ sedation and transferred into monitoring plastic tubes (5 mm diameter) capped at one end with a rubber cap. Tubes were randomly loaded onto a Trikinetics exhaust manifold. Base line activity was established for the first hour followed by a two hour ethanol (PHARMCO-AAPER, Shelby KT, USA) exposure using a 10:1 ratio of air to ethanol vapor mixture (empirically determined for max hyperactivity difference) delivered by a homemade vaporizer. Activity data (crossings of an infrared beam) were collected by the Trikinetics computer software in bins every 30 seconds and later converted to 5 minute bins. A total of 8 flies from each condition were run in parallel for four trials. Data were pooled from 32 total individual flies for each condition to obtain average activity levels. Locomotor activity curves were generated and statistical analysis was performed by GraphPad Prism 7 tool. A Two-way ANOVA was used to compare the hyperactivity curves.

Assessing alcohol induced sedation

Alcohol sedation was performed as described Maples and Rothenfluh with minor adaptations. 0-1 day adult males were collected in batches of 8 under CO₂ and aged to 5-6 days. Fresh fly food vials were converted into ethanol chambers by creating a flat cotton bed at the bottom of the vial and sealing the chamber with a cotton ball soaked in 100% ethanol (Maples
and Rothenfluh 2011)(PHARMCO-AAPER, Shelby KT, USA). The chamber size was roughly 1.25” in height.

A typical alcohol sensitivity experiment contained 4-5 vials each of CV males and AX males. The flies were transferred to ethanol chambers, conditions randomized, and numbered. The vials were taped together in batches of 4-5 vials. An iPad (Apple Inc., Cupertino CA, USA) was used to record videos of each trial. Before recording, each dry ethanol chamber cotton ball was replaced with a cotton ball soaked in roughly 1.2 mL of red dyed ethanol. Time zero started after all dry cotton balls were replaced. During the experiment, the vials were tapped every minute and immobility was assessed after a 15 second recovery period until full sedation was reached. After the 15 second recovery period, the number of flies immobilized was recorded and the mobile fraction was calculated. The ethanol cotton ball was readjusted after every tap series to ensure the chamber was approximately 1.25” high throughout the experiment. The videos were analyzed by two observers who were blinded to the microbial conditions of the flies. Flies were deemed immobile if: (1) the fly traveled less than the radius of the vial (to account for postural struggle or spontaneous jumps after immobilized), (2) the fly lost postural control and flipped orientation, or (3) the fly was completely motionless or stationary with tremors while maintaining postural control. Statistical significance was determined by performing a Two-way ANOVA comparing the sedation curves and a One-way ANOVA with the ST50 values, using GraphPad Prism 7 tool.

Assessing alcohol food preference using the Two-choice Capillary Feeder (CAFÉ) assay

CV, AX, and RC male sibling flies were tested in the CAFÉ assay as previously described (Pohl et al. 2012). Each vial housed 8 flies and contained 4 capillaries. The capillaries
contained a liquid food comprised of 5% yeast extract and 5% sucrose with either no ethanol (2) or 10% ethanol (2). Measurements of food levels in the capillaries were taken daily by four observers. Death counts for each vial were also noted per day. The assay was carried out for 5 days and measurements were taken at the same time each day. Capillaries were replaced with fresh food solution each day.

BARCODE alcohol preference assay

Fifty 5-6 day old CV, AX, RC flies were tested in parallel in three separate BARCODE chambers (A. Park, Tran, and Atkinson 2017). Standard molasses based fly food with agar was used for preference assays. Fly food was liquified and additives were mixed in once the food was cooled to ~35° C. The food grid was filled in an alternating pattern with food containing 5% ethanol or non-ethanol food to which a matching volume of water was added. The food type specific oligomers were added to the corresponding food type at 3.5 ng/µl. After 2 days, the flies were collected from the chamber using CO₂ and frozen immediately for future DNA extraction (see below).

Positional alcohol preference analysis

Preference was tested behaviorally in the BARCODE assay by capturing images of the position of flies on the food pad in 5 minute intervals for 48 hrs. We used BTV Pro for Mac (Ben Software) for automatic capture and analyzed using a custom Perl script and ImageMagick (ImageMagick 7.0.5-0). Preference Index (PI) was measured by averaging number of flies on ethanol and non-ethanol food wells per day and calculated using the equation below; PI = (N Flies on Ethanol - N Flies on Non-Ethanol) / Total N Flies on Stage.
Consumptive alcohol preference analysis

Consumptive preference was measured following the conclusion of the behavioral assay. Flies were washed using the washing protocol by (A. Park, Tran, and Atkinson 2017) and homogenized in a squishing buffer containing previously described. For each biological replicate, we homogenized five flies per N. Homogenates were then incubated with Proteinase K NEB (Ipswich, MA, Product No. P8107S) and spun down for 2 minutes at 10,000 G. The supernatant was used for qPCR, with the ThermoFisher Power SYBR™ Green PCR Master Mix reagents (Waltham, MA, Catalog No. 4367659). Samples and mix were loaded into a 96-well real time PCR plate. We used a ThermoFisher Viia 7 Real-Time PCR System (Waltham, MA) with a $T_m = 60^\circ C$ and 40 cycles per run.

Measuring alcohol levels

Flies (20 males) were pretreated with 10% ethanol vapor for 30 minutes then frozen immediately. Flies were then homogenized with glass dounce homogenizers using 20 µL ddH$_2$O per fly. The homogenate was pipetted into 1.5 mL tubes and centrifuged at 10,000 G for 3 minutes. 10 µL of the supernatant was taken and used for the sample. We used the Megazyme Ethanol Assay Kit (Bray, Co. Wicklow, Ireland, Product code: K-ETOH). Absorbance measurements were taken using a Nanodrop ND-1000 (Nano-drop Technologies, Inc., Wilmington, DE). We took our A_1 measurement 5 minutes following the addition of the ALDH enzyme and our A_2 measurement 15 minutes following the addition of the ADH. ALDH absorbance was background subtracted from ADH absorbance to calculate NADH produced.
Alcohol dehydrogenase enzymatic levels

We used the Alcohol Dehydrogenase activity assay kit from Sigma-Aldrich (product code: MAK053). Flies (20 males) were pretreated with 10% ethanol vapor for 30 minutes then immediately homogenized with a fitted plastic pestle in 200 µL of ice cold ADH assay buffer, in a 1.5 mL microcentrifuge tube, until no particulates were visible. The homogenates were centrifuged at 10,000 G for 10 minutes. 10 µL of the supernatant was taken and used for the sample. Absorbance measurements were taken using a Tecan Safire 2 Plate Reader (Tecan Group Ltd., Männedorf, Zürich, Switzerland). An NADH standard curve was generated. We took our initial absorbance measurement 2 minutes following the addition of the proprietary enzyme mix (ADH assay buffer, developer, isopropanol substrate). Absorbance measurements were recorded every minute for a total of 25 minutes. A ΔAbsorbance (ΔA) value was calculated per sample by subtracting the initial absorbance from the final absorbance value. The ΔA was used to calculate the ADH activity using the following equation:

$$ADH \text{ activity} = \frac{(\Delta A) \times (sample \ dilution \ factor)}{(Reaction \ time) \times (volume \ of \ reaction)}$$

