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Abstract—We present an algorithm that on input of an n-vertex
m-edge weighted graph G and a value k, produces an incremental
sparsifier Ĝ with n−1+m/k edges, such that the condition number
of G with Ĝ is bounded above by Õ(k log2 n), with probability
1− p. The algorithm runs in time

Õ((m logn+ n log2 n) log(1/p)).

As a result, we obtain an algorithm that on input of an n × n
symmetric diagonally dominant matrix A with m non-zero entries
and a vector b, computes a vector x satisfying ||x − A+b||A <
ε||A+b||A, in expected time

Õ(m log2 n log(1/ε)).

The solver is based on repeated applications of the incremental
sparsifier that produces a chain of graphs which is then used as
input to a recursive preconditioned Chebyshev iteration.

Keywords-algorithms; spectral graph theory; linear systems;
combinatorial preconditioning

I. INTRODUCTION

Fast algorithms for solving linear systems and the related
problem of finding a few fundamental eigenvectors is possi-
bly one of the most important problems in algorithm design.
It has motivated work on fast matrix multiplication methods,
graph separators, and more recently graph sparsifiers. For
most applications the matrix is sparse, and thus one would
like algorithms whose run time is efficient in terms of
the number of non-zero entries of the matrix. Little is
known about how to efficiently solve general sparse systems,
Ax = b. But substantial progress has been made in the
case of symmetric and diagonally dominant (SDD) systems,
where Aii ≥

∑
j 6=i |Aij |. In a seminal work, Spielman and

Teng showed that SDD systems can be solved in nearly-
linear time [1], [2], [3].

Recent research, largely motivated by the Spielman and
Teng solver (ST-solver), demonstrates the power of SDD
solvers as an algorithmic primitive. The ST-solver is the key
subroutine of the fastest known algorithms for a multitude
of problems that include: (i) Computing the first non-trivial
(Fiedler) eigenvector of the graph, or more generally the
first few eigenvectors, with well known applications to the
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sparsest-cut problem [4], [5], [6]; (ii) Generating spectral
sparsifiers that also act as cut-preserving sparsifiers [7]; (iii)
Solving linear systems derived from elliptic finite elements
discretizations of a significant class of partial differential
equations [8]. (iv) Generalized lossy flow problems [9]; (v)
Generating random spanning trees [10]; and (vi) Several
optimization problems in computer vision [11], [12] and
graphics [13], [14]; A more thorough discussion of appli-
cations of the solver can be found in [15], [16].

The ST-solver is an iterative algorithm that produces a
sequence of approximate solutions converging to the actual
solution of the input system Ax = b. The performance of
iterative methods is commonly measured in terms of the time
required to reduce an appropriately defined approximation
error by a constant factor. Even including recent improve-
ments on some of its components, the time complexity of
the ST-solver is at least O(m log15 n). The large exponent
in the logarithm is indicative of the fact that the algorithm
is quite complicated and lacks practicality. The design of a
faster and simpler solver is a challenging open question.

In this paper we present a conceptually simple and possi-
bly practical iterative solver that runs in time Õ(m log2 n)1.
Its main ingredient is a new incremental graph sparsification
algorithm, which is of independent interest. The paper is
organized as follows. In Section II we review basic notions
and we introduce notation. In Section III we discuss the
development of SDD solvers, the algorithmic questions it
motivates, and the progress on them, with an emphasis on
the graph sparsification problem. In Section IV we present a
high level description of our approach and discuss implica-
tions of our solver for the graph sparsification problem. The
incremental sparsifier is presented and analyzed in Sections
V and VI. In Section VII we explain how it can be used to
construct the solver.

II. PRELIMINARIES

In this Section we briefly recall background facts about
Laplacians of weighted graphs. For more details, we refer
the reader to [17] and [18]. Throughout the paper, we discuss
connected graphs with positive edge weights. We use n and
m to denote |V | and |E|.

1We use the Õ() notation to hide a factor of at most (log log n)4



A symmetric matrix A is positive semi-definite if for any
vector x, xTAx ≥ 0. For such semi-definite matrices A, we
can also define the A-norm of a vector x by

||x||2A = xTAx.

Fix an arbitrary numbering of the vertices and edges of a
graph G. Let wi,j denote the weight of the edge (i, j). The
Laplacian LG of G is the matrix defined by: (i) LG(i, j) =
−wi,j , (ii) LG(i, i) =

∑
i 6=j wi,j . For any vector x, one can

check that

xTLGx =
∑
u,v∈E

(xu − xv)2wuv.

It follows that LG is positive semi-definite and LG-norm
is a valid norm.

We also define a partial order � on symmetric semi-
definite matrices, where A � B if B − A is positive semi-
definite. This definition is equivalent to xTAx ≤ xTBx for
all x. We say that a graph H κ-approximates a graph G if

LH � LG � κLH .

