3D-Structural Homology Detection via Unassigned Residual Dipolar Couplings

Christopher J. Langmead
Dartmouth College

Bruce Randall Donald
Dartmouth College

Follow this and additional works at: http://repository.cmu.edu/compsci
3D-Structural Homology Detection via
Unassigned Residual Dipolar Couplings

Christopher James Langmead∗ Bruce Randall Donald∗,‡,§,¶

January 6, 2003

Abstract

Recognition of a protein’s fold provides valuable information about its function. While many sequence-based homology prediction methods exist, an important challenge remains: two highly dissimilar sequences can have similar folds — how can we detect this rapidly, in the context of structural genomics? High-throughput NMR experiments, coupled with novel algorithms for data analysis, can address this challenge. We report an automated procedure for detecting 3D-structural homologies from sparse, unassigned protein NMR data.

Our method identifies the 3D-structural models in a protein structural database whose geometries best fit the unassigned experimental NMR data. It does not use sequence information and is thus not limited by sequence homology. The method can also be used to confirm or refute structural predictions made by other techniques such as protein threading or sequence homology. The algorithm runs in \(O(pnk^3)\) time, where \(p\) is the number of proteins in the database, \(n\) is the number of residues in the target protein, and \(k\) is the resolution of a rotation search. The method requires only uniform \(^{15}\text{N}\)-labelling of the protein and processes unassigned \(^{15}\text{N}\)-\(^{15}\text{N}\) residual dipolar couplings, which can be acquired in a couple of hours. Our experiments on NMR data from 5 different proteins demonstrate that the method identifies closely related protein folds, despite low-sequence homology between the target protein and the computed model.

DARTMOUTH COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT NO: TR2003-439
http://www.cs.dartmouth.edu/reports/reports.html

Abbreviations used: NMR, nuclear magnetic resonance; RDC, residual dipolar coupling; DOF, degrees of freedom; 3D, three-dimensional; HSQC, heteronuclear single-quantum coherence; \(^{1}\text{H}\), amide proton; SAR, structure activity relation; \(SO(3)\), special orthogonal (rotation) group in 3D.
1 Introduction

Current efforts in structural genomics are expected to determine experimentally many more protein structures, thereby populating the “space of protein structures” more densely. However, the rate at which new fold families are discovered is decreasing. Thus, the structures of many proteins that have not yet been determined experimentally will likely fall into one of the existing families. Sequence homology can be used to predict a protein’s fold, yielding important clues as to its function. However, it is possible for two dissimilar amino acid sequences to fold to the “same” tertiary structure. For example, the RMSD between the human ubiquitin structure (PDB Id 1D3Z) and the structure of the Ubx Domain from human FaI (PDB Id 1H8C) is quite small (1.9 Å), yet they have only 16% sequence identity. Detecting structural homology given low sequence identity poses a difficult challenge for sequence-based homology predictors. We ask: is there a set of very fast, cheap experiments that can be analyzed to rapidly compute 3D structural homology?

This paper presents a new method for homology detection, called GD, that takes advantage of high-throughput solution-state NMR. In particular, GD uses a class of NMR experiments that record backbone H\textsubscript{N}-15N Residual Dipolar Couplings (RDCs). H\textsubscript{N}-15N RDCs measure the global orientation of the backbone amide bond vector for each amino acid in the primary sequence (except prolines). RDCs can be recorded in a short amount of time, typically in under an hour. The method correlates the experimentally-measured backbone H\textsubscript{N}-15N bond orientations with the backbone H\textsubscript{N}-15N bonds in a putative homologous structure. In this way, GD can detect structural homologies from remote amino acid sequences.

Previous algorithms for identifying homologous structures using RDCs [4, 1] require resonance assignments beforehand. That is, they assume one has established the correspondence between each RDC \(D_i\) and the correct residue \(j\) in the primary sequence. Unfortunately, establishing this mapping is one of the key bottlenecks in NMR structural biology, requiring relatively expensive isotopic labelling, a variety of time-consuming triple-resonance experiments, and a combination of manual and only partially-automated computational analyses [48], typically entailing a non-trivial number of human-operator decisions and judgments. Our method, in contrast, is completely automated, and does not require resonance assignments. That is, it works on unassigned NMR data, thereby dramatically reducing the amount of experimental and computational time and effort required to identify homologies. The NMR spectra we use can be acquired in 1-2 hours, and we also require only \(15N\)-isotopic labelling, which is an order of magnitude cheaper than the \(15N/13C\) double labelling usually required for assignments.