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Purpose</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal forward (8F)</td>
<td>5’-AGAGTTTGATCMTGGCTCAG-3’</td>
<td>Testing microbes in fly cultures</td>
<td>(Edwards et al. 1989)</td>
</tr>
<tr>
<td>Universal reverse (1492R)</td>
<td>5’-GGMTACCTTTGTTACGACTT</td>
<td>Testing microbes in fly cultures</td>
<td>(Eden et al. 1991)</td>
</tr>
<tr>
<td>Acetobacter forward</td>
<td>5’-TAGTGGCGGGACGGT GAGTA-3’</td>
<td>Testing microbes in fly cultures</td>
<td>(Elgart et al. 2016)</td>
</tr>
<tr>
<td>Acetobacter reverse</td>
<td>5’-</td>
<td>AATCAAACGCAGGCTCCTCC-3’</td>
<td>Testing microbes in fly cultures</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----</td>
<td>--------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Lactobacillus forward</td>
<td>5’-</td>
<td>AGGTAACGGCTCACCATGGC-3’</td>
<td>Testing microbes in fly cultures</td>
</tr>
<tr>
<td>Lactobacillus reverse</td>
<td>5’-</td>
<td>ATTCCTACTGCTGCTCCTCCC-3’</td>
<td>Testing microbes in fly cultures</td>
</tr>
<tr>
<td>DNA Oligomer 1</td>
<td>5’-</td>
<td>ACCTACACGCTGCGC AACCGAGTCATGCC ATATAAGCAGATTAG CATTACTTTGAGCAA CGTATCGGCGATCAG TTCGCCAGCAGTTGT AATGAGCCCC -3’</td>
<td>BARCODE assay</td>
</tr>
<tr>
<td>DNA Oligomer 2</td>
<td>5’-</td>
<td>GGGCAGCAGGATAAC TCGAATGTCTTTAGTGCTAGAGGCTTGGGGCT GTATAATGTATCGAAA GAAGTTCTGTATAGAAA CGCTTGTGAATGACT GTAATGTAG-3’</td>
<td>BARCODE assay</td>
</tr>
<tr>
<td>Forward qPCR Primer 1</td>
<td>5’-</td>
<td>GCAACCGAGTCATGC CAATA -3’</td>
<td>BARCODE consumptive alcohol preference</td>
</tr>
<tr>
<td>Reverse qPCR Primer 1</td>
<td>5’-</td>
<td>TTACAACTGCTGCGG</td>
<td>BARCODE consumptive</td>
</tr>
<tr>
<td>Forward qPCR Primer 2</td>
<td>AACTG -3’</td>
<td>e alcohol preference</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>Reverse qPCR Primer 2</td>
<td>5’ – CAGCAGGATAACTCG AATGTCTTA – 3’</td>
<td>BARCODE consumptive alcohol preference</td>
<td></td>
</tr>
<tr>
<td>cyp1 Forward qPCR primer</td>
<td>5’ – ACACAACCACAACGGC ACTG – 3’</td>
<td>BARCODE consumptive alcohol preference</td>
<td></td>
</tr>
<tr>
<td>cyp1 Reverse qPCR primer</td>
<td>3’ – TGCTTCAGCTCGAAG TTTCATC -5’</td>
<td>BARCODE consumptive alcohol preference</td>
<td></td>
</tr>
</tbody>
</table>
Results

The *Drosophila* head proteome is responsive to microbial condition

To identify the *Drosophila* head proteome changes associated with the loss of the microbiota, we compared head lysates (Fig. 1A) of conventional (CV) and axenic (AX) *Top Banana* (a recently isolated wild strain from M. Dickinson, CalTech) siblings. We confirmed the cultures were AX using both culture-dependent and culture-independent approaches (SFig. 1). AX cultures were developmentally delayed compared to CV cultures, similar to previous reports (12.7 days and 11.4 days respectively; Appendix B, SFig. 3.1A) (Seung Chul Shin et al. 2011; Storelli et al. 2011; Whon et al. 2017). In addition, we isolated the two main taxa of the *Drosophila* microbiota, *Lactobacillus* spps. and *Acetobacter* spps. from surface sterilized whole fly CV homogenates and demonstrated that growth was absent from AX whole fly homogenates (SFig. 1B). Additionally, we confirmed the presence or absence of these taxa through PCR using universal, Wolbachia specific, *Lactobacillus* specific and *Acetobacter* spps. specific 16S rRNA primers followed by Sanger sequencing (SFig. 1C).

Lysates from CV and AX fly heads were independently labeled with either Cy3 or Cy5 dyes, combined, and then separated on the same 2DE gel (Fig. 1A). We detected and quantified the protein spots using an open-source astronomy software package called SourceExtractor, as previously described (see methods for full details) (Bertin and Arnouts 1996; Gong et al. 2004; Blundon et al. 2016). Across three biological replicates for male comparisons and for female comparisons, we detected and manually authenticated 49 and 35 consistently resolved protein spots, respectively (Fig. 1B). To confidently detect meaningful protein differences, we used a 20% (1.2-fold) cut off for a significant total abundance change; this is approximately three standard deviations above the technical noise in a standard 2D-DIGE experiment (see methods).
We measured 10 reproducible protein differences in males and 12 in females that were composed of moderately to highly abundant proteins (Fig. 1B&C, SFig. 2). Of these, we observed some protein differences that were shared and some that were unique between males and females. We identified four male specific protein differences (Fig. 1B&C, blue shaded region) and six female specific protein differences (Fig. 1B&C, grey shaded region). Among the shared proteins, we found three proteins that changed in abundance in the same direction in AX male and female flies (Fig. 1B&C, purple shaded region) and three proteins whose abundance changed in the opposite direction between males and females (Fig. 1B&C, orange shaded region). These data suggest that loss of the gut microbiota leads to significant and sexually dimorphic differences in *Drosophila* head proteomes.

Alcohol Dehydrogenase protein level is elevated in the head of AX male flies

Mass spectrometry identified spot #4 as the metabolic enzyme Alcohol Dehydrogenase (ADH). We confirmed the protein identity by immunoblotting for *Drosophila* ADH after 2DE separation of CV head lysate (Fig. 2B). Our 2D-DIGE analysis showed that the loss of microbiota leads to elevated ADH protein in the heads of AX males but not AX females (Fig. 1C and 2C). On average, ADH protein was elevated 1.8-fold, and the protein could be restored to CV levels when the microbiota was reintroduced in 0-1 day old adult males (Reconstituted, RC; Fig. 1A; Fig. 2C). One explanation for the elevation of ADH protein in the heads of AX males is an increase in gene expression, but we found no consistent elevation of *Adh* transcripts in either AX male or AX female heads (Fig. 2D). These data suggest that the microbiota plays a role in maintaining the proper level of ADH protein in the male head through a mechanism that
regulates ADH protein stability or translation efficiency. There does not appear to be any precedent for these types of ADH regulation.

AX male flies have altered physiological responses to alcohol

An animal’s first line of defense against the toxic effects of rising levels of ethanol is to metabolize it. ADH is the first step in that process that catalyzes the oxidation of ethanol to acetaldehyde, and its activity influences several physiological responses to alcohol including hyperactivity (Rodan and Rothenfluh 2010; Edenberg 2007; Wolf et al. 2002). Elevated ADH in AX male fly heads suggested that AX males may have altered physiological responses to alcohol. To test this hypothesis, we assessed two phases of alcohol-induced responses common to all animals and well described in Drosophila—alcohol-induced hyperactivity and sedation (Wolf and Heberlein 2003; Devineni and Heberlein 2013).

To assess alcohol-induced hyperactivity, we monitored locomotor activity in CV, AX, RC aged-matched males using the Drosophila activity monitor 2 (DAM2, Trikinetics, Waltham MA), an automated system that uses two infrared beams to quantify fly motility in the absence or presence of alcohol (Fig. 3A). After monitoring locomotion for 60 mins without alcohol to establish a baseline, we exposed the flies to a low concentration of ethanol vapor (10:1 air to ethanol vapor) and continued monitoring for 120 mins. Shortly after being exposed to alcohol vapor, CV males entered a period of hyperactivity peaking at an average of 3.4 laser passes/10 min (Fig. 3B, Table 1). At approximately the same time of onset, AX males entered the hyperactivity phase with a peak of 9.5 laser passes/10 min, which was restored to CV levels in reconstituted AX males (Fig. 3B, Table 1). Consistent with the lack of ADH elevation in AX
Figure 3.2. Alcohol Dehydrogenase (ADH) proteins levels are elevated in AX heads.

(A) Tiled array images of whole gels were cropped to produce the representing cut outs gels shown in SFigure 2. ADH protein (in dotted circles) was elevated in the AX head proteome. (B) 2D-Western of the ADH protein in the CV head proteome. Fluorescent images of Conventional head lysates that were separately labeled with Cy5 DIGE dye, resolved on different 2DE gels and transferred to nitrocellulose. Immuno-blot images of proteins stained with anti-DmADH antibody. Superimposed images of total, Cy5-labeled protein (red) and the ADH 2D-immuno-blot (green) confirm protein identification by LC-MS/MS. (C) Measured fold-change for ADH protein difference calculated in AX male and female flies using the Cy3 and Cy5 raw fluorescence intensities. (D) Relative Adh transcript in AX heads compared to CV heads (Normalized to rpl32).
female heads, there was no difference in alcohol-induced hyperactivity between CV and AX females (Fig. 3C, Table 1).