By the definition of � from above, this relationship
is equivalent to xTLHx ≤ xTLGx ≤ κxTLHx for all
vectors x. This implies that the condition number of the pair
(LG, LH) is upper bounded by κ. The condition number
is an algebraically motivated notion; upper bounds on it are
used to predict the convergence rate of iterative numerical
algorithms.

III. PRIOR WORK ON SDD SOLVERS AND RELATED
GRAPH THEORETIC PROBLEMS

Symmetric diagonally dominant systems are linear-time
reducible to linear systems whose matrix is the Laplacian
of a weighted graph via a construction known as double
cover that only doubles the number of non-zero entries
in the system [19], [20]. The one-to-one correspondence
between graphs and their Laplacians allows us to focus on
weighted graphs, and interchangeably use the words graph
and Laplacian.

In a ground-breaking approach, Vaidya [21] proposed the
use of spectral graph-theoretic properties for the design
of provably good graph preconditioners, i.e. graphs that -
in some sense- approximate the input graph, but yet are
somehow easier to solve. Many authors built upon the ideas
of Vaidya, to develop combinatorial preconditioning, an area
on the border of numerical linear algebra and spectral graph
theory [22]. The work in the present paper as well as the
Spielman and Teng solver is based on this approach. It is
worth noting that combinatorial preconditioning is only one
of the rich connections between combinatorics and linear
algebra [6], [17].

Vaidya originally proposed the construction of a precon-
ditioner for a given graph, based on a maximum weight

spanning tree of the graph and its subsequent augmentation
with graph edges. This yielded the first non-trivial results, an
O((dn)1.75) time algorithm for maximum degree d graphs,
and an O((dn)1.2) algorithm for maximum degree d planar
graphs [23].

Later, Boman and Hendrickson [18] made the crucial
observation that the notion of stretch (see Section VI for a
definition) is crucial for the construction of a good spanning
tree preconditioner; they showed that if the non-tree edges
have average stretch s over a spanning tree, the spanning
tree is an O(sm)-approximation of the graph. Armed with
this observation and the low-stretch tree of Alon et al. [24],
Spielman and Teng [25] presented a solver running in time
O(m1.31).

The utility of low-stretch trees in SDD solvers motivated
further research on the topic. Elkin et al. [2] gave an
O(m log2 n) time algorithm for the computation of spanning
trees with total stretch Õ(m log2 n). More recently, Abraham
et. al. presented a nearly tight construction of low-stretch
trees [26], giving an O(m log n + n log2 n) time algorithm
that on input a graph G produces a spanning tree of
total stretch Õ(m log n). The algorithm of [2] is a basic
component of the ST-solver. While the algorithm of [26]
didn’t improve the ST-solver, it is indispensable to our upper
bound.

The major new notion introduced by Spielman and Teng
[1] in their nearly-linear time algorithm was that of a
spectral sparsifier, i.e. a graph with a nearly-linear number
of edges that α-approximates a given graph for a constant α.
Before the introduction of spectral sparsifiers, Benczúr and
Karger [27] had presented an O(m log3 n) algorithm for the
construction of a cut-preserving sparsifier with O(n log n)
edges. A good spectral sparsifier is a also a good cut-
preserving sparsifier, but the opposite is not necessarily true.

The ST-solver [1] consists of a number of major algo-
rithmic components. The base routine is a local partition-
ing algorithm which is the main subroutine of a global
nearly-linear time partitioning algorithm. The partitioning
algorithm is used as a subroutine in the construction of the
spectral sparsifier. Finally, the spectral sparsifier is combined
with the O(m log2 n) total stretch spanning trees of [2] to
produce a (k,O(k logc n)) ultrasparsifier, i.e. a graph Ĝ
with n− 1 + (n/k) edges which O(k logc n)-approximates
the given graph, for some c > 25. The bottleneck in the
complexity of the ST-solver lies in the running time of the
ultra-sparsification algorithm and the approximation quality
of the ultrasparsifier.

In the special case of planar graphs the ST-solver runs
in time Õ(n log2 n). An asymptotically optimal linear work
algorithm for planar graphs was given in [28]. The key ob-
servation in [28] was that despite the fact that planar graphs
don’t necessarily have spanning trees of average stretch less
than O(log n), they still have (k, ck log k) ultrasparsifiers for
a large enough constant c; they can be obtained by finding



ultrasparsifiers for constant size subgraphs that contain most
of the edges of the graph, and conceding the rest of the
edges in the global ultrasparsifier. In addition, a more prac-
tical approach to the construction of constant-approximation
preconditioners for the case of graphs of bounded average
degree was given in [29]. To this day, the only known
improvement for the general case was obtained by Andersen
et.al [30] who presented a faster and more effective local
partitioning routine that can replace the partition routine of
the spectral sparsifier, improving the complexity of the solver
as well.

