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Abstract

We consider the problem of estimating the graph structure associated with a discrete
Markov random field. We describe a method based on ℓ1-regularized logistic regression,
in which the neighborhood of any given node is estimated by performing logistic regres-
sion subject to an ℓ1-constraint. Our framework applies to the high-dimensional setting,
in which both the number of nodes p and maximum neighborhood sizes d are allowed to
grow as a function of the number of observations n. Our main results provide sufficient
conditions on the triple (n, p, d) for the method to succeed in consistently estimating the
neighborhood of every node in the graph simultaneously. Under certain assumptions
on the population Fisher information matrix, we prove that consistent neighborhood
selection can be obtained for sample sizes n = Ω(d3 log p), with the error decaying as
O(exp(−Cn/d3)) for some constant C. If these same assumptions are imposed directly
on the sample matrices, we show that n = Ω(d2 log p) samples are sufficient.

Keywords: Graphical models, Markov random fields, structure learning, ℓ1-regulariz-
ation, model selection, convex risk minimization, high-dimensional asymptotics, concentra-
tion.

1 Introduction

Undirected graphical models, also known as Markov random fields (MRFs), are used in a
variety of domains, including artificial intelligence, natural language processing, image anal-
ysis, statistical physics, and spatial statistics, among others. A Markov random field (MRF)
is specified by an undirected graph G = (V,E), with vertex set V = {1, 2, . . . , p} and edge set
E ⊂ V ×V . The structure of this graph encodes certain conditional independence assump-
tions among subsets of the p-dimensional discrete random variable X = (X1,X2, . . . ,Xp),
where variable Xi is associated with vertex i ∈ V . A fundamental problem is the graphical
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model selection problem: given a set of n samples {x(1), x(2), . . . , x(n)} from a Markov ran-
dom field, estimate the structure of the underlying graph. The sample complexity of such
an estimator is the minimal number of samples n, as a function of the graph size p and
possibly other parameters such as the maximum node degree d, required for the probability
of correct identification of the graph to converge to one. Another important property of
any model selection procedure is its computational complexity.

Due to both its importance and difficulty, structure learning in random fields has at-
tracted considerable attention. The absence of an edge in a graphical model encodes a
conditional independence assumption. Constraint-based approaches (Spirtes et al., 2000)
estimate these conditional independencies from the data using hypothesis testing, and then
determine a graph that most closely represents those independencies. Each graph represents
a model class of graphical models; learning a graph then is a model class selection problem.
Score-based approaches combine a metric for the complexity of the graph, with a goodness
of fit measure of the graph to the data (for instance, log-likelihood of the maximum likeli-
hood parameters given the graph), to obtain a score for each graph. The score is then used
together with a search procedure that generates candidate graph structures to be scored.
The number of graph structures grows super-exponentially, however, and Chickering (1995)
shows that this problem is in general NP-hard.

A complication for undirected graphical models is that typical score metrics involve the
normalization constant (also called the partition function) associated with the Markov ran-
dom field, which is intractable (#P) to compute for general undirected models. The space
of candidate structures in scoring based approaches is thus typically restricted to either di-
rected models—Bayesian networks—or simple undirected graph classes such as trees (Chow
and Liu, 1968), polytrees (Dasgupta, 1999) and hypertrees (Srebro, 2003). Abbeel et al.
(2006) propose a method for learning factor graphs based on local conditional entropies and
thresholding, and analyze its behavior in terms of Kullback-Leibler divergence between the
fitted and true models. They obtain a sample complexity that grows logarithmically in the
graph size p, but the computational complexity grows at least as quickly as O(pd+1), where
d is the maximum neighborhood size in the graphical model. This order of complexity
arises from the fact that for each node, there are

(
p
d

)
= O(pd) possible neighborhoods of

size d for a graph with p vertices. Csiszár and Talata (2006) show consistency of a method
that uses pseudo-likelihood and a modification of the BIC criterion, but this also involves
a prohibitively expensive search.

In work subsequent to the initial conference version of this work (Wainwright et al.,
2007), other researchers have also studied the problem of model selection in discrete Markov
random fields. For the special case of bounded degree models, Bresler et al. (2008) describe a
simple search-based method, and prove under relatively mild assumptions that it can recover
the graph structure with Θ(d log p) samples. However, in the absence of additional restric-
tions, the computational complexity of the method is O(pd+1). Santhanam and Wainwright
(2008) analyze the information-theoretic limits of graphical model selection, providing both
upper and lower bounds on various model selection procedures, but these methods also have
prohibitive computational cost.