Because host genetic background is important for alcohol induced physiological changes and host genetic background influences the microbiota and its downstream effects (M A Schuckit 1994; Rodan and Rothenfluh 2010; A. Park et al. 2017; Chaston et al. 2016; Ericsson et al. 2015; Early et al. 2017), we asked whether the genetic background influences the microbiota-dependent alcohol induced hyperactivity by examining two additional wild type lab strains, Canton S (CS) and Oregon R (OR). Interestingly, we did not observe a difference in alcohol-induced hyperactivity between CS CV and AX males (SFig. 3B, Table 1). We did observe a lesser, but significant, increase in alcohol-induced hyperactivity between OR CV and AX males (SFig. 3C, Table 1). These data support the idea that the host genetic background interacts with the microbiota to influence alcohol-induced hyperactivity in male flies. Alternatively, these wild-type fly populations could harbor different strains of *Lactobacillus* and *Acetobacter* that do not mediate microbiota-dependent alcohol physiologies.

Next we asked whether the microbiota influences alcohol-induced sedation, a physiological response that is largely independent of ADH activity and ethanol metabolism (Singh and Heberlein 2000; Scholz et al. 2000; Kaun, Devineni, and Heberlein 2012). To test this, we exposed groups of CV, AX, and RC males to alcohol vapor in fly vials and assessed the time to immobilization for the entire fly population in a vial (Fig. 3D, (Maples and Rothenfluh 2011)). Although the time to complete sedation did not vary significantly by microbial condition (Fig. 3E), the rate of sedation, assessed by comparing the ST50 (time at which 50% of the population was immobilized) differed significantly between CV and AX males (Fig. 3F). On average, AX males took longer to immobilize (ST50=15.9 min) compared to CV males.
(ST50=11.7 min), and this was restored to CV levels in RC males (ST50=13.2 min). Overall, these data demonstrate that AX male flies have microbiota-dependent changes to alcohol-induced physiological responses some of which may be the result of elevated ADH protein.

ADH protein activity is required for the microbiota-dependent alcohol induced hyperactivity

To begin to understand the connection between elevated ADH protein and the changes in physiological response that we saw, we first asked whether the microbiota-dependent increase in hyperactivity in AX males requires ADH activity by treating CV and AX males with an ADH inhibitor (4-Methylpyrazole, 4MP; Cadieu et al. 1999). If the elevated alcohol-induced hyperactivity in AX males requires ADH enzymatic activity, inhibiting that activity should reduce hyperactivity to lower CV-like levels. Indeed, AX males aged in the presence of the inhibitor for five days exhibited reduced hyperactivity compared to control untreated AX males (Fig. 4A). Interestingly, the same inhibitor treatment of CV males did not significantly decrease their alcohol-induced hyperactivity suggesting that the inhibitor treatment did not completely abolish ADH activity (Fig. 4A).

Next we asked if the higher level of ADH protein in AX males results in increased ADH activity and increased ethanol metabolism by quantifying ADH enzymatic activity and ethanol levels in CV, AX, and RC males after exposing them to ethanol vapor. Because ADH-dependent ethanol metabolism occurs primarily in the fat body of *Drosophila* (Geer, Dybas, and Shanner 1989), and the fat body is located both in the head and abdomen, we decided to first characterize whole fly ethanol metabolism. After a 30 minute vapor exposure, whole fly lysates were immediately prepared from cohorts of pre- and post-exposed flies. We did not observe any
significant difference in ADH enzymatic activity or ethanol levels depending on the microbial composition of the fly (Fig. 4B,C). This does not rule out the possibility of tissue or cell type specific increases in ADH activity and ethanol metabolism, but does suggest that there is no significant systemic change.

To begin to address the question of tissue specificity, we asked whether ADH is expressed in the brain itself, or in other cell types in the head. We separately lysed fly brains and the remaining head capsule and detected ADH by immunoblot. Consistent with previous reports that ADH is not significantly expressed in fly brain (N., J., and M.C. 1992), we only detected ADH in the head capsule (Fig. 4D). Because high levels of ADH are expressed in the abdominal fat body (N., J., and M.C. 1992), the most likely site of ADH expression in the head is in the fat body that lies immediately anterior to the brain.

AX males flies have altered alcohol food preference

Human studies have shown that differences in ethanol sensitivity between individuals is one predictor of future alcohol addiction, as individuals who are less sensitive to alcohol have an increased risk of addiction (Marc A. Schuckit 1994). *Drosophila* has been a great model for understanding the genetics underlying alcohol consumption, preference, and addiction (Kaun, Devineni, and Heberlein 2012; Devineni and Heberlein 2009). To ask whether the microbiota affects alcohol consumption and preference, we asked if AX males have an altered preference for alcohol. We first assessed alcohol feeding preference using the Two-choice Capillary Feeder (CAFE) assay for five days where flies choose to consume either normal liquid yeast meal or ethanol-spiked (10%) liquid yeast meal (Fig. 5A) (Ja et al. 2007; Devineni and Heberlein 2009; Deshpande et al. 2014). We calculated a food preference index (PI) by taking the difference in
Figure 3.3. AX male flies are less sensitive to alcohol vapor exposure.

(A) A schematic of the Drosophila Activity Monitor 2 (Trikinetics, Inc.) to test alcohol induced hyperactivity. An individual fly is a biological replicate. (B) CV, AX, and RC male flies were assessed for alcohol induced hyperactivity. The n tested is 32 flies in 4 trials. Bars indicate standard error of the mean. Flow rate: H2O:EtOH (10:1). Statistical significance between CV and AX male flies (blue shaded region) was assigned by a Two-way ANOVA (Tukey’s multiple comparisons post hoc test). Dotted line indicates start of ethanol exposure. (C) CV, AX, and RC
Top Banana female flies were assessed for alcohol induced hyperactivity. The n tested is 32 flies in 4 trials. Bars indicate standard error of the mean. Flow rate: H2O:EtOH (10:1). (D) A schematic of the alcohol immobility chamber to test alcohol induced sedation. Each vial housed up to eight flies. An individual vial is a biological replicate. (E) CV, AX, and RC male flies were assessed for alcohol induced sedation. The n tested for CV, AX, and RC is 128, 112, and 112 flies, respectively, in 4 trials. Bars indicate standard error of the mean. Statistical significance (blue shaded region) was assigned by a Two-way ANOVA (Dunnett’s multiple comparisons post hoc test). (F) The time it takes for 50% of the population to sedate, ST50, from the alcohol induce sedation curves from male flies in panel E. Each dot represents the ST50 produced from a single vial of that respective condition. Bars indicate standard error of the mean. The n tested for CV, AX, RC is 16, 14, and 14 vials, respectively. Statistical significance was assigned by a One-way ANOVA (Tukey’s multiple comparisons post hoc test).
normal food from ethanol-laced food consumed, normalized to the total amount of food consumed. ADH activity is required for ethanol odorant preference in adult flies (Ogueta et al. 2010), but olfactory preference does not predict ethanol consumption preference (Peru et al. 2014; Sekhon et al. 2016). Thus, elevated ADH alone does not predict significantly altered ethanol consumption preference. While males of some wild type strains have an increased PI over time (Devineni and Heberlein 2009), on average Top Banana CV males had no alcohol food preference for the duration of the assay (PI = -0.01; Fig. 5B). In contrast, AX males had a slight, but significant, preference for food with alcohol (PI = 0.08) that increased over time (Fig. 5B & Fig. S5A). Reconstituting the microbiota in AX males had a very surprising effect; instead of reducing preference to CV levels as expected, RC males had a dramatic increase in alcohol food preference compared to AX (PI = 0.29; Fig. 5B). The pattern of total food consumption over the 5 days also varied significantly between the different microbial conditions (Fig. 5C). For CV males, total consumption/day did not vary significantly, while AX flies consumption started low and increased with time, and RC flies consumption started high, decreased, and then rebounded (Fig. 5C). Together these results suggest that the microbiota can alter alcohol food preference in males, but the surprising behavior of the RC flies and the differences in total food consumption raise the possibility that there may be an uncontrolled variable affecting feeding patterns and alcohol preference. Although the CAFE assay is well-established in the field, some evidence suggests that flies are starving (Devineni and Heberlein 2009; Peru et al. 2014; Pohl et al. 2012). Consistent with a stressful environment in the CAFÉ, approximately 15% of the flies in each condition died by the end of day 5 (data not shown).