Significant progress has been made on the spectral graph
sparsification problem. Spielman and Srivastava [7] showed
how to construct a much stronger spectral sparsifier with
O(n log n) edges, by sampling edges with probabilities pro-
portional to their effective resistance, if the graph is viewed
as an electrical network. While the algorithm is conceptually
simple and attractive, its fastest known implementation still
relies on the ST-solver. Leaving the envelope of nearly-
linear time algorithms Batson, Spielman and Srivastava [31]
presented a polynomial time algorithm for the construction
of a “twice-Ramanujan” spectral sparsifier with a nearly
optimal linear number of edges. Finally, Kolla et al. [32]
gave a polynomial time algorithm for the construction of a
nearly-optimal (k, Õ(k log n)) ultrasparsifier.

IV. OUR CONTRIBUTION

In an effort to design a faster sparsification algorithm, we
ask: when and why the much simpler faster cut-preserving
sparsifier of [27] fails to work as a spectral sparsifier?
Perhaps the essential example is that of the cycle and the line
graph; while the two graphs have roughly the same cuts, their
condition number is O(n). The missing edge has a stretch
of O(n) through the rest of the graph, and thus it has high
effective resistance; the effective resistance-based algorithm
of Spielman and Srivastava would have kept this edge. It is
then natural to try to design a sparsification algorithm that
avoids precisely to generate a graph whose “missing” edges
have a high stretch over the rest of the original graph.

This line of reasoning leads us to a conceptually simple
sparsification algorithm: Find a low-stretch spanning tree
with a total stretch of O(m log n). Scale it up by a factor
of k so the total stretch is O(m log n/k) and add the scaled
up version to the sparsifier. Then over-sample the rest of the
edges with probability proportional to their stretch over the
scaled up tree, taking Õ(m log2 n/k) samples. In Sections V
and VI we analyze a slight variation of this idea and we show
that while it doesn’t produce an ultrasparsifier, it produces
what we call an incremental sparsifier which is a graph with
n−1 +m/k edges that Õ(k log2 n)-approximates the given
graph 2. Our proof relies on the machinery developed by

2In the latest version of their paper [3], Spielman and Teng also construct
and use an incremental sparsifier, but they still use the term ultrasparsifier
for it.

Spielman and Srivastava [7].
As we explain in Section VII the incremental sparsifier is

all we need to design a solver that runs in the claimed time.
Precisely, we prove the following.

Theorem 4.1: On input an n × n symmetric diagonally
dominant matrix A with m non-zero entries and a vector
b, a vector x satisfying ||x − A+b||A < ε||A+b||A, can be
computed in expected time Õ(m log2 n log(1/ε)).

A. Implications for the graph sparsification problem

The only known nearly-linear time algorithm that pro-
duces a spectral sparsifier with O(n log n) edges is due to
Spielman and Srivastava [7] and it is based on O(log n)
calls to a SDD linear system solver. Our solver brings the
running time of the Spielman and Srivastava algorithm to
Õ(m log3 n). It is interesting that this algebraic approach
matches up to log log n factors the running time bound of the
purely combinatorial algorithm of Benczúr and Karger [27]
for the computation of the (much weaker) cut-preserving
sparsifier. We note however that an Õ(m+n log4 n) time cut-
preserving sparsification algorithm was recently announced
informally [33].

Sparsifying once with the Spielman and Srivastava al-
gorithm and then applying our incremental sparsifier gives
a (k,O(k log3 n)) ultrasparsifier that runs in Õ(m log3 n)
randomized time. Within the envelope of nearly-linear time
algorithms, this becomes the best known ultrasparsification
algorithm in terms of both its quality and its running time.
Our guarantee on the quality of the ultrasparsifier is off by
a factor of O(log2 n) comparing to the ultrasparsifier pre-
sented in [32]. In the special case where the input graph has
O(n) edges, our incremental sparsifier is a (k,O(k log2 n))
ultrasparsifier.

V. SPARSIFICATION BY OVERSAMPLING

In this section we revisit a sampling scheme proposed
by Spielman and Srivastava for sparsifying a graph [7].
Consider the following general sampling scheme:

SAMPLE

Input: Graph G = (V,E,w), p′ : E → R+, real ξ.
Output: Graph G′ = (V,E′, w′).

1: t :=
∑
e p
′
e

2: q := Cst log t log(1/ξ) (* CS is a known constant *)
3: pe := p′e/t
4: G′ := (V,E′, w′) with E′ = ∅
5: for q times do
6: Sample one e ∈ E with probability of picking e being pe.
7: Add e to E′ with weight w′

e = we/pe

8: end for
9: For all e ∈ E′, let we′ := we/q

10: return G′



Spielman and Srivastava pick p′e = weRe where Re
is the effective resistance of e in G, if G is viewed as
an electrical network with resistances 1/we. This choice
returns a spectral sparsifier. A key to bounding the number of
required samples is the identity

∑
e p
′
e = n− 1. Calculating

good approximations to the effective resistances seems to be
at least as hard as solving a system, but as we will see in
Section VI, it is easier to compute numbers p′e ≥ (weRe),
while still controlling the size of t =

∑
e p
′
e. The following

Theorem considers a sampling scheme based on p′e’s with
this property.