The main contribution of this paper is to present and analyze the computational and
sample complexity of a simple method for graphical model selection. Our analysis is high-
dimensional in nature, meaning that both the model dimension p as well as the maximum
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neighborhood size d may tend to infinity as a function of the size n. Our main result shows
that under mild assumptions, consistent neighborhood selection is possible with sample
complexity n = Ω(d3 log p) and computational complexity O(max{n, p}p3), when applied
to any graph with p vertices and maximum degree d. The basic approach is straightforward:
it involves performing ℓ1-regularized logistic regression of each variable on the remaining
variables, and then using the sparsity pattern of the regression vector to infer the underlying
neighborhood structure.

The technique of ℓ1 regularization for estimation of sparse models or signals has a long
history in many fields; for instance, see Tropp (2006) for one survey. A surge of recent
work has shown that ℓ1-regularization can lead to practical algorithms with strong the-
oretical guarantees (e.g., Candes and Tao (2006), Donoho and Elad (2003), Meinshausen
and Bühlmann (2006), Ng (2004), Tropp (2006), Wainwright (2006), Zhao and Yu (2007)).
Despite the well-known computational intractability of discrete MRFs, our method is com-
putationally efficient; it involves neither computing the normalization constant (or partition
function) associated with the Markov random field, nor a combinatorial search through the
space of graph structures. Rather, it requires only the solution of standard convex programs,
with an overall computational complexity of order O(max{p, n} p3) (Koh et al., 2007), and is
thus well-suited to high dimensional problems. Conceptually, like the work of Meinshausen
and Bühlmann (2006) on covariance selection in Gaussian graphical models, our approach
can be understood as using a type of pseudo-likelihood, based on the local conditional like-
lihood at each node. In contrast to the Gaussian case, where the exact maximum likelihood
estimate can be computed exactly in polynomial time, this use of a surrogate loss function is
essential for discrete Markov random fields, given the intractability of computing the exact
likelihood.

The remainder of this paper is organized as follows. We begin in Section 2 with back-
ground on discrete graphical models, the model selection problem, and logistic regression.
In Section 3, we state our main result, develop some of its consequences, and provide a
high-level outline of the proof. Section 4 is devoted to proving a result under stronger
assumptions on the sample Fisher information matrix itself, whereas Section 5 provides
concentration results linking the population matrices to the sample versions. In Section 6,
we provide some experimental results to illustrate the practical performance of our method,
and the close agreement between theory and practice, and we conclude in Section 7.

Notation: For the convenience of the reader, we summarize here notation to be used
throughout the paper. We use the following standard notation for asymptotics: we write
f(n) = O(g(n)) if f(n) ≤ Kg(n) for some constant K < ∞, and f(n) = Ω(g(n)) if
f(n) ≥ K ′g(n) for some constant K ′ > 0. The notation f(n) = Θ(g(n)) means that
f(n) = O(g(n)) and f(n) = Ω(g(n)). Given a vector x ∈ R

d and parameter q ∈ [1,∞], we
use ‖x‖q to denote the usual ℓq norm. Given a matrix X ∈ R

a×b and parameter q ∈ [1,∞],
we use |||X|||q to denote the induced matrix-operator norm (viewed as a mapping from
ℓb
q → ℓa

q); see Horn and Johnson (1985). Two examples of particular importance in this
paper are the spectral norm |||X|||2, corresponding to the maximal singular value of X, and
the ℓ∞ matrix norm, given by |||X|||∞ = max

j=1,...,a

∑b
k=1 |Xjk|. We make use of the bound

|||X|||∞ ≤ √
a|||X|||2, for any square matrix X ∈ R

a×a.
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2 Background and problem formulation

We begin by providing some background on Markov random fields, defining the problem
of graphical model selection, and describing our method based on neighborhood logistic
regression.