BARCODE is a new alcohol preference paradigm not associated with lethality that allows the flies to have at will access to large quantities of food, and a more natural feeding
Table 3.1: Summary of flies tested for ethanol induced hyperactivity. Below are the peak average hyperactivity of each genotype and sex tested.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Condition</th>
<th>Sex</th>
<th>Average hyperactivity peak during alcohol exposure (average laser passes)</th>
<th>ST ERR</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB</td>
<td>CV</td>
<td>M</td>
<td>3.4</td>
<td>0.94</td>
</tr>
<tr>
<td>TB</td>
<td>AX</td>
<td>M</td>
<td>9.5</td>
<td>3.04</td>
</tr>
<tr>
<td>TB</td>
<td>CV</td>
<td>F</td>
<td>4.2</td>
<td>0.78</td>
</tr>
<tr>
<td>TB</td>
<td>AX</td>
<td>F</td>
<td>5</td>
<td>0.71</td>
</tr>
<tr>
<td>CS</td>
<td>CV</td>
<td>M</td>
<td>3.7</td>
<td>0.52</td>
</tr>
<tr>
<td>CS</td>
<td>AX</td>
<td>M</td>
<td>3.2</td>
<td>0.89</td>
</tr>
<tr>
<td>OR</td>
<td>CV</td>
<td>M</td>
<td>3.5</td>
<td>0.78</td>
</tr>
<tr>
<td>OR</td>
<td>AX</td>
<td>M</td>
<td>4.9</td>
<td>0.58</td>
</tr>
</tbody>
</table>
behavior of roaming and sampling, by using a sectioned stage with alternating squares of solid fly food with and without ethanol in a large chamber (A. Park, Tran, and Atkinson 2017; Fig. 5D). In this assay, we measured two aspects of alcohol preference –positional preference and food consumption preference. To determine positional preference, a picture of the stage was captured every five minutes for two days and an alcohol preference index was calculated by the difference in the number of flies on non-ethanol squares from flies on ethanol squares, normalized to the total number of flies on the stage. CV males have a slight aversion to the ethanol squares (average PI = -0.10) that decreased toward neutral by the second day (Fig. 5E & Fig. S5B). The positional preference of RC males was indistinguishable from that of CV males (Fig. 5E & Fig. S4B). In contrast, AX males exhibited a significant increase in positional preference for ethanol (average PI = +0.10) that did not change significantly over the two days of the assay (Fig. 5E & Fig. S5B).

To quantify alcohol food consumption preference, the ethanol squares and the non-ethanol squares were spiked with two different oligonucleotide tags. Following the two days of the assay, the relative quantity of these sequences was detected in surface-washed fly lysates with qPCR, and these values were used to calculate the alcohol consumption preference index (Fig. 5F). Although CV males spent slightly less time on the ethanol squares (Fig. 5E), they consumed slightly more ethanol food than non-ethanol food (PI = 0.12; Fig. 5F). RC males exhibited a similar pattern (Fig. 5F). Consistent with the increase in positional preference, AX males consumed significantly more ethanol food than CV or RC males (PI = 0.40; Fig. 5F). Together, the CAFE assay and the BARCODE assay indicate that AX males have a significantly stronger preference for food containing ethanol than their CV siblings. RC males exhibited significantly different behavior in the two assays; in the more physiologically-relevant
BARCODE assay, alcohol preference for the RC males was indistinguishable from CV, consistent with a restoration of CV alcohol responses when microbes were reintroduced to adult AX males. The unexpected spike in alcohol preference and total food consumption in AX males in the CAFE assay (Fig. 5B,C) suggests that CV males and RC males may have some metabolic differences that influence their response to nutrient deprivation. Alternatively, differences in microbiota abundance or composition could account for response differences to nutrient deprivation. Indeed we did observe a slight increase in *Lactobacillus* species in RC flies (Fig. S1D), supporting this possibility.
Figure 3.4. The microbiota-dependent hyperactivity requires ADH enzymatic activity but not ethanol metabolism.

(A) CV and AX male flies with and without 5µM 4-Methylpyrazole (4MP) were assessed for alcohol induced hyperactivity. The n tested is 24 flies in 3 trials. Bars indicate standard error of the mean. Flow rate: H2O:EtOH (10:1). Statistical significance between CV and AX controls (blue shaded region) was assigned by a Two-way ANOVA (Dunett’s multiple comparisons post hoc test). (B) Endogenous ethanol levels of CV, AX, and RC male flies after exposed to 10% ethanol for thirty minutes. Each dot represents a biological replicate containing twenty whole flies. Solid black bar indicates the mean. (C) Endogenous ADH enzymatic activity levels of CV, AX, and RC male flies after exposed to 10% ethanol for thirty minutes. Each dot represents a
biological replicate containing ten whole flies. Solid black bar indicates the mean. (D) Anti-ADH immunoblot of isolated CV male brain and head casing (containing the fat body).
Discussion

The microbiota’s ability to profoundly influence host physiology and behavior has huge implications for understanding both normal biology and disease states. Using a gel-based proteomic screen, we identified both general and sex-specific microbiota-dependent proteome changes in the *Drosophila* head. A growing number of studies are demonstrating that the composition of the gut microbiota and microbiota-dependent effects on some aspects of host physiology are significantly influenced by host sex. In humans, mice, and flies, the composition of the microbiota is different in males and females (Org et al. 2016; Haro et al. 2016; Han et al. 2017), and in mice this difference has been shown to be mediated by sex hormones, sex-specific differences in bile acids, and sex-specific differences in immunity (Yurkovetskiy et al. 2013; Xie et al. 2017; Fransen et al. 2017). Furthermore, connections between sex and the gut microbiota appear to be contributing to sex-specific differences in Type 1 diabetes (Yurkovetskiy et al. 2013) and liver carcinogenesis (Xie et al. 2017). While these connections are being made, the precise molecular mechanisms are largely unknown. We found that the fly head proteome also exhibits sex-specific microbiota-dependent changes. In addition to individual proteins, like ADH, that exhibit sex-specific changes, we are particularly intrigued by those proteins that exhibit microbiota-dependent elevation in males and a decrease in females. We anticipate that future identification of those proteins will yield important insight into the underlying molecular mechanism connecting sex, the microbiota, and host biology.

Alcohol abuse disorders (AUD) have a complex genetic basis. Multiple phenotypes contribute to the risk of alcoholism including disinhibition/impulsivity, patterns of alcohol metabolism, and a low level of response to alcohol (M. a Schuckit, Smith, and Kalmijn 2004). Among these, low level of responsiveness to alcohol is the most well studied risk factor; it
strongly predicts future alcoholism, and its heritability is as high as 60%. Many challenges contribute to the identification of genes involved in these AUD risk phenotypes because multiple genes contribute to each, and because environmental influences on genotype substantially affect risk (M. a Schuckit, Smith, and Kalmijn 2004). Our demonstration that AX males have an increased responsiveness to alcohol as reflected in elevated hyperactivity suggests that there are components of the microbiota that influence alcohol responsiveness (Fig. 3). The fact that this is only true for male Drosophila is an interesting parallel to what has been found in human studies; while decreased alcohol responsiveness is strongly associated with an increased risk of alcohol abuse in men, the same does not appear to be true in women (Heath et al. 1999).

Increased alcohol preference can lead to increased consumption triggering a positive feedback loop that can promote addiction phenotypes (Peru et al. 2014; Koob and Volkow 2010; Barson, Morganstern, and Leibowitz 2011). If CV males with a lower responsiveness to alcohol are at greater risk for alcohol dependency, one might predict that they would exhibit a greater consumption preference for alcohol, but this is not the case (Fig. 5); AX males had a higher consumption preference for alcohol than their CV siblings. Studies of alcohol responses in mice have identified a number of molecular systems in the brain that affect alcohol responses including dopamine (Crabbe et al. 2006), which is necessary for conditioned alcohol preference in Drosophila (Kaun, Devineni, and Heberlein 2012). Interestingly, disruptions in dopamine neurotransmission have been reported in germ-free mice (Parashar and Udayabanu 2017), suggesting a possible mechanism by which the microbiota could influence alcohol preference in Drosophila.