Theorem 5.1: (Oversampling) Let G = (V,E,w) be a
graph. Assuming that p′e ≥ weRe for each edge e ∈ E, and
ξ ∈ Ω(1/n), the graph G′ = SAMPLE(G, p′, ξ) satisfies

G � 2G′ � 3G

with probability at least 1− ξ.
The proof follows closely that Spielman and Srivastava

[7], with only a minor difference in one calculation. Let us
first review some necessary lemmas.

If we assign arbitrary orientations on the edges, then we
can define the incidence matrix Γ ∈ <m×n as follows:

Γe,u =

 −1 if u is the head of e
1 if u is the tail of e
0 otherwise

If we let W be the diagonal matrix containing edge
weights, then W 1/2 is a real positive diagonal matrix as
well since all edge weights are positive. The Laplacian L
can be written in terms of W and Γ as

L = ΓTWΓ = ΓTW 1/2W 1/2Γ.

Algorithm SAMPLE forms a new graph by multiplying
each edge e by a nonnegative number se. If S is the diagonal
matrix with S(e, e) = se, the Laplacian of the new graph
can be seen to be equal to

L̃ = ΓTWΓ = ΓTW 1/2SW 1/2Γ.

Let L+ denote the Moore-Penrose of L, i.e. the unique
matrix sharing with L its null space, and acting as the inverse
of L in its range. The key to the proofs of [7] is the m×m
matrix

Π = W 1/2ΓL+ΓTW 1/2,

for which the following lemmas are proved.
Lemma 5.2: (Lemma 3i in [7]) Π is a projection matrix,

i.e. Π2 = Π.
Lemma 5.3: (Lemma 4 in [7])

(1− ||ΠΠ−ΠSΠ||2)L � L̃ � (1 + ||ΠΠ−ΠSΠ||2)L.

We also use Lemma 5.4 below, which is Theorem 3.1 from
Rudelson and Vershynin [34]. The first part of the Lemma
was also used as Lemma 5 in [7] in a similar way.

Lemma 5.4: Let p be a probability distribution over Ω ⊆
Rd such that supy∈Ω ||y||2 ≤ M and ||Ep(yyT )||2 ≤ 1.
Let y1 . . . yq be independent samples drawn from p, and let
a = CM

√
log q/q. Then:

1)

E||1
q

q∑
i=1

yiy
T
i − E(yyT )||2 ≤ a.

2)

Pr[||1
q

q∑
i=1

yiy
T
i − E(yyT )||2 > x] ≤ 2e−cx

2/a2
.

Here C and c are fixed constants.
Proof: (of Theorem 5.1) Following the pseudocode of
SAMPLE, let t =

∑
e p
′
e and q = Cst log t log(1/ξ). It can

be seen that

ΠSΠ =
1
q

q∑
i=1

yiy
T
i ,

where the yi are drawn from the distribution

y =
1
√
pe

Π(·, e) with probability pe.

For the distribution y we have E(yyT ) = ΠΠ = Π. Since Π
is a projection matrix, we have ||Π||2 ≤ 1. So, the condition
imposed by Lemma 5.4 on the distribution holds for y. The
fact that Π is a projection matrix also gives

Π(:, e)TΠ(:, e) = (ΠΠ)(e, e) = Π(e, e),

which we use to bound M as follows.

M = sup
e

1
√
pe
||Π(:, e)||2 = sup

e

1
√
pe

√
Π(e, e)

= sup
e

√
t

p′e

√
weRe ≤

√
t. (5.1)

The last inequality follows from the assumption about the
p′e. Recall now that we have log(1/ξ) ≤ log n by assump-
tion, t ≥

∑
e weRe by construction, and

∑
e weRe = n− 1

by Lemma 3 in [7]. Combining these facts and setting
q = cSt log t log(1/ξ) for a proper constant cS , part 1 of
Lemma 5.4 gives

a ≤

√
4

c log(2/ξ)
.

Now substituting x = 1
2 into part 2 of Lemma 5.4, we get

Pr[||1
q

q∑
i=1

yiy
T
i − E(yyT )||2 > 1/2] ≤

2e−(c/4)/a2
≤ 2e(−c/4)/(4/c log 2/ξ) ≤ ξ.

It follows that with probability at least 1− ξ we have

||1
q

q∑
i=1

yiy
T
i − E(yyT )||2 ≤ 1/2,



which implies ||ΠSΠ − ΠΠ||2 ≤ 1/2. The theorem then
follows by Lemma 5.3.