2.1 Markov random fields

Given an undirected graph G with vertex set V = {1, . . . , p} and edge set E, a Markov
random field (MRF) consists of random vector X = (X1,X2, . . . ,Xp), where the random
variable Xs is associated with vertex s ∈ V . The random vector X ∈ X p is said to
be pairwise Markov with respect to the graph if its probability distribution factorizes as

P(x) ∝ exp
{∑

(s,t)∈E φst(xs, xt)
}

, where each φst is a mapping from pairs (xs, xt) ∈ Xs×Xt

to the real line. An important special case is the Ising model, in which Xs ∈ {−1, 1} for each
vertex s ∈ V , and φst(xs, xt) = θstxsxt for some parameter θ∗st ∈ R, so that the distribution
takes the form

Pθ∗(x) =
1

Z(θ∗)
exp




∑

(s,t)∈E

θ∗stxsxt



 . (1)

The partition function Z(θ∗) ensures that the distribution sums to one. The Ising model
has proven useful in many domains, including statistical physics, where it describes the
behavior of gases or magnets, in computer vision for image segmentation, and in social
network analysis.

2.2 Graphical model selection

Suppose that we are given collection {x(i)} = {x(1), . . . , x(n)} of n samples, where each p-
dimensional vector x(i) is drawn in an i.i.d. manner from a distribution Pθ∗ of the form (1).
It is convenient to view the parameter vector θ∗ as a

(
p
2

)
-dimensional vector, indexed by

pairs of distinct vertices, but non-zero if and only if the vertex pair (s, t) belongs to the
unknown edge set E of the underlying graph G. The goal of graphical model selection is
to infer the edge set E of the graphical model defining the probability distribution that
generates the samples. In this paper, we study the slightly stronger criterion of signed edge

recovery : in particular, given a graphical model with parameter θ∗, we define the edge sign
vector

E∗ :=

{
sign(θ∗st) if (s, t) ∈ E

0 otherwise.
(2)

Note that the weaker graphical model selection problem amounts to recovering the vector
|E∗| of absolute values.

The classical notion of statistical consistency applies to the limiting behavior of an esti-
mation procedure as the sample size n goes to infinity, with the model size p itself remaining
fixed. In many contemporary applications of graphical models (e.g., gene microarrays, so-
cial networks etc.), the model dimension p is comparable or larger than the sample size n,
so that the relevance of such “fixed p” asymptotics is doubtful. Accordingly, the goal of
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this paper is to develop the broader notion of high-dimensional consistency, in which both
the model dimension and the sample size are allowed to increase, and we study the scaling
conditions under which consistent model selection is achievable.

More precisely, we consider sequences of graphical model selection problems, indexed
by the sample size n, number of vertices p, and maximum node degree d. We assume that
the sample size n goes to infinity, and both the problem dimension p = p(n) and d = d(n)
may also scale as a function of n. The setting of fixed p or d is covered as a special case.
Let Ên be an estimator of the signed edge pattern E∗, based on the n samples. Our goal is
to establish sufficient conditions on the scaling of the triple (n, p, d) such that our proposed
estimator is consistent in the sense that

P

[
Ên = E∗

]
→ 1 as n → +∞.

We sometimes call this property sparsistency, as a shorthand for consistency of the sparsity
pattern of the parameter θ∗.

2.3 Neighborhood-based logistic regression

Note that recovering the signed edge vector E∗ of an undirected graph G is equivalent to
recovering, for each vertex r ∈ V , its neighborhood set N (r) := {t ∈ V | (r, t) ∈ E},
along with the correct signs sign(θ∗rt) for all t ∈ N (r). To capture both the neighborhood
structure and sign pattern, we define the signed neighborhood set

N±(r) := {sign(θ∗rt) t | t ∈ N (s)} . (3)

The next step is to observe that this signed neighborhood set N±(r) can be recovered from
the sign-sparsity pattern of the (p − 1)-dimensional subvector of parameters

θ∗\r := {θ∗ru, u ∈ V \r}

associated with vertex r. In order to estimate this vector θ∗\r, we consider the structure of

the conditional distribution of Xr given the other variables X\r = {Xt | t ∈ V \{r}}. A
simple calculation shows that under the model (1), this conditional distribution takes the
form

Pθ∗(xr | x\r) =
exp

(
2xr

[∑
t∈V \r θ∗rtxt

])

exp
(
2xr[

∑
t∈V \r θ∗rtxt]

)
+ 1

. (4)

Thus, the variable Xr can be viewed as the response variable in a logistic regression in
which all of the other variables X\r play the role of the covariates.