GD also has other applications. It may be used in conjunction with techniques such as protein threading [30, 47], and computational homology modelling [9, 18, 21, 26, 38], providing experimental validation of the computational predictions. Furthermore, GD can also be used to bootstrap the resonance assignment process by selecting models for structure-based resonance assignment methods [2, 25, 29]. These assignments, in turn, enable detailed studies of protein-protein interactions [19] (via chemical shift mapping [10]), protein-ligand binding (via SAR by NMR [42] or line-broadening analysis [17]), and dynamics (via, e.g., nuclear spin relaxation analysis [34]).

GD is demonstrated on NMR data from 5 proteins against a database of over 2,400 representative folds determined either by x-ray crystallography or by NMR. The method correctly identifies...
both the native folds and homologous structures.

1.1 Organization of paper
We begin, in Section 2, with a review of the specific NMR experiments used in our method, highlighting their information content. Section 3 describes existing applications of residual dipolar couplings, including homology detection. In section 4, we detail our algorithm and analyze its computational complexity. Section 5 presents the results of the application of GD on real biological NMR data. Finally, section 6 discusses these results.

2 Background
H15N-RDCs can be obtained experimentally by recording a H15N Heteronuclear Single-Quantum Coherence (HSQC) spectrum of the target protein in the dilute liquid crystalline phase with the 15N decoupling turned off. For each RDC D_i, we have

$$D = D_{\text{max}}v^T Sv, \quad (1)$$

where D_{max} is a constant, v is the internuclear bond vector orientation relative to an arbitrary coordinate frame, and S is the 3×3 Saupe order matrix [39]. S is a symmetric, traceless, rank 2 tensor with 5 degrees of freedom. S describes the average substructure alignment of the molecule. The measurement of five or more assigned RDCs and their associated bond vector orientations can be used to solve for S using singular value decomposition (SVD) [31]. Once S is determined, RDCs for other residues may be simulated (back-calculated) given any other internuclear bond vector v_j. In particular, suppose an (H15N) peak i in an H15N HSQC spectrum is assigned to residue j of a protein, whose crystal structure is known. Let D_i be the measured RDC value corresponding to this peak. Then the RDC D_i is assigned to amide bond vector v_j, and we should expect that $D_i \approx D_{\text{max}}v_j^T Sv_j \mod$ (modulo noise, dynamics, crystal contacts in the structural model, etc).

In the proposed method, the RDCs are unassigned and the geometry of the protein is unknown. Thus, S cannot be determined explicitly using SVD. We will show, however, that for any given 3D structural model m, a unique Saupe matrix, S_m, can be estimated. S_m can, in turn, be used to generate a set of back-calculated RDCs using Eq. (1). Without resonance assignments it is not possible to compare an individual bond’s predicted RDC to its corresponding experimentally measured RDC. However, the distribution of experimentally determined RDC values may be compared to the distribution of back-computed RDCs from a given model. The key idea of our algorithm is that a model which is homologous to the target protein will generate a distribution of RDCs that is similar to the distribution of experimentally determined RDCs. In this way, one can identify homologous structures by comparing distributions of RDCs.

3 Prior Work
Previous applications of assigned RDCs include, structure refinement [12] and structure determination [24, 3, 45, 20, 37, 32, 16]. Assigned RDCs have also been used for homology detection [1, 4]. Unassigned RDCs have been used to expedite resonance assignments [49, 43, 2, 25]. These methods require 13C-labelling and RDCs from several different bonds (for example, 13C′-15N, 13C′-HN, 13C\alpha-H\alpha, etc.). Donald and co-workers [29] have recently introduced a resonance assignment method, called Nuclear Vector Replacement, that requires only amide bond vector RDCs, no triple-resonance experiments, and no 13C-labelling. In this paper, we extend some of the key techniques
developed in [29] for a new application — homology detection. From a computational standpoint, GD adopts a minimalist approach [5], demonstrating the large amount of information available in a few key spectra. By eliminating the need for triple resonance experiments, our method saves many days of spectrometer time. Consequently, homology comparison can be made without resorting to full NMR-based structure calculation.