In addition to a role in responsiveness and preference that we have demonstrated here, emerging evidence suggests that alcohol consumption can cause the dysbiosis of the gut
microbiota observed in a subset of alcoholic patients (Canesso et al. 2014; Mutlu et al. 2012); this dysbiosis appears to contribute to the neuro-inflammatory withdrawal response (Gorky and Schwaber 2016), and to the emotional effects of alcohol abuse (Leclercq et al. 2014). Our results suggest that differences in the microbiota could also contribute to the initial risk of addiction. Furthermore, genetic heterogeneity may contribute to the significant interpersonal variability observed in response to therapies (Litten et al. 2015). Because there is significant variation in the microbiota between people (Benson et al. 2010), the composition of the gut microbiota could also play a role in therapeutic success.

We showed that the increased responsiveness of AX males to alcohol requires the activity of ADH, suggesting that alcohol metabolism does play a role in at least some of the microbiota-mediated effects. The fact that we are not able to detect any systemic difference in ADH activity or ethanol metabolism between CV and AX flies (Fig. 4) suggests that this activity may be tissue or cell type specific. Our preliminary analysis of ADH expression in the Drosophila head is consistent with a model that the change in ADH does not occur in the brain itself (Fig. 4D), but is more likely to be in the fat body that lies anterior to the brain in the head capsule. This is consistent with the model that alcohol metabolism in the brain is primarily driven by catalase (Zimatkin and Lindros 1996; Cederbaum 2013; Reddy, Boyadjieva, and Sarkar 1995). The Drosophila fat body is a major endocrine organ that regulates aspects of brain and immune physiology and the brain can communicate to the fat body (Droujinine and Perrimon 2016; Y. Zhang and Xi 2014; Q. Liu and Jin 2017). This raises the possibility that elevated ADH protein in the fat body of AX males could influence neural activity, or that the elevation in ADH is in response to upstream microbiota-dependent changes in brain function. Because the level of Adh transcript is unchanged in response to microbial differences, we propose that ADH is elevated as
the result of increased translation initiation or protein stability. ADH can be modified post-translationally (Lange III et al. 1975; Hans Jörnvall et al. 1977; H Jörnvall et al. 1980) and such modifications can alter protein stability, but we did not observe any change in ADH’s pI or molecular weight in our 2D-DIGE analysis indicative of a difference in post-translational modification. Alternatively, ADH may interact with a microbiota-responsive binding partner that stabilizes it. More work is required to distinguish the possibilities.

Regardless of the precise molecular mechanism, the elevation in ADH could be a direct response to the loss of the microbiota because the microbiota plays a direct and adaptive role in regulating alcohol responses in Drosophila. Because Drosophila in the wild feed on fermenting fruit with a typical alcohol content of 5%, it is reasonable to propose a model in which microbial symbionts modulate alcohol responses that promote successful foraging. Alternatively, the elevation in ADH could be a byproduct of other microbiota-dependent changes. For example, ADH increase in AX males could be a mechanism to compensate for a decrease in microbial-derived short-chain fatty acids (scFA) that normally promote host metabolic activities such as glycolysis, lipogenesis, and insulin signaling (Tremaroli and Bäckhed 2012), and also affect other aspects of host development, physiology, and behavior (Macfabe MD 2012; MacFabe 2015; Meyer et al. 2009; Sekirov et al. 2010; Bourassa et al. 2016; Marchesi et al. 2015). Ethanol metabolism, is driven in part by ADH activity, can promote lipid synthesis directly by converting ethanol to acetate, an scFA building block (Chakir et al. 1993). Consistent with the hypothesis that elevated ADH could be a response to defects in lipogenesis, AX adult flies have abnormally high triglycerides indicative of a defect in lipid metabolism (Newell and Douglas 2014; Wong, Dobson, and Douglas 2014) that appears to be influenced by both sex and diet content. Interestingly, germ-free mice do not accumulate lipids after ethanol consumption like CV mice
(Canesso et al. 2014). Dissecting the connection between the microbiota and ADH and lipid metabolism in the host is a high priority for the future.

Because we know that many genes and cellular processes independent of alcohol metabolism contribute to alcohol induced physiology and behavior (Rodan and Rothenfluh 2010; M A Schuckit 1994; A. Park et al. 2017), increased ADH in AX males is unlikely to be the single explanation for the microbial-dependent changes in the alcohol responses we observed. For example, *Drosophila* responds to ethanol by modulating neurotransmitter and neuropeptide activity, transcription factors and histones for gene expression, as well as alterations to the cytoskeleton and cell adhesion (Rodan and Rothenfluh 2010; A. Park et al. 2017). Future work will seek to uncover the scope of microbial-dependent mechanisms affecting host alcohol responses. Identification of the specific bacterial strains necessary to restore CV responses will be an important next step.
Figure 3.5. AX male flies prefer alcohol more than their CV male siblings.

(A) A schematic of the Two-choice capillary feeder assay to test alcohol preference. Each chamber housed up to eight flies. An individual chamber is a biological replicate. (B) CV, AX, and RC male flies were assessed for daily alcohol consumption preference for five days with 0% EtOH vs. 10% EtOH. An alcohol preference index was calculated by taking the difference in consumed normal food from ethanol laced food, normalized to the total amount of food consumed. The n tested for CV, AX, and RC is 71, 77, and 63 flies (10, 10, and 9 chambers),
respectively. Bars indicate standard error of the mean. Statistical significance was assigned by a Two-way ANOVA (Dunnett’s multiple comparisons post hoc test). (C) Total average alcohol preference index of CV, AX, and RC male flies from data set in panel B. Each dot represents a PI produced from a chamber of that respective condition, over the five days. Solid black bar indicates the mean. Statistical significance was assigned by a One-way ANOVA (Dunnett’s multiple comparisons post hoc test). (D) A schematic of the BARCODE assay to test alcohol preference. Each chamber housed up to fifty flies. An individual fly is a biological replicate. (E) CV, AX, and RC male flies were assessed for daily alcohol position preference for two days with 0% EtOH vs. 5% EtOH. An alcohol preference index was calculated by the difference in the number of flies on non-ethanol squares from ethanol squares, normalized to the total number of flies on the stage. The n tested for each condition is 50 flies. Colored bars indicate standard error of the mean. Statistical significance was assigned by a Kruskal-Wallis test (Dunn’s multiple comparisons post hoc test). (F) Total average alcohol consumption preference index of CV, AX, and RC male flies from data set in panel E. Each dot represents a PI produced from RNA extracted from five male flies of that respective condition after the two days. Relative quantities of food were calculated from ΔCT and alcohol preference index was calculated from the difference in non-ethanol food from ethanol food, normalized over the total amount of food. Solid black bar indicates the mean. Relative Ethanol oligo transcript compared to non-ethanol oligo in whole flies (Normalized to cyclophilin). Statistical significance was assigned by a One-way ANOVA (Holm-Sidak’s multiple comparisons post hoc test).
Future directions

We have identified microbial-dependent changes in *Drosophila’s* alcohol responses but we do not yet fully understand the mechanism(s) by which this occurs. A lot of important objectives still remain in order to fully understand fully how the microbiota modulates alcohol response in the fly. We are interested in pursuing both ADH-dependent and independent mechanisms by which the microbiota influences alcohol responses. Below are the first proposed experiments necessary to move forward with this investigation.

Identify specific bacterial strains necessary to restore CV responses to alcohol

We predict that underlying microbial-dependent alcohol responses, such as the regulation of ADH protein abundance, are specific bacterial taxa residing in the gut and that are communicating with the host, possibly through bacterial metabolites such as scFAs (MacFabe 2015; Macfabe MD 2012). Identification of those bacterial taxa is an essential step to understanding the mechanism(s) by which microbes are regulating alcohol related host physiology and behavior. To this date, Scott Keith in the lab has isolated different bacterial species from our flies in the *Lactobacillus* and *Acetobacter* genera, and has successfully reintroduced them individually and as mixed populations to create gnotobiotic flies – flies with a known, defined microbiota. We will test these gnotobiotic strains for elevated ADH and increased responsiveness to alcohol to identify the relevant bacteria. From there several different approaches can be taken to identify the bacterial gene products and pathways that are required to properly regulate ADH-dependent and -independent alcohol responses.
Identify host brain regions and genes required for the microbial-dependent alcohol food preference

We have demonstrated the microbiota influences alcohol preference in AX male flies. The preference for alcohol in *Drosophila* requires a host of neurodevelopmental gene products (Morozova et al. 2015; I. F. G. King et al. 2014) and requires dopaminergic and αβ neurons of the mushroom body (Kaun et al. 2011; I. King et al. 2011; Yamagata et al. 2015). We predict that the microbiota is altering the flies’ preference for alcohol through the regulation of specific genes, cell types, and brain regions. To begin to understand the microbial-dependent mechanisms that regulate alcohol preference in *Drosophila*, we can use the wealth of genetic tools available to reduce the activity of selected brain regions, cell types, and gene products in AX male flies, and ask which are required for the increase in preference for ethanol in AX male flies. Additionally, transcriptome analysis between AX male brain tissue before and after ethanol consumption could provide deeper insight.