With this set-up, our method for estimating the sign-sparsity pattern of the regression
vector θ∗\r (and hence the neighborhood structure N±(r)) is based on computing the ℓ1-
regularized logistic regression of Xs on the other variables X\r. Explicitly, given a set of n

i.i.d. samples {x(1), x(2), . . . , x(n)}, this regularized regression problem is a convex program,
of the form min

θ\r∈Rp−1

{
ℓ(θ; {x(i)}) + λn‖θ\r‖1

}
, where λn > 0 is a regularization parameter,
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to be specified by the user, and

ℓ(θ; {x(i)}) := − 1

n

n∑

i=1

log Pθ(x
(i)
r | x

(i)
\r ) (5)

is the rescaled negative log likelihood. (The rescaling factor 1/n in this definition is for later
theoretical convenience.) Following some algebraic manipulation, the regularized negative
log likelihood can be written as

min
θ\r∈Rp−1





1

n

n∑

i=1

f(θ;x(i)) −
∑

u∈V \r
θruµ̂ru + λn‖θ\r‖1



 , (6)

where

f(θ;x) := log


exp(

∑

t∈V \r
θrtxt) + exp(−[

∑

t∈V \r
θrtxt])


 (7)

is a rescaled logistic loss, and µ̂ru := 1
n

∑n
i=1 x

(i)
r x

(i)
u are empirical moments. Note the objec-

tive function (6) is convex but not differentiable, due to the presence of the ℓ1-regularizer.
By Lagrangian duality, the problem (6) can be re-cast as a constrained problem over the
ball ‖θ\r‖1 ≤ C(λn). Consequently, by the Weierstrass theorem, the minimum over θ\s is
always achieved.

Accordingly, let θ̂n
\r be an element of the minimizing set of problem (6). Although θ̂n

\r
need not be unique in general since the problem (6) need not be strictly convex, our analysis
shows that in the regime of interest, this minimizer θ̂n

\r is indeed unique. We use θ̂n
\r to

estimate the signed neighborhood N±(r) according to

N̂±(r) :=
{
sign(θ̂ru)u | u ∈ V \r, θ̂su 6= 0

}
. (8)

We say that the full graph G is estimated consistently, written as the event {Ĝ = G(p, d)},
if N̂±(r) = N±(r) for all r ∈ V .

3 Method and theoretical guarantees

Our main result concerns conditions on the sample size n relative to the parameters of
the graphical model—more specifically, the number of nodes p and maximum node degree
d—that ensure that the collection of signed neighborhood estimates (8), one for each node r
of the graph, agree with the true neighborhoods, so that the full graph G(p, d) is estimated
consistently. In this section, we begin by stating the assumptions that underlie our main
result, and then give a precise statement of the main result. We then provide a high-
level overview of the key steps involved in its proof, deferring detail to later sections. Our
analysis proceeds by first establishing sufficient conditions for correct signed neighborhood
recovery—that is, {N̂±(r) = N±(r)}—for some fixed node r ∈ V . By showing that this
neighborhood consistency is achieved at exponentially fast rates, we can then use a union
bound over all p nodes of the graph to conclude that consistent graph selection {Ĝ =
G(p, d)} is also achieved.
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3.1 Assumptions

Success of our method requires certain assumptions on the structure of the logistic re-
gression problem. These assumptions are stated in terms of the Hessian of the likelihood
function E{log Pθ[Xr | X\r]}, as evaluated at the true model parameter θ∗\r ∈ R

p−1. More

specifically, for any fixed node r ∈ V , this Hessian is a (p − 1)× (p − 1) matrix of the form

Q∗
r := Eθ∗

{
∇2 log Pθ∗[Xr | X\r]

}
. (9)

For future reference, we calculate the explicit expression

Q∗
r = Eθ∗

[
η(X; θ∗)X\rX

T
\r

]
(10)

where

η(u; θ) :=
4 exp

(
2ur

[∑
t∈V \r θrtut

])

(exp
(
2ur[

∑
t∈V \r θrtut]

)
+ 1)2

(11)

is the variance function. Note that the matrix Q∗
r is the Fisher information matrix associated

with the local conditional probability distribution. Intuitively, it serves as the counterpart
for discrete graphical models of the covariance matrix E[XXT ] of Gaussian graphical models,
and indeed our assumptions are analogous to those imposed in previous work on the Lasso
for Gaussian linear regression (Meinshausen and Bühlmann, 2006, Tropp, 2006, Zhao and
Yu, 2007).