4 Algorithm

The experimental inputs to GD are backbone H$_N^1$H$_{15}^N$ Residual Dipolar Couplings (RDCs) [44] recorded in two different aligning media†. Proteins align differently in different media, yielding two different alignment tensors. The use of multiple tensors for interpreting RDCs is a standard technique. The total data acquisition time is approximately 2 hours. We record two RDCs (one in each of two aligning media) for each backbone amide bond vector in the protein (modulo missing data). The secondary structure for each target protein was predicted from its primary sequence using the program JPRED [14]. The native fold was not used to estimate secondary structure. The percentage of predicted α and β secondary structure (from JPRED) and the length of the target protein are also used as input to GD.

We have assembled a database of 2,456 structural models from the Protein Data Bank (PDB [8]) representing a variety of different fold-families. Protons were added to the x-ray models using the Protonate module from the program AMBER [35]. Next, the backbone amide bond vectors were extracted from each model. Finally, the length of the primary sequence and percentage of α and β secondary structure were extracted for each protein in the database.

An alignment tensor is a symmetric and traceless 3×3 matrix with five degrees of freedom. The five degrees of freedom correspond to three Euler angles (α, β and γ), describing the average partial alignment of the protein, and the axial (D_a) and rhombic (D_r) components of the tensor. When resonance assignments and the structure of the macromolecule are known, all five parameters can be computed by solving a system of linear equations [31]. If the resonance assignments are not known, as in our case, these parameters must be estimated. It has been shown [31] that D_a and D_r can be decoupled from the Euler angles by diagonalizing the alignment tensor:

$$S = V \Sigma V^T \tag{2}$$

Here, $V \in SO(3)$ is a 3×3 rotation matrix† that defines a coordinate system called the principal order frame. Σ is a 3×3 diagonal and traceless matrix containing the eigenvalues of S. The diagonal elements of Σ encode D_a and D_r: $D_a = \frac{S_{zz}}{2}, D_r = \frac{S_{xx} - S_{yy}}{3}$ where $S_{yy} < S_{xx} < S_{zz}$. S_{yy}, S_{xx} and S_{zz} are the diagonal elements of Σ and therefore the eigenvalues of S. It has been shown that D_a and D_r can be estimated, using only unassigned experimentally recorded RDCs, by the powder pattern method [45]. The axial and rhombic components of the tensor can be computed in time $O(nk^2)$, where n is the number of observed RDCs and k is the resolution of the search-grid over D_a and D_r.

Once the axial and rhombic components have been estimated, matrix Σ in Eq. (2) can be constructed using the relationship [31, 45] between the D_a and D_r and the diagonal elements of

†As per the data we processed [13, 28, 40, 36, 15], GD has been tested on bicelle and phage aligning media. The method, however, would work on residual dipolar couplings recorded in other media as well (e.g., stretched polyacrylamide gels [11]).

‡While any representation of rotations may be employed, we use Euler angles (α, β, γ).
Next, the Euler angles α, β and γ of the principal order frame are estimated by considering rotations of the model. Given Σ (Eq. 2), for each rotation $V(\alpha, \beta, \gamma)$ of the model, a new Saupe matrix S is computed using Eq. (2). That matrix S is used to compute a set of back-computed RDCs using the amide bond vectors extracted from the model and Eq. (1). The relative entropy, also known as the Kullback-Leibler distance [27], is computed between the histogram of the observed RDCs and the histogram of the back-computed RDCs. The relative entropy formula is given by $KL(f, f') = \sum_{i=1}^{m} f_i \ln(f_i/f'_i)$. The rotation of the model that minimizes the relative entropy is chosen as the estimate for the Euler angles. The comparison of distributions to evaluate Euler angles is conceptually related to the premise used by the powder pattern method [45] to estimate the axial and rhombic components of the tensor. In the powder pattern method, the observed RDCs are implicitly compared to a distribution of RDCs generated by a uniform distribution of bond vectors. When estimating the Euler angles, GD explicitly compares the distributions using a relative entropy measure. Intuitively, the correct rotation of the model will generate a distribution of unassigned RDCs that is similar to the unassigned distribution of experimentally measured RDCs.