Dissecting the connection between the microbiota, host fat body, and ADH-dependent lipid metabolism

We have provided evidence that the microbiota is necessary for modulating male flies’ responsiveness to alcohol (Fig. 3.3). This effect in part requires ADH protein activity. However, there are no detectable differences in overall alcohol metabolism between CV and AX male flies. These observations pose an alternative hypothesis for elevated ADH protein abundance in AX male flies – 1. The increase activity of ADH protein is tissue or cell specific, and 2. elevated ADH could be a byproduct of other microbiota-dependent changes, such as changes in metabolism. One such metabolic outlet, lipogensis, is affected by both the microbiota and ADH
activity. Because lipogenesis occurs in the fat body, we will first test whether ADH activity in the fat body is required for mediating the microbiota-dependent hyperactivity (or responsiveness). We predict that knocking down ADH function in part, or all of the fat body should have significant consequences on the alcohol induced hyperactivity in AX male flies. Additionally, we will investigate whether lipid dysregulation is occurring in our flies by first characterizing the triglyceride levels and fat content of our AX males.
APPENDIX A: APC PROJECT SUPPLEMENT MATERIAL

Table 1: Source Extractor protein counts of the APC2 null proteome changes in Fig. 2.2.

<table>
<thead>
<tr>
<th>Region</th>
<th>Channel</th>
<th>Spot</th>
<th>Flux</th>
<th>Corrected Flux</th>
<th>Relative abundance (to unchanged spot D)</th>
<th>spot Fold change (Cy3/Cy5)</th>
<th>Total protein counts (per channel)</th>
<th>Total protein abundance difference (% of Cy3:Cy5)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>WT - Cy3</td>
<td>Left</td>
<td>2,039,266.00</td>
<td>2,444,475.42</td>
<td>3.77E-01</td>
<td>-1.55</td>
<td>2,810,035.30</td>
<td>-0.54%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left</td>
<td>304,962.70</td>
<td>365,559.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>APC2 - Cy5</td>
<td>Left</td>
<td>1,575,496.00</td>
<td>--</td>
<td>--</td>
<td>3.29</td>
<td>2,779,942.00</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left</td>
<td>1,204,446.00</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>WT - Cy3</td>
<td>Left</td>
<td>5,187.59</td>
<td>6,218.38</td>
<td>9.50E-04</td>
<td>-2.78</td>
<td>7,837.11</td>
<td>-11.40%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right</td>
<td>1,350.40</td>
<td>1,616.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>APC2 - Cy5</td>
<td>Left</td>
<td>2,236.82</td>
<td>--</td>
<td>--</td>
<td>2.03</td>
<td>6,232.86</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right</td>
<td>3,996.03</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>WT - Cy3</td>
<td>Left</td>
<td>204,076.90</td>
<td>244,627.71</td>
<td>2.94E-01</td>
<td>7.11</td>
<td>2,173,310.57</td>
<td>0.15%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right</td>
<td>1,608,974.00</td>
<td>1,928,682.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>APC2 - Cy5</td>
<td>Left</td>
<td>1,740,304.00</td>
<td>--</td>
<td>--</td>
<td>-4.39</td>
<td>2,180,025.40</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right</td>
<td>439,721.40</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>WT - Cy3</td>
<td>Left</td>
<td>1,745,245.00</td>
<td>2,092,031.40</td>
<td>4.02E-01</td>
<td>-1.40</td>
<td>2,846,390.42</td>
<td>4.34%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right</td>
<td>629,312.40</td>
<td>754,359.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>APC2 - Cy5</td>
<td>Left</td>
<td>1,496,724.00</td>
<td>--</td>
<td>--</td>
<td>2.13</td>
<td>3,104,835.00</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right</td>
<td>1,608,111.00</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>WT - Cy3</td>
<td>Left</td>
<td>1,954,976.00</td>
<td>2,343,436.70</td>
<td>2.75E-01</td>
<td>-4.78</td>
<td>2,660,584.29</td>
<td>-2.66%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle</td>
<td>7,862,011.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right</td>
<td>162,602.40</td>
<td>194,912.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>APC2 – Cy5</td>
<td>Left</td>
<td>490,718.90</td>
<td>--</td>
<td>--</td>
<td>5.38</td>
<td>2,522,743.30</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Middle</td>
<td>982,751.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right</td>
<td>1,049,273.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WT- Cy3</td>
<td>Left</td>
<td>1,173,663.00</td>
<td>1,406,874.02</td>
<td>1.32E-01</td>
<td>-5.26</td>
<td>1,585,601.68</td>
<td>-62.67%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>Right</td>
<td>Left</td>
<td>Right</td>
<td>Left</td>
<td>Right</td>
<td>Left</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td>----</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>6</td>
<td>297,192.40</td>
<td>1,651,460.00</td>
<td>1,164,688.19</td>
<td>5,194,234.27</td>
<td>3.13E-01</td>
<td>2.72</td>
<td>2,335,856.58</td>
<td>-0.80%</td>
<td>6.06E-01</td>
</tr>
<tr>
<td>7</td>
<td>3,764,766.0</td>
<td>2,534,700.00</td>
<td>4,512,838.42</td>
<td>3,038,353.92</td>
<td>8.85E-01</td>
<td>-2.21</td>
<td>7,551,192.34</td>
<td>-15.16%</td>
<td>2,043,906.00</td>
</tr>
<tr>
<td>8</td>
<td>2,832,386.00</td>
<td>1,545,000.00</td>
<td>3,395,191.19</td>
<td>1,851,997.00</td>
<td>7.21E-01</td>
<td>1.15</td>
<td>5,247,188.20</td>
<td>1.69%</td>
<td>3,907,155.00</td>
</tr>
<tr>
<td>9</td>
<td>996,161.20</td>
<td>244,454.40</td>
<td>1,194,101.98</td>
<td>293,028.36</td>
<td>1.95E-01</td>
<td>-9.39</td>
<td>1,487,130.34</td>
<td>-3.06%</td>
<td>127,126.00</td>
</tr>
<tr>
<td>10</td>
<td>636,839.50</td>
<td>11,825.33</td>
<td>763,381.78</td>
<td>14,175.07</td>
<td>8.34E-02</td>
<td>-3.79</td>
<td>777,556.84</td>
<td>-25.86%</td>
<td>201,168.30</td>
</tr>
<tr>
<td>11</td>
<td>1,130,829.0</td>
<td>2,734,881.00</td>
<td>1,355,528.75</td>
<td>3,278,311.60</td>
<td>4.98E-01</td>
<td>-3.02</td>
<td>4,633,840.35</td>
<td>-25.64%</td>
<td>201,168.30</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>Right</td>
<td>Change</td>
<td>Pct Change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>WT - Cy3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>Right</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>449,431.0</td>
<td>2,293,168.0</td>
<td>-1.43</td>
<td>2,742,599.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>216,354.0</td>
<td>1,100,647.0</td>
<td>1.79E-01</td>
<td>1,576,693.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,017,788.0</td>
<td>50,487.31</td>
<td>-26.13</td>
<td>1,068,275.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,832,385.0</td>
<td>2,716,782.0</td>
<td>7.28E-01</td>
<td>5,453,102.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,197,809.0</td>
<td>2,126,396.0</td>
<td>-1.53</td>
<td>5,324,205.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>205,669.60</td>
<td>2,980,452.0</td>
<td>3.66E-01</td>
<td>3,819,215.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,085,903.0</td>
<td>501,151.90</td>
<td>-7.13</td>
<td>1,597,054.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14	**APC2 - Cy5**			
	Left	Right		
	259,344.31	1,319,349.48	-19.28%	
	2,196,486.43	3,256,616.26	-1.20%	
	812,391.85	4,642,130.58	-8.09%	
	246,536.88	3,572,678.43	-41.03%	