In the following we write simply Q∗ for the matrix Q∗
r, where the reference node r should

be understood implicitly. Moreover, we use S := {(r, t) | t ∈ N (r)} to denote the subset of
indices associated with edges of r, and Sc to denote its complement. We use Q∗

SS to denote
the d × d sub-matrix of Q∗ indexed by S. With this notation, we state our assumptions:

[A1] Dependency condition: The subset of the Fisher information matrix correspond-
ing to the relevant covariates has bounded eigenvalues: there exists a constant Cmin > 0
such that

Λmin(Q∗
SS) ≥ Cmin. (12)

Moreover, we require that Λmax(Eθ∗ [X\rX
T
\r]) ≤ Dmax. These conditions ensure that the

relevant covariates do not become overly dependent. (As stated earlier, we have suppressed
notational dependence on r; thus this condition is assumed to hold for all r ∈ V .)

[A2] Incoherence condition: Our next assumption captures the intuition that the large
number of irrelevant covariates (i.e., non-neighbors of node r) cannot exert an overly strong
effect on the subset of relevant covariates (i.e., neighbors of node r). To formalize this
intuition, we require the existence of an α ∈ (0, 1] such that

|||Q∗
ScS(Q∗

SS)−1|||∞ ≤ 1 − α. (13)

7



3.2 Statement of main result

We are now ready to state our main result on the performance of neighborhood logistic
regression for graphical model selection. Naturally, the limits of model selection are deter-
mined by the minimum value over the parameters θ∗rt for pairs (r, t) included in the edge
set of the true graph. Accordingly, we define the parameter

θ∗min = min
(r,t)∈E

|θ∗rt|. (14)

With this definition, we have the following

Theorem 1. Consider a sequence of graphs {G(p, d)} such that conditions A1 and A2 are

satisfied by the population Fisher information matrices Q∗. If the sample size n satisfies

n > Ld3 log(p) (15)

for some constant L, and the minimum value θ∗min decays no faster than O(1/d), then for the

regularization sequence λn = 2
√

log p
n

, the estimated graph Ĝ(λn) obtained by neighborhood

logistic regression satisfies

P[Ĝ(λn) = G(p, d)] = O
(
exp

(
−K

n

d3
− 3 log(p)

))
→ 0 (16)

for some constant K.

Remarks: For model selection in graphical models, one is typically interested in node
degrees d that remain bounded (e.g., d = O(1)), or that grow only weakly with graph size
(say d = o(p). In such cases, the growth condition (15) allows the number of observations
to be substantially smaller than the graph size, i.e., the “large p, small n” regime. In
particular, the graph size p can grow exponentially with the number of observations (i.e,
p(n) = exp(nα) for some α ∈ (0, 1).

In terms of the choice of regularization, the sequence λn needs to satisfy the following
conditions:

nλ2
n > 2 log(p), and

√
dλn = O(θ∗min).

Under the growth condition (15), the choice λn = 2
√

log p
n

suffices as long as θ∗min decays no

faster than O(1/d).
The analysis required to prove Theorem 1 can be divided naturally into two parts. First,

in Section 4, we prove a result (stated as Proposition 1) for “fixed design” matrices. More
precisely, we show that if the dependence (A1) mutual incoherence (A2) conditions hold for
the sample Fisher information matrix

Qn := Ê

[
η(X; θ∗)X\rX

T
\r

]
=

1

n

n∑

i=1

η(x(i); θ∗)x(i)
\r (x

(i)
\r )T (17)

then the growth condition (15) and choice of λn from Theorem 1 are sufficient to ensure that
the graph is recovered with high probability. Interestingly, our analysis shows that if the
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conditions are imposed directly on the sample Fisher information matrices and θ∗min = Θ(1),
then the weaker growth condition n = Ω(d2 log(p)) suffices for asymptotically exact graph
recovery.

The second part of the analysis, provided in Section 5, is devoted to showing that under
the specified growth conditions (A3), imposing incoherence and dependence assumptions
on the population version of the Fisher information Q∗ guarantees (with high probability)
that analogous conditions hold for the sample quantities Qn. While it follows immediately
from the law of large numbers that the empirical Fisher information Qn

AA converges to the
population version Q∗

AA for any fixed subset A, the delicacy is that we require controlling
this convergence over subsets of increasing size. The analysis therefore requires some large-
deviations bounds, so as to provide exponential control on the rates of convergence.