The rotation search takes $O(nk^3)$ time for n residues on a $k \times k \times k$ grid. Thus, we can estimate alignment tensors in $O(nk^3)$ time. In practice, it takes about a minute to estimate the alignment tensor for a given medium on a Pentium 4 class processor. Thus, for p protein models in the database, the total runtime is $O(pk^3)$. Each model can be processed independently and thus the computation can be run in parallel on a cluster of machines. Further performance enhancements can be obtained by restricting the search to models that have similar lengths, or α/β mixtures. Intuitively, a model that is significantly larger/smaller, or has radically different percentages of α/β secondary structure than the target protein is less likely to have a significant structural homology. If a homology prediction has been made using protein threading or homology modelling, one need not search the entire database. Rather, these predictions can be evaluated for how well they fit the experimental data using the same method.

Finally, each model is assigned a score. Let $\Delta_\alpha = |\alpha_t - \alpha_m|$ and $\Delta_\beta = |\beta_t - \beta_m|$, where α_t and β_t are the predicted percentages of α and β structure for the target protein, t, and α_m and β_m are the actual percentages of α and β structure taken from the model, m. Let Δ_l be the difference in length between t and m. Finally, let KL_1 and KL_2 be the Kullback-Leibler distances of the two tensor estimates. A model’s score is computed as follows:

$$I_m = \Delta_\alpha + \Delta_\beta + \Delta_l + KL_1 + KL_2.$$

(3)

Each model is then ranked according to its score.

4.1 Improved Algorithm

We now show how the rotation minimizing the Kullback-Leibler distance can be computed in polynomial time (without a grid search) using the first-order theory of real-closed fields [22, 23, 7, 6]. Hence the $O(nk^3)$ discrete-grid rotation search can be replaced by a combinatorially precise algorithm, eliminating all dependence of the rotation search upon the resolution k.

Suppose two variables of the same type are characterized by their probability distributions f and f'. The relative entropy formula is given by $KL(f, f') = \sum_{i=1}^{m} f_i \ln(f_i/f'_i)$, where m is the number of levels of the variables. We will use a polynomial approximation to $\ln(\cdot)$. Let us represent rotations by unit quaternions, and use the substitution $u = \tan(\theta/2)$ to ‘rationalize’
the equations using rotations, thereby yielding purely algebraic (polynomial) equations. Let V be such a rotation (quaternion), D be the unassigned experimentally-measured RDCs, E be the set of model NH vectors and $B(V)$ be the set of unassigned, back-computed RDCs (parameterized by V). Hence, from Eqs. (1,2), $B(V) = E^T \Sigma E = (E^T V^T \Sigma V) E = \{ w^T (V^T \Sigma V) w \mid w \in E \}$.

(We have ignored D_{max} here for the simplicity of exposition). We wish to compute

$$\arg\min_{V \in S^3} KL(D, B(V))$$

(4)

(We use the unit 3-sphere S^3 instead of $SO(3)$, since the quaternions are a double-covering of rotation space). Eq. (4) can be transformed into a sentence in the language of semi-algebraic sets (the first order theory of real closed fields):

$$\exists V_0 \in S^3, \forall V \in S^3 : KL(D, B(V_0)) \leq KL(D, B(V)).$$

(5)

S^3 and $SO(3)$ are semi-algebraic sets, and Eq. (5) is a polynomial inequality with bounded quantifier alternation ($a = 1$). The number of DOF (the number of variables) is constant ($r = 3$ DOF for rotations), and the size of the equations is $O(n)$. Hence Eq. (5) can be decided exactly, in polynomial time, using the theory of real-closed fields. We will use Grigor’ev’s algorithm [22, 23] for deciding a Tarski sentence, which is singly-exponential in the number of variables, and doubly-exponential only in the number of quantifier alternations. The time complexity of Grigor’ev’s algorithm is $n^{O(r)^{a-2}}$, which in our case ($a = 1$, $r = 3$) reduces to $n^{O(1)}$ which is polynomial time.