15	**WT - Cy3**			
	Left	Right		
	203,431.0	1,068,275.31	-26.13	1,068,275.31
	216,354.0	1,100,647.0	1.79E-01	1,576,693.79
	1,017,788.0	50,487.31	-26.13	1,068,275.31
	1,832,385.0	2,716,782.0	7.28E-01	5,453,102.69
	3,197,809.0	2,126,396.0	-1.53	5,324,205.00
	205,669.60	2,980,452.0	3.66E-01	3,819,215.31
	1,085,903.0	501,151.90	-7.13	1,597,054.90

16	**APC2 - Cy5**			
	Left	Right		
	229,431.0	1,068,275.31	-26.13	1,068,275.31
	259,344.31	1,319,349.48	-19.28%	1,576,693.79
	2,196,486.43	3,256,616.26	-1.20%	
	812,391.85	4,642,130.58	-8.09%	
	246,536.88	3,572,678.43	-41.03%	

17	**WT - Cy3**			
	Left	Right		
	203,431.0	1,068,275.31	-26.13	1,068,275.31
	216,354.0	1,100,647.0	1.79E-01	1,576,693.79
	1,017,788.0	50,487.31	-26.13	1,068,275.31
	1,832,385.0	2,716,782.0	7.28E-01	5,453,102.69
	3,197,809.0	2,126,396.0	-1.53	5,324,205.00
	205,669.60	2,980,452.0	3.66E-01	3,819,215.31
	1,085,903.0	501,151.90	-7.13	1,597,054.90
Table 2: Identified proteins in *APC2* null 2D-DIGE gels.

<table>
<thead>
<tr>
<th>Region</th>
<th>Gene</th>
<th>Protein name</th>
<th>Peptide # (1st run)</th>
<th>Peptide # (2nd run)</th>
<th>Molecular weight (kDa)</th>
<th>Calculated pI</th>
<th>Molecular Function</th>
<th>Biological processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CG2918</td>
<td>N/A</td>
<td>12</td>
<td>16</td>
<td>106</td>
<td>5.1</td>
<td>Chaperone protein</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>ade2</td>
<td>Phosphoribosylformylglycinamidine synthase</td>
<td>23</td>
<td>16</td>
<td>148</td>
<td>6.6</td>
<td>Metabolic protein</td>
<td>Purine biosynthesis</td>
</tr>
<tr>
<td>3</td>
<td>lrp-1B</td>
<td>Iron binding protein 1 B</td>
<td>3</td>
<td>3</td>
<td>99</td>
<td>5.7</td>
<td>RNA-binding</td>
<td>Protein translation initiation</td>
</tr>
<tr>
<td>4</td>
<td>Dp1</td>
<td>Dodeca-satellite-binding protein 1</td>
<td>5</td>
<td>14</td>
<td>144</td>
<td>5.9</td>
<td>DNA-binding</td>
<td>Heterochromatin organization</td>
</tr>
<tr>
<td>5</td>
<td>CG1516</td>
<td>Pyruvate carboxylase</td>
<td>8</td>
<td>11</td>
<td>133</td>
<td>6.2</td>
<td>Metabolic protein</td>
<td>Cellular respiration</td>
</tr>
<tr>
<td>6</td>
<td>CG14476</td>
<td>N/A</td>
<td>5</td>
<td>--</td>
<td>106</td>
<td>6.1</td>
<td>Metabolic protein</td>
<td>Carbohydrate processing</td>
</tr>
<tr>
<td>7</td>
<td>GlyP</td>
<td>Phosphorylase</td>
<td>7</td>
<td>--</td>
<td>97</td>
<td>6.1</td>
<td>RNA-binding</td>
<td>Amino acid synthesis</td>
</tr>
<tr>
<td>8</td>
<td>Aats-gly</td>
<td>Glycyl-tRNA synthetase</td>
<td>4</td>
<td>9</td>
<td>76</td>
<td>6.0</td>
<td>Metabolic protein</td>
<td>Protein translation</td>
</tr>
<tr>
<td></td>
<td>ND75</td>
<td>NADH-ubiquinone reductase</td>
<td>2</td>
<td>--</td>
<td>75</td>
<td>6.4</td>
<td>Metabolic protein</td>
<td>Cellular respiration</td>
</tr>
<tr>
<td>9</td>
<td>ApepP</td>
<td>Aminopeptidase P</td>
<td>4</td>
<td>9</td>
<td>63</td>
<td>5.6</td>
<td>Protease</td>
<td>Proteolysis</td>
</tr>
<tr>
<td></td>
<td>CG8963</td>
<td>N/A</td>
<td>3</td>
<td>--</td>
<td>69</td>
<td>5.8</td>
<td>RNA-binding</td>
<td>N/A</td>
</tr>
<tr>
<td>10</td>
<td>CaBP1</td>
<td>Calcium binding protein 1</td>
<td>10</td>
<td>3</td>
<td>47</td>
<td>5.5</td>
<td>Signaling</td>
<td>Stress signaling</td>
</tr>
<tr>
<td>11</td>
<td>mRpS30</td>
<td>Mitochondrial ribosomal protein S30</td>
<td>4</td>
<td>9</td>
<td>65</td>
<td>8.5</td>
<td>RNA-binding</td>
<td>Protein translation</td>
</tr>
<tr>
<td>12</td>
<td>Cbs</td>
<td>Cystathionine beta-synthase</td>
<td>8</td>
<td>7</td>
<td>57</td>
<td>6.6</td>
<td>Metabolic protein</td>
<td>Amino acid synthesis</td>
</tr>
<tr>
<td></td>
<td>CG8231</td>
<td>TCP-1zeta</td>
<td>6</td>
<td>6</td>
<td>58</td>
<td>6.2</td>
<td>N/A</td>
<td>Protein chaperone</td>
</tr>
<tr>
<td>13</td>
<td>La</td>
<td>La autoantigen-like</td>
<td>4</td>
<td>3</td>
<td>45</td>
<td>7.7</td>
<td>RNA-binding</td>
<td>RNA processing</td>
</tr>
<tr>
<td></td>
<td>vig2</td>
<td>Vig2</td>
<td>2</td>
<td>--</td>
<td>45</td>
<td>9.4</td>
<td>DNA-binding</td>
<td>Heterochromatin organization</td>
</tr>
<tr>
<td></td>
<td>Gene</td>
<td>Protein Name</td>
<td>Gene Product</td>
<td>FPKM</td>
<td>Log2 Fold</td>
<td>Functional Class</td>
<td>Gene Product Details</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>--------------</td>
<td>--------------</td>
<td>------</td>
<td>------------</td>
<td>------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>blw</td>
<td>Bellwether, ATP synthase subunit</td>
<td>13</td>
<td>7</td>
<td>59</td>
<td>9.1</td>
<td>Metabolic protein</td>
<td>Cellular respiration</td>
</tr>
<tr>
<td></td>
<td>AdSL</td>
<td>Adenylosuccinate lyase</td>
<td>4</td>
<td>3</td>
<td>54</td>
<td>7.2</td>
<td>Metabolic protein</td>
<td>Purine biosynthesis</td>
</tr>
<tr>
<td>15</td>
<td>Uch</td>
<td>Ubiquitin carboxy-terminal hydrolase, isoform B</td>
<td>7</td>
<td>7</td>
<td>26</td>
<td>5.3</td>
<td>Protease</td>
<td>Protein deubiquitination</td>
</tr>
<tr>
<td>16</td>
<td>CG1633</td>
<td>Jafrac 1</td>
<td>13</td>
<td>4</td>
<td>22</td>
<td>5.5</td>
<td>Metabolic protein</td>
<td>Redox homeostasis</td>
</tr>
<tr>
<td></td>
<td>CG2216</td>
<td>Ferritin 1 heavy chain homologue</td>
<td>5</td>
<td>1</td>
<td>23</td>
<td>5.6</td>
<td>Metabolic protein</td>
<td>Iron ion transport</td>
</tr>
</tbody>
</table>
Table 3A: Wild-type variability 2D-DIGE experiments.

<table>
<thead>
<tr>
<th>Region</th>
<th>Protein ID</th>
<th>WTMc vs. WTD</th>
<th>WTMc vs. WTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CG2918</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Phosphoribosylformylglycinamidine synthase</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Iron binding protein 1B</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Dodeca-satellite-binding protein 1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Pyruvate carboxylase</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>CG14476</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>Glycogen phosphorylase</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Glycyl-tRNA synthetase</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>Aminopeptidase P</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Calcium binding protein 1</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>Mitochondrial ribosomal protein S30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12-1</td>
<td>Cystathionine beta-synthase</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12-2</td>
<td>TCP-1zeta</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>La autoantigen-like protein</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>Bellwether, ATP synthase subunit</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>Ubiquitin carboxy-terminal hydrolase</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>16</td>
<td>Jafrac1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+ = difference-protein isoform present; - = difference-protein isoforms not present
Table 3B: APC2 compensation 2D-DIGE experiments.

