











Figure 4: Part of the WW MSA we used. In yel-
low are positions identified by [19] as being crit-
ical to folding. Positions we additionally iden-
tify are in green. The conservation profile (top)
shows the entropy (scaled) at each position. The
coupling profile is shown below the MSA.
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Figure 5: (A)Number of edges versus imputa-
tion error for the WW domain. The model at
the knee was a model that minimized the L;-L,
norm and had 122 edges (shown with a black di-
amond). Comparisons to the GMRC method and
a method based on statistical coupling (AAG*®*)
are shown. (B) The edges of the model used in
the discriminative task, overlaid on the structure
of the WW domain of a ubiquitin protein lig-
ase(PDB id: 1I5H)[4]
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Figure 6: (A) Number of edges versus imputation error for the PDZ domain. Comparisons to the
GMRC method and a method based on statistical coupling (AAG***") are shown. (B) Edges learnt
from our models overlaid on the structure of PDZ domain of PSD-95(PDB id:1BE9). Edge colors

indicate the strength of the coupling (red being the strongest, and blue being the weakest)

protein. This position is connected to ALA-88 and VAL-60 in our model, and does not appear in
the network suggested by [17], but has been implicated by NMR experiments [12] as being dy-
namically linked to the active site. Thus, our method appears to capture a richer set of interactions
than that are possible using SCA.

6 Discussion and Future Work

In this paper we have proposed a statistical sequence-based approach to modeling the evolutionary
pressures on a protein family. Overall, we find that by employing sound probabilistic modeling and
convex structure (and parameter) learning, we are able to find a good balance between structural
sparsity (simplicity) and goodness of fit. We demonstrate the utility of our method in identifying
constraints useful both in protein design and in furthering our understanding of protein function
and regulation.

One limitation associated with a sequence-only approach to learning a statistical model for
a domain family is that the correlations observed in the MSA can be inflated due to phylogeny
[18, 9]. There are a number of ways to incorporate phylogenetic information into our model. For
example, given a phylogenetic clustering of sequences, we can incorporate a single additional node
in the graphical model reflecting the cluster to which the sequence belongs. This would allow us
to distinguish functional coupling from coupling caused due to phylogenetic variations.

Designing proteins from a generative sequence based model such as ours could be greatly
enhanced by incorporating structure based information which explicitly models the physical con-
straints of the protein. Such information could easily be incorporated either through the use of
informative priors (e.g., interaction energies, etc), or by the addition of edge features.
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False positve rate (1-specifiity)

Figure 7: ROC curve of our model for the task of distinguishing artificial WW sequences that fold
from those that don’t. All sequences and their labels (folded in vivo or not) are from [19]

Recently, [21] proposed a new method specifically to optimize costly functions, where the
projection step is cheap, by using a quasi-Newton algorithm which uses local curvature of the
objective to approximate its second derivative. Typically, this leads to much faster convergence.
We expect this to be applicable to our method.
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Figure 8: Graph showing all edges identified for the PDZ domain
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