3.3 Primal-dual witness for graph recovery

At a high-level, at the core of our proof lies the notion of a primal-dual witness. In particular,
we explicitly construct an optimal primal-dual pair, namely, a primal solution θ̂, along with
an associated subgradient vector ẑ (which can be interpreted as a dual solution), such that
the Karush-Kuhn-Tucker (KKT) conditions associated with the convex program (6) are
satisfied. Moreover, we show that under the stated assumptions on (n, p, d), the primal-
dual pair (θ̂, ẑ) can be constructed such that they act as a witness—that is, a certificate
guaranteeing that the method correctly recovers the graph structure.

Let us write the convex program (6) in the form

min
θ\r∈Rp−1

{
ℓ(θ; {x(i)}) + λn‖θ\r‖1

}
, (18)

where

ℓ(θ; {x(i)}) = ℓ(θ) =
1

n

n∑

i=1

f(θ;x(i)) −
∑

u∈V \r
θruµ̂ru (19)

is the negative log likelihood associated with the logistic regression model. The KKT
conditions associated with this model can be expressed as follows

∇ℓ(θ̂) + λnẑ = 0 (20)

where the dual or subgradient vector ẑ ∈ R
p−1 satisfies the properties

ẑrt = sign(θ̂rt) if θ̂i 6= 0, and |ẑrt| ≤ 1 otherwise. (21)

One way to understand this vector ẑ is as a subgradient, meaning an element of the sub-
differential of the ℓ1-norm (see Rockafellar, 1970). An alternative interpretation is based
on the constrained equivalent to problem (18), involving the constraint ‖θ‖1 ≤ C(λn).
This ℓ1-constraint is equivalent to the family of constraints ~vT θ ≤ C, where the vector
~v ∈ {−1,+1}p−1 ranges over all possible sign vectors. In this formulation, the optimal dual
vector is simply the conic combination

ẑ =
∑

~v∈{−1,+1}p−1

α∗
v~v, (22)

9



where α∗
v ≥ 0 is the Lagrange multiplier associated with the constraint ~vT θ ≤ C.

The KKT conditions (20) and (21) must be satisfied by any optimal pair (θ̂, ẑ) to the
convex program (18). In order for this primal-dual pair to correctly specify the graph
structure, we require furthermore that the following properties are satisfied:

sign(ẑrt) = sign(θ∗rt) for all (r, t) ∈ S := {(r, t) | t ∈ N (r)}, and (23a)

θ̂Sc = 0 where Sc := {(r, u) | (r, u) /∈ E}. (23b)

We now construct our witness pair (θ̂, ẑ) as follows. First, we set θ̂S as the minimizer
of the partial penalized likelihood,

θ̂S = arg min
(θS ,0)∈Rp−1

{
ℓ(θ; {x(i)}) + λn‖θS‖1

}
, (24)

and set ẑS = sign(θ̂S). We then set θ̂Sc = 0 so that condition (23b) holds. Finally, we
obtain ẑSc from equation (20) by plugging in the values of θ̂ and ẑS . Thus, our construction
satisfies conditions (23b) and (20). The remainder of the analysis consists of showing that
our conditions on (n, p, d) imply that, with high-probability, the remaining conditions (23a)
and (21) are satisfied.

This strategy is justified by the following lemma, which provides sufficient conditions
for shared sparsity and uniqueness of the optimal solution:

Lemma 1 (Shared sparsity and uniqueness). If there exists an optimal primal solution

θ̂ with associated optimal dual vector ẑ such that ‖ẑSc‖∞ < 1, then any optimal primal

solution θ̃ must have θ̃Sc = 0. Moreover, if the Hessian sub-matrix [∇2ℓ(θ̂)]SS ≻ 0, then θ̂
is the unique optimal solution.

Proof. By Lagrangian duality, the penalized problem (18) can be written as an equiv-
alent constrained optimization problem over the ball ‖θ‖1 ≤ C(λn), for some constant
C(λn) < +∞. Since the Lagrange multiplier associated with this constraint—namely, λn—
is strictly positive, the constraint is active at any optimal solution, so that ‖θ‖1 is constant
across all optimal solutions. Consider the representation of ẑ as the convex combination (22)
of sign vectors ~v ∈ {−1,+1}p−1, where the weights α∗

v are non-negative and sum to one.
Since α∗ is an optimal vector of Lagrange multipliers for the optimal primal solution θ̂, it
follows (Bertsekas, 1995) that any other optimal primal solution θ̃ must minimize the associ-
ated Lagrangian (i.e., satisfy equation (20)), and moreover must satisfy the complementary
slackness conditions α∗