5 Results and Discussion

RDCs in two media were obtained for five different proteins; the 76-residue human ubiquitin (PDB Id 1D3Z [13]), the 56-residue streptococcal protein G (SPG) (PDB Id 3GB1 [28]), the 129-residue hen lysozyme (PDB Id 1E8L [40]), the 81-residue DNA-Damage-Inducible Protein I (Dini) (PDB Id 1GHH [36]), and the 152-residue Galpha Interacting Protein (Gaip) (PDB Id 1CMZ [15]). Using the program CE [41], 5 structural homologs were identified for each protein. These homologous structures have low sequence identity to the target protein (Table 1). The five test proteins and their structural homologs were added to the database prior to the experiment.

As shown in Table 1, GD identifies both the native structure and its structural homologs. The native structure and its 5 structural homologs are highly ranked among the 2,456 proteins in the structural database. In all but one case, the native fold is the top ranked model. The one exception, 1GHH, was due to the fact that the secondary structure prediction for that protein was inaccurate. This highlights a certain sensitivity to the quality of the secondary structure prediction. One could imagine supplementing the prediction with circular dichroism (CD) data to address this issue. While it is not unexpected that the native fold is often the top ranked model, it is noteworthy that the homology detection is done without any comparison of primary sequence.

The overall rankings of the 5 selected homologs are also good. Lysozyme (1E8L) does the best, with the native structure and 5 homologous structures occupying the top 6 places. Once again, the homologs for 1GHH do comparatively worse than those of the other proteins. This is due to both the inaccuracy of the secondary structure prediction and the relatively low similarity between 1GHH and its 5 homologs (1DHM, 1DT4, 1DV5, 1KDX and 1QR5). Note that the average RMSD between 1GHH and its homologs is 3.4 Å, while the average RMSDs between 1CMZ, 1D3Z, 1E8L and 3GB1 and their respective homologs are 1.9, 1.5, 1.8, and 2.2 Å, respectively. A subsequent
Table 1: Test Proteins and Results The sequence identity and RMSD of the five test proteins and their respective five homologs. The final column is the rank of that model, based on the score computed by GD.

<table>
<thead>
<tr>
<th>PDB ID</th>
<th>Homolog</th>
<th>Sequence Identity</th>
<th>RMSD</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1CMZ</td>
<td>1FQI</td>
<td>100%</td>
<td>0Å</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1FQJ</td>
<td>37.8%</td>
<td>1.9Å</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1DK8</td>
<td>38.2%</td>
<td>1.8Å</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1EZT</td>
<td>28.7%</td>
<td>1.9Å</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1FKQ</td>
<td>44.9%</td>
<td>2.0Å</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>1DK8</td>
<td>38.6%</td>
<td>1.8Å</td>
<td>49</td>
</tr>
<tr>
<td>1D3Z</td>
<td>1NDD</td>
<td>100%</td>
<td>0Å</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1BT0</td>
<td>55.6%</td>
<td>0.6Å</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1H8C</td>
<td>61.0%</td>
<td>0.7Å</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1GUA</td>
<td>15.7%</td>
<td>1.9Å</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1C1Y</td>
<td>11.6%</td>
<td>2.1Å</td>
<td>19</td>
</tr>
</tbody>
</table>

Table of 1GHH with the program CE revealed that there are no significant homologs for 1GHH in the PDB for proteins of its size. In particular, the CE significance scores computed between the 5 homologs and 1GHH are marginal. Thus, while these 5 proteins have the lowest RMSD to 1GHH of any others in the PDB, they are not necessarily related to 1GHH. This suggests that GD works best when there is a close homolog in the database.