<table>
<thead>
<tr>
<th>Region</th>
<th>Protein ID</th>
<th>FL-GFP-APC2; APC<sup>g10</sup> vs. WT</th>
<th>APC<sup>g10</sup> vs. APC<sup>g10</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CG2918</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Phosphoribosylformylglycinamidine synthase</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Iron binding protein 1B</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Dodeca-satellite-binding protein 1</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Pyruvate carboxylase</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>CG14476</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>Glycogen phosphorylase</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Glycyl-tRNA synthetase</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Aminopeptidase P</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>Calcium binding protein 1</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>Mitochondrial ribosomal protein S30</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>12-1</td>
<td>Cystathionine beta-synthase</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12-2</td>
<td>TCP-1zeta</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>La autoantigen-like protein</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>Bellwether, ATP synthase subunit</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>Ubiquitin carboxy-terminal hydrolase</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>16</td>
<td>Jafrac1</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

+ = difference-protein isoform present; - = difference-protein isoforms not present
Table 3C: Various APC mutant 2D-DIGE experiments.

<table>
<thead>
<tr>
<th>Region</th>
<th>Protein ID</th>
<th>APC1<sup>Q8</sup> vs. WT</th>
<th>APC2<sup>g10</sup> APC1<sup>Q8</sup> vs. WT</th>
<th>MTD-UAS-APC2 dsRNA vs. WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CG2918</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Phosphoribosylformylglycinamidine synthase</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Iron binding protein 1B</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Dodeca-satellite-binding protein 1</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Pyruvate carboxylase</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>CG14476</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>Glycogen phosphorylase</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>Glycyl-tRNA synthetase</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>Aminopeptidase P</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>Calcium binding protein 1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>Mitochondrial ribosomal protein S30</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>12-1</td>
<td>Cystathionine beta-synthase</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12-2</td>
<td>TCP-1zeta</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>La autoantigen-like protein</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>Bellwether, ATP synthase subunit</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>Ubiquitin carboxy-terminal hydrolase</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>16</td>
<td>Jafrac1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+ = difference-protein isoform present; - = difference-protein isoforms not present
SFig. 1. *Apep*^{PI} embryos and *Apep*^{EY/MI} embryos display Wnt activation phenotypes similar to *Apep*^{EY} mutant embryos.

Cuticle analysis of: (A) Wild-type, (B) *Apep*^{PI}, and (C) *Apep*^{EY/MI}. (D) Embryonic survival rate for wild-type, *APC2^{g10}*, and various *Apep* mutant embryos.
SFig 2. *twk¹* and *twk²* embryos do not display Wnt activation phenotypes similar to *ApepP⁶⁸⁷⁸⁷⁸* mutant embryos.

(A) Embryonic survival rate for embryos from *twk¹/+* mothers crossed to *twk¹/+* fathers. The same was performed on *twk²* mutants. Cuticle analysis of: (B) A representative wild-type larva. Dead embryos, presumably *twk/twk*, have a range of embryonic phenotypes. For *twk¹/twk¹* dead embryos, half had normal cuticles (C), while half exhibited a *nanos*-like cuticle phenotype (D). The majority of *twk²/tw²¹* dead embryos displayed the *nanos*-like phenotype (F), while the remainder appeared normal (E).
Appendix B: ADH-Microbiota Project Supplement Material

Supplement Figure 3.1. Verification of AX cultures.

(A) CV and AX culture were monitored for time to adulthood from embryos. Two phases of development were monitored, Embryo to pupae (bottom lighter color of bar) and pupae to adult (top darker color of bar). The n tested is 69 bottles and 59 bottles for CV and AX, respectively. Bars indicate standard error of the mean. Statistical significance was assigned by a Mann-Whitney test. (B) Cropped pictures from media plate of ten surface sterilized whole flies homogenates from CV and AX cultures. (C) PCR using pan-bacterial, *Lactobacillus*, and *Acetobacter* spps. (D) CFU/flies.
Acetobacter specific primers on isolated CV and AX male homogenates. (D) The total number of bacterial colony-forming units (CFU) from whole fly CV and RC homogenates. Homogenates contained ten surfaced-sterilized 5-6 day old male flies. Lactobacillus species were counted on MRS plates, while Acetobacter species were counted on Ace plates. Error bars indicate SEM. A single dot represents a biological replicate, containing ten male flies. Missing dots indicates no bacterial growth observed for that biological replicate.
Supplement Figure 3.2. 2D-DIGE of CV versus AX *Drosophila* heads.

(A) A tiled array of a whole gel comparing CV heads (shown in green) and AX heads (shown in red). The 22 microbiota-dependent protein differences (between both male and females) are demarcated with white dotted circles. Contrasting and brightness was manipulated on the whole gel images using ImageJ. Full details of image analysis can be found in the supplementary materials. (B) Gray scale image of the CV head proteome with the same demarcation as in panel A. (C) Gray scale image of the AX head proteome with the same demarcation as in panel A.
Supplement Figure 3.3. The microbiota-dependent hyperactivity is influenced by high protein diet and host genetic background.

(A) *Top Banana* CV and ADH null male flies were assessed for alcohol induced hyperactivity. The n tested is 32 flies in 4 trials. Bars indicate standard error of the mean. Flow rate: H2O:EtOH (10:1). Statistical significance between CV and ADH null male flies (blue shaded region) was assigned by a Two-way ANOVA (Sidak’s multiple comparisons post hoc test). (B) *Canton S* CV and AX male flies were assessed for alcohol induced hyperactivity. The n tested is 48 flies in 6 trials. Bars indicate standard error of the mean. Flow rate: H2O:EtOH (10:1). (C) *Oregon R* CV and ADH null male flies were assessed for alcohol induced hyperactivity. The n tested is 48 flies in 6 trials. Bars indicate standard error of the mean. Flow rate: H2O:EtOH (10:1). Statistical significance between *Oregon R* CV and AX male flies (blue shaded region) was assigned by a
Two-way ANOVA (Sidak’s multiple comparisons post hoc test). (D) *Top Banana* CV and AX male flies were raised in the absence of autoclave yeast granules and assessed for alcohol induced hyperactivity. The n tested is 32 flies in 4 trials. Bars indicate standard error of the mean. Flow rate: H2O:EtOH (10:1).
Supplement Figure 3.4. AX males have altered feeding consumption for alcohol

(A) Total daily consumption (ethanol and non-ethanol food) of CV, AX, and RC male flies in the CAFÉ assay in Fig. 4, A-C. (B) CV, AX, and RC male flies were assessed for daily alcohol positional preference for two days with 0% EtOH vs. 10% EtOH. This is the same data set used in Fig. 4, D-F. An alcohol preference index was calculated by taking the difference in flies on normal food from flies on ethanol laced food, normalized to the total number of flies on the stage. The n tested for CV, AX, and RC 50 flies for each condition. Bars indicate standard error of the mean. Statistical significance was assigned by a Two-way ANOVA (Turkey’s multiple comparisons post hoc test). On day one, AX male flies were significantly different from CV and RC flies (**, P=0.0092 and P=0.0032, respectively). No significant difference was observed on day two.

Crabbe, John C., Tamara J. Phillips, R. Adron Harris, Michael A. Arends, and George F. Koob.

Microbiots on the Fly’s Germ Line.” *Nature Communications.*

Litten, Raye Z., Megan L. Ryan, Daniel E. Falk, Matthew Reilly, Joanne B. Fertig, and George

Preitner, Nicolas, Jie Quan, Dan W. Nowakowski, Melissa L. Hancock, Jianhua Shi, Joseph Tcherkezian, Tracy L. Young-Pearse, and John G. Flanagan. 2014. “APC Is an RNA-Binding Protein, and Its Interactome Provides a Link to Neural Development and
Microtubule Assembly.” *Cell* 158 (2). Elsevier Inc.: 368–82. doi:10.1016/j.cell.2014.05.042.

Zhang, Yafei, and Yongmei Xi. 2014. “Fat Body Development and Its Function in Energy