Note. The upper bound for M in inequality 5.1 is in
fact the only place where our proof differs from that of
[7]. In their case the last inequality is replaced by an exact
inequality, which is possible because the exact values for
weRe are used. In our case, by using inexact values we get a
weaker upper bound which reflects in the density (depending
on m, not n) of the incremental sparsifier. It is however
enough for the solver.

VI. INCREMENTAL SPARSIFIER

Consider a spanning tree T of G = (V,E,w). Let
w′(e) = 1/w(e). If the unique path connecting the endpoints
of e consists of edges e1 . . . ek, the stretch of e by T is
defined to be

stretchT (e) =
∑k
i=1 w

′(ei)
w′(e)

.

Let Re denote the effective resistance of e in G and
RTe denote the effective resistance of e in T . We have
RTe =

∑k
i=1 1/w(ei). Thus stretchT (e) = weRTe. By

Rayleigh’s monotonicity law [35], we have RTe ≥ Re,
so stretchT (e) ≥ weRe. As the numbers stretchT (e)
satisfy the condition of Theorem 5.1, we can use them for
oversampling. But at the same time we want to control the
total stretch, as it will directly affect the total number of
samples required in SAMPLE. This leads to taking T to
be a low-stretch tree, with the guarantees provided by the
following result of Abraham, Bartal, and Neiman [26].

Theorem 6.1: (Corollary 6 in [26]) Given a graph G =
(V,E,w′), LOWSTRETCHTREE(G) in time O(m log n +
n log2 n), outputs a spanning tree T of G satisfying∑
e∈E = O(m log n · log log n3).
Our key idea is to scale up the low-stretch tree by a factor

of κ, incurring a condition number of κ but allowing us
to sample the non-tree edges aggressively using the upper
bounds on their effective resistances given by the tree. The
details are given in algorithm INCREMENTALSPARSIFY.

INCREMENTALSPARSIFY

Input: Graph G, reals κ, 0 < ξ < 1
Output: Graph H

1: T := LOWSTRETCHTREE(G)
2: Let T ′ be T scaled by a factor of κ
3: Let G′ be the graph obtained from G

by replacing T by T ′

4: for e ∈ E do
5: Calculate stretchT ′(e)
6: end for
7: H := SAMPLE(G′, stretchT ′ , 1/2ξ)
8: return 2H

Theorem 6.2: Given a graph G with n vertices, m edges
and any values κ < m, ξ ∈ Ω(1/n), INCREMENTALSPAR-
SIFY computes a graph H such that:
• G � H � 3κG
• H has n− 1 + Õ((m/κ) log2 n log(1/ξ)) edges,

with probability at least 1 − ξ. The algorithm runs in
Õ(m log n+ (n log2 n+m log3 n/κ) log(1/ξ)) time.
Proof: We first bound the condition number. Since the
weight of an edge is increased by at most a factor of κ, we
have G � G′ � κG. Furthermore, the effective resistance
along the tree of each non-tree edge decreases by a factor of
κ. Thus INCREMENTALSPARSIFY sets p′e = 1 if e ∈ T and
stretchT (e)/κ otherwise, and invokes SAMPLE to compute
a graph H such that with probability at least 1− ξ, we get

G � G′ � H � 3G′ � 3κG.

We next bound the number of non-tree edges. Let t′ =∑
e/∈T stretchT ′(e), so t′ = Õ((m/κ) log n). Then for the

number t used in SAMPLE we have t = t′ + n − 1 and
q = Cst log t log(1/ξ) is the number of edges sampled in
the call of SAMPLE. Let Xi be a random variable which is
1 if the ith edge picked by SAMPLE is a non-tree edge and
0 otherwise. The total number of non-tree edges sampled is
the random variable X =

∑q
i=1Xi, and its expected value

can be calculated using the fact Pr(Xi = 1) = t′/t:

E[X] = q
t′

t
= t′

Cst log t log(1/ξ)
κt

= Õ((m/κ) log2 n log(1/ξ)).

A standard form of Chernoff’s inequality is:

Pr[X > (1 + δ)E[X]] <
(

eδ

(1 + δ)(1+δ)

)E[X]

.

Letting δ = 2, and using the assumption k < m, we get
Pr(X > 3E[X]) < (e2/27)E[X] < 1/nc, for any constant
c. Hence, the probability that INCREMENTALSPARSIFY suc-
ceeds, with respect to both the number of non-tree edges and
the condition number, is at least 1− ξ.