Figure 1 contains scatter plots of the results. For all 5 proteins, the scores associated with the native fold and the 5 homologs are statistically significantly lower than the scores of unrelated proteins (p-values of $2.6 \times 10^{-5}, 2.6 \times 10^{-5}, 4.2 \times 10^{-5}, 2.3 \times 10^{-5}$, and 2.9×10^{-5} for 1CMZ, 1D3Z, 1GHH, 1E8L, and 3GB1, respectively). Note the clustering of the homologs and the native structure in the lower left-hand corner. The relationship between the score computed by GD and RMSD is most highly correlated in the lower left-hand corner of the scatter plots, in the vicinity of 0-3 Å RMSD. Above about 5 Å RMSD, the correlation between the score computed by GD and RMSD is much lower. Indeed, there is no reason to expect any correlation because these proteins are unrelated to the target. Let U be the set of proteins that are unrelated to the target. Let $L \subset U$ be the proteins that have a similar length to the target, $A \subset U$ be the proteins that have a similar percentage of α structure, and $B \subset U$ be the proteins that have a similar percentage of β structure. A protein chosen at random from U will randomly fall into one or more of $L, A,$ or B. Similarly, the bond vector orientations of unrelated proteins are only randomly correlated to the target protein. Consequently, the histograms of their back-computed RDCs are only randomly correlated to the histograms of the experimentally measured RDCs. Thus, the terms $\Delta_\alpha, \Delta_\beta, \Delta, KL_1$ and KL_2 from Eq. (3) become, in effect, random variables.

6 Conclusion
We have described a fast, automated procedure for homology detection from unassigned NMR data. The relationship between structure and function is strong, thus GD can be used to help
Figure 1: **RMSD vs. GD score** Scatter plots of the RMSD vs. the score computed by GD. Only those proteins whose length is within 10% of the target protein are shown. The open circles are the data points for the native structure and five homologous structures. The + signs are the data points associated with non-homologous proteins. The diamond is the 2D mean of the +’s while the triangle is the 2D mean of the open circles. The trend line shows the correlation between the score computed by GD and RMSD for all the data points. The scores associated with the native fold and the 5 homologs are statistically significantly lower than the scores of unrelated proteins (p-values of 2.6×10^{-5}, 2.6×10^{-5}, 4.2×10^{-5}, 2.3×10^{-5}, and 2.9×10^{-5} for 1CMZ, 1D3Z, 1GHH, 1E8L, and 3GB1, respectively).
characterize the function of new proteins. It can also be used to confirm or refute structural predictions made by other techniques such as protein threading or sequence homology. GD identifies the 3D-structural models in a protein structural database whose geometries best fit the unassigned experimental NMR data. It does not use sequence information and is thus not limited by sequence homology. The algorithm runs in $O(pnk^3)$ time, where p is the number of proteins in the database, n is the number of residues in the target protein, and k is the resolution of a rotation search. GD requires only uniform 15N-labelling of the protein and processes unassigned HN-15N residual dipolar couplings, which can be acquired in a couple of hours.

We have tested GD on NMR data from 5 test proteins against a protein structure database containing over 2,400 models. In all cases, the scores computed by GD for the native structure and its five homologs were statistically significantly lower than the scores for the unrelated proteins. In most cases, the highest ranking model is the native structure, while close structural homologs were also highly ranked.

We have shown that GD works well on proteins in the 56-152 residue range. It is to be expected that some modifications may be needed when scaling GD to larger proteins. The accuracy of the powder pattern method is known to increase as the number of RDCs increases. Thus, our ability to estimate the axial and rhombic components of the alignment tensors should increase with protein size. Estimating the eigenvectors of the tensors, however, will become harder as the distribution of amide bond vectors becomes more uniform. The current version of the GD algorithm handles missing data well, and all our results are reported using the published data sets, which contain RDCs for most, but not all residues in the 5 test proteins. We are now exploring 1H and 15N chemical shift prediction [33, 46] for GD, which might be incorporated into GD as a probabilistic constraint on assignment and alignment.

References

[34] PALMER III, A. G. Probing Molecular Motion By NMR. Current Opinion in Structural Biology 7 (1997),

SAUPE, A. Recent Results in the field of liquid crystals. Angew. Chem. 7 (1968), 97–112.