We now consider the time complexity. We first generate
a low-stretch spanning tree in O(m log n + n log2 n) time.
We then compute the effective resistance of each non-tree
edge by the tree. This can be done using Tarjan’s off-
line LCA algorithm [36], which takes O(m) time [37].
We next call SAMPLE with parameters that make it
draw Õ((n+m/κ log n) log n log(1/ξ)) samples (precisely,
O(t log t log(1/ξ)) samples where t = Õ(n + m/κ log n).
To compute each sample efficiently, we assign each edge an
interval on the unit interval [0, 1] with length corresponding
to its probability, so that no two intervals overlap. At each
sampling iteration we pick a random value in [0, 1] and do
a binary search in order to find the interval that contains it
in O(log n) time. Thus the cost of a call to SAMPLE is
Õ((n log2 n+m/κ log3 n) log(1/ξ)).



VII. SOLVING USING INCREMENTAL SPARSIFIERS

The solver of Spielman and Teng [3] consists of two
phases. The preconditioning phase builds a chain of progres-
sively smaller graphs C = {A1, B1, A2, . . . , Ad} starting
with A1 = A. The process for building C alternates between
calls to a sparsification routine ULTRASPARSIFY which
constructs Bi from Ai and a routine GREEDYELIMINATION
(following below) which constructs Ai+1 from Bi. The
preconditioning phase is independent from the b-side of the
system LAx = b.

GREEDYELIMINATION

Input: Weighted graph G = (V,E,w)
Output: Weighted graph Ĝ = (V̂ , Ê, ŵ)

1: Ĝ := G
2: repeat
3: greedily remove all degree-1 nodes from Ĝ
4: if degĜ(v) = 2 and (v, u1), (v, u2) ∈ EĜ then
5: w′ := w(u1, v)w(u2, v)/ (w(u1, v) + w(u2, v))
6: replace (u1, v, u2) by an edge of weight w′ in Ĝ
7: end if
8: until there are no nodes of degree 1 or 2 in Ĝ
9: return Ĝ

The solve phase passes C, b and a number of iterations
t (depending on a desired error ε) to the recursive precon-
ditioning algorithm R-P-CHEBYSHEV, described in Section
IX. The time complexity of the solve phase depends on ε,
but more crucially on the quality of C, which is a function
of the sparsifier quality.

Definition 7.1 (κ(n)-good chain): Let κ(n) be a mono-
tonically non-decreasing function of n. Let C = {A =
A1, B1, A2, . . . , Ad} be a chain of graphs, and denote by ni
and mi the numbers of nodes and edges of Ai respectively.
We say that C is κ(n)-good for A, if:

1) Ai � Bi � κ(ni)Ai.
2) Ai+1 = GREEDYELIMINATION(Bi).
3) mi/mi+1 ≥ cr

√
κ(ni), for some constant cr.

Spielman and Teng analyzed a recursive preconditioned
Chebyshev iteration and showed that a κ(n)-good chain for
A can be used to solve a system on LA. This is captured by
the following Lemma, adapted from Theorem 5.5 in [3].

Lemma 7.2: Given a κ(n)-good chain for A, a vector x
such that ||x − L+

Ab||A < ε||L+
Ab||A can be computed in

O(m3
dm1

√
κ(n1) log(1/ε)) expected time.

For our solver, we follow the approach of Spielman and
Teng. The main difference is that we replace their routine
ULTRASPARSIFY with our routine INCREMENTALSPAR-
SIFY, which is not only faster but also constructs a better
chain which translates into a faster solve phase. We are now
ready to state our algorithm for building the chain. In what

follows we write v := O(g(ni)) to mean ‘v := f(ni) for
some explicitly known function f(n) ∈ O(g(n))’.

BUILDCHAIN

Input: Graph A, scalar p with 0 < p < 1
Output: Chain of graphs C = {A = A1, B1, A2, . . . , Ad}

1: A1 := A
2: C := ∅
3: while mi > (log log n)1/3 do
4: if mi > log n then
5: ξ := log n
6: else
7: ξ := log log n
8: end if
9: κ := Õ(log4 ni log(1/p))

10: Bi := INCREMENTALSPARSIFY(Ai, κ, p/(2ξ))
11: Ai+1 := GREEDYELIMINATION(Bi)
12: if mi/mi+1 < cr

√
3κ then

13: return FAILURE
14: end if
15: C = C ∪ {Ai, Bi}
16: i := i+ 1
17: end while
18: return C

Lemma 7.3: Given a graph A, BUILDCHAIN(A,P) pro-
duces an Õ(log4 n)-good chain for A, with probability at
least 1− p. The algorithm runs in time

Õ((m log n+ n log2 n) log(1/p)).

Proof: Assume that Bi has ni − 1 + mi/k
′ edges. A

key property of GREEDYELIMINATION is that if G is a
graph with n − 1 + j edges, GREEDYELIMINATION(G)
has at most 2j − 2 vertices and 3j − 3 edges [3]. Hence
GREEDYELIMINATION(Bi) has at most 3mi/k

′ edges. It
follows that mi/mi+1 ≥ k′/3. Then, in order to satisfy the
second requirement, we must have Ai � Bi � c′k′2Ai, for
some sufficiently small constant c′.

However, we also know that the call to INCREMEN-
TALSPARSIFY returns an incremental sparsifier Bi that 3κ-
approximates Ai. So it is necessary that c′k′2 > 3κ.
Moreover, Bi has ni−1+ Õ(mi log2 n/κ) edges, a number
which we assumed is equal to ni − 1 + mi/k

′. The value
assigned to κ by the algorithm is taken to be the minimum
that satisfies these two conditions.

The probability that Bi has the above properties is by
construction at least 1 − p/(2 log n) if ni > log n and
1 − p/(2 log log n) otherwise. The probability that the re-
quirements hold for all i is then at least

(1− p/(2 log n))logn(1− p/(2 log log n))log logn

> (1− p/2)2 > 1− p.



Finally note that each call to INCREMENTALSPARSIFY
takes Õ((mi log2 n) log(1/p)) time. Since mi decreases
faster than geometrically with i, the claim about the running
time follows.

Combining Lemmas 7.2 and 7.3 proves our main Theo-
rem.

Theorem 7.4: On input an n × n symmetric diagonally
dominant matrix A with m non-zero entries and a vector
b, a vector x satisfying ||x − A+b||A < ε||A+b||A, can be
computed in expected time Õ(m log2 n log(1/ε)).

VIII. COMMENTS / EXTENSIONS

Unraveling the analysis of our bound for the condition
number of the incremental sparsifier, it can been that one
log n factor is due to the number of samples required by the
Rudelson and Vershynin theorem. The second log n factor
is due to the average stretch of the low-stretch tree.

It is quite possible that the low-stretch construction and
perhaps the associated lower bound can be bypassed -at least
for some graphs- by a simpler approach similar to that of
[28]. Consider for example the case of unweighted graphs.
With a simple ball-growing procedure we can concede in our
incremental sparsifier a 1/ log n fraction of the edges, while
keeping within clusters of diameters O(log2 n) the rest of
the edges. The design of low-stretch trees may be simplified
within the small diameter clusters. This diameter-restricted
local sparsification is a natural idea to pursue, at least in an
actual implementation of the algorithm.

IX. APPENDIX: THE COMPLETE SOLVER

The purpose of this section is to provide a few more
algebraic details about the chain of preconditioners, and the
recursive preconditioned Chebyshev method which consists
the solve phase of the solver. The material is not new and we
include it only for completeness. We focus on pseudocode.
We refer the reader to [3] or a longer version of this paper
[38] for a more detailed exposition along with proofs.

Direct methods - Cholesky factorization. If A is a sym-
metric and positive definite (SPD) matrix, it can be written
in the form A = LLT , a product known as the Cholesky
factorization of A. This extends to Laplacians, with some
care for the null space. The Cholesky factorization can be
computed via a symmetric version of Gaussian elimination.
Given the decomposition, solving the systems Ly = b and
LTx = y yields the solution to the system Ax = b;
the key here is that solving with L and LT can be done
easily via forward and back substitution. A partial Cholesky
factorization with respect to the first k variables of A, puts
it into the form

A = L

(
Ik 0
0 Ak

)
LT (9.2)

where Ik denotes the k × k identity matrix, and Ak is
known as the Schur complement of A with respect to the

elimination of the k first variables. The matrix Ak+1 is the
Schur complement of Ak with respect the the elimination of
its first variable.

Given a matrix A, the graph GA of A is defined by
identifying the vertices of GA with the rows and columns of
A and letting the edges of GA encode the non-zero structure
of A in the obvious way.

It is instructive to take a graph-theoretic look at the partial
Cholesky factorization when k = 1. In this case, the graph
GA1 contains a clique on the neighbors of the first node in
GA. In addition, the first column of L is non-zero on the
corresponding coordinates. This problem is known as fill.
It then becomes obvious that the complexity of computing
the Cholesky factorization depends crucially on the ordering
of A. Roughly speaking, a good ordering has the property
that the degrees of the top nodes of A,A1, A2, . . . , Ak are
as small as possible. The best known algorithm for positive
definite systems of planar structure runs in time O(n1.5) and
it is based on the computation of good orderings via nested
dissection [39], [40], [41].

There are two fairly simple but important facts consid-
ering the partial Cholesky factorization of equality 9.2 [3].
First, if the top nodes of A,A1, . . . , Ak−1 have degrees 1 or
2, then back-substitution with L requires only O(n) time.
Second, if A is a Laplacian, then Ak is a Laplacian. Such
an ordering and the corresponding Laplacian Ak can be
found in linear time via GREEDYELIMINATION, described
in Section VII. The corresponding factor L can also be
computed easily.

Iterative methods. Unless the system matrix is very
special, direct methods do not yield nearly-linear time
algorithms. For example, the nested dissection algorithm
is known to be asymptotically optimal for the class of
planar SPD systems, within the envelope of direct methods.
Iterative methods work around the fill problem by producing
a sequence of approximate solutions using only matrix-
vector multiplications and simple vector-vector operations.
For example Richardson’s iteration generates an approxi-
mate solution xi+1 from xi, by letting

xi+1 = (I −A)xi + b.

The solver in this paper, as well as the Spielman and Teng
solver [3], are based on the very well studied Chebyshev
iteration [42]. The preconditioned Chebyshev iteration (P-
CHEBYSHEV) is the Chebyshev iteration applied to the
system B+Ax = B+b, where A,B are SPD matrices, and
B is known as the preconditioner. The preconditioner B
needs not be explicitly known. The iteration requires matrix-
vector products with A and B+. A product of the form
B+1z is equivalent to solving the system By = c. Therefore
(P-CHEBYSHEV) requires access to only a function fB(c)
returning B+1c. In addition it requires a lower bound λmin

on the minimum eigenvalue of (A,B) and an upper bound
λmax on the maximum generalized eigenvalue of (A,B).



P-CHEBYSHEV
Input: SPD matrix A, vector b, number of iterations t,
preconditioner fB(z), λmin, λmax
Output: approximate solution x for Ax = b

x := 0
r := b
d := (λmax + λmin)/2
c := (λmax − λmin)/2
for i = 1 to t do
z := fB(r)
if i = 1 then
x := z
α := 2/d

else
β := (cα/2)2

α := 1/(d− β)
x := z + βx

end if
x := x+ αx
r := b−Ax

end for
return x

A well known fact about the Chebyshev method is that
after O(

√
λmax/λmin log 1/ε) iterations the return vector x

satisfies ‖x−A+b‖A ≤ ε ‖A+b‖A [42].

Hybrid methods. One of the key ideas in Vaidya’s
approach was to combine direct and iterative methods into a
hybrid method by exploiting properties of Laplacians. [21].
For the rest of this section we will identify graphs and their
Laplacians, using their natural 1-1 correspondence.

Let A1 be a Laplacian. The incremental sparsifier B1 of
A1 is a natural choice as preconditioner. With proper in-
put parameters, INCREMENTALSPARSIFY returns a B1 that
contains enough degree 1 and 2 nodes, so that GREEDYE-
LIMINATION can make enough progress reducing B1 to a
matrix of the form

B1 = L1

(
I 0
0 A2

)
LT1 ,

where A2 is the output of algorithm GREEDYELIMINATION.
Let Ij denote the identity of dimension j and

Π1 =
(

0 Idim(A2)

)
Q1 =

(
Idim(A1)−dim(A2) 0

)
.

Recall that P-CHEBYSHEV requires the solution of By = c,
which is given by

y = L−T1

(
Q1L

−1
1 c

A+
1 Π1L

−1
1 c

)
.

The two matrix-vector products with L−1
1 , L−T1 can be

computed in time O(n) via forward and back substitu-

tion. Therefore, we can solve a system in B by solving
a linear system in A2 and performing O(n) additional
work. Naturally, in order to solve systems on A2 we can
recursively apply preconditioned Chebyshev iterations on it,
with a new preconditioner B2. This defines a precondition-
ing chain C that consists of progressively smaller graphs
A = A1, B1, A2, B2, . . . , Ad, along with the corresponding
matrices Li,Πi, Qi for 1 ≤ i ≤ d−1. So, to be more precise
than in Section VII, routine BUILDCHAIN has the following
specifications.

BUILDCHAIN

Input: Graph A, scalar p with 0 < p < 1
Output: Chain C = {{Ai, Bi, Li,Πi, Qi}d−1

i−1 , Ad}

We are now ready to give pseudocode for the recursive
preconditioned Chebyshev iteration.

R-P-CHEBYSHEV
Input: Chain C, level i, vector b, number of iterations t
Output: Approximate solution x for Aix = b

1: if i = d for some fixed d then
2: return A+

i b
3: else
4: κ := κ(Ai, Bi)
5: Define function fi(z):
6: t′ := d1.33

√
κe

7: z′ := L−1
i z

8: z′′1 := Qiz
′

9: z′′2 := R-P-CHEBYSHEV(C, i+ 1,Πiz
′, t′)

10: fi(z)← L−Ti [z′′1 z′′2 ]T

11: l := 1− 2e−2

12: u := (1 + 2e−2)κ
13: x :=P-CHEBYSHEV(Ai, b, t, fi(z), l, u)
14: return x
15: end if

The complete solver. Finally, the pseudocode for the
complete solver is as follows.

SOLVE
Input: Laplacian LA, vector b, error ε, failure probability p
Output: Approximate solution x

C := BUILDCHAIN(A, p)
x := R-P-CHEBYSHEV(C, 1, b, Õ(log2 n log(1/ε))
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