v[~v
T θ−C] = 0 for all sign vectors v. But these conditions imply that

ẑT θ̃ = C = ‖θ̃‖1, which cannot occur if θ̃j 6= 0 for some index j for which |ẑj | < 1. We thus

conclude that θ̃Sc = 0 for all optimal primal solutions.
Finally, given that all optimal solutions satisfy θSc = 0, we may consider the restricted

optimization problem subject to this set of constraints. If the principal submatrix of the
Hessian is positive definite, then this sub-problem is strictly convex, so that the optimal
solution must be unique.

In our primal-dual witness proof, we exploit this lemma by constructing a primal-dual
pair (θ̂, ẑ) such that ‖ẑSc‖∞ < 1. Moreover, under the conditions of Theorem 1, we prove
that the sub-matrix of the sample Fisher information matrix is strictly positive definite with
high probability, so that the primal solution θ̂ is guaranteed to be unique.
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4 Analysis under sample Fisher matrix assumptions

We begin by establishing model selection consistency when assumptions are imposed di-
rectly on the sample Fisher matrix Qn, as opposed to on the population matrix Q∗, as in
Theorem 1. In particular, we define the “good event”

M({x(i)}) :=
{
{x(i)} | Qn = Ê[∇2ℓ(θ∗)] satisfies A1 and A2

}
. (25)

We then state the following

Proposition 1 (Consistency for fixed design). If n > Ld2 log(p) for a suitably large con-

stant L, and the minimum value θ∗min decays no faster than O(1/
√

d), then for the regular-

ization sequence λn = 2
√

log p
n

, the estimated graph Ĝ(λn) obtained by neighborhood logistic

regression satisfies

P[Ĝ(λn) = G(p, d) | M({x(i)})] = O
(
exp

(
−nλ2

n − log(p)
))

→ 0. (26)

Loosely stated, this result guarantees that if the sample Fisher information matrix is
“good”, then the conditional probability of successful graph recovery converges to zero at
the specified rate. The remainder of this section is devoted to the proof of Proposition 1.

4.1 Key technical results

We begin with statements of some key technical lemmas that are central to our main
argument, with their proofs deferred to Appendix A. The central object is the following
expansion, obtained by re-writing the zero-subgradient condition as

∇ℓ(θ̂; {x(i)}) −∇ℓ(θ∗; {x(i)}) = W n − λnẑ, (27)

where we have introduced the short-hand notation W n for the (p − 1)-vector

W n := −∇ℓ(θ∗; {x(i)}) =

− 1

n

n∑

i=1

x
(i)
\r



x(i)

r −
exp(

∑
t∈V \r θ∗rtx

(i)
t ) − exp(−[

∑
t∈V \r θ∗rtx

(i)
t ])

exp(
∑

t∈V \r θ∗rtx
(i)
t ) + exp(−[

∑
t∈V \r θ∗rtx

(i)
t ])





= − 1

n

n∑

i=1

x
(i)
\r

{
x(i)

r − Pθ∗[xr = 1 | x
(i)
\r ] + Pθ∗ [xr = −1 | x

(i)
\r ]
}

.

For future reference, note that Eθ∗[W
n] = 0. Next, applying the mean-value theorem

coordinate-wise to the expansion (27) yields

∇2ℓ(θ∗; {x(i)}) [θ̂ − θ∗] = W n − λnẑ + Rn, (28)

where the remainder term takes the form

Rn
j =

[
∇2ℓ(θ̄(j); {x(i)}) −∇2ℓ(θ∗; {x(i)})

]T
j

(θ̂ − θ∗), (29)

with θ̄(j) a parameter vector on the line between θ∗ and θ̂, and with [·]Tj denoting the jth
row of the matrix. The following lemma addresses the behavior of the term W n in this
expansion:

11



Lemma 2. If nλ2
n > log(p), then for the specified mutual incoherence parameter α ∈ (0, 1],

we have

P

(
2 − α

λn
‖W n‖∞ ≥ α

4

)
= O

(
exp

(
−nλ2

n + log(p)
))

→ 0. (30)

See Appendix A.1 for the proof of this claim.
The following lemma establishes that the sub-vector θ̂S is an ℓ2-consistent estimate of

the true sub-vector θ∗S:

Lemma 3 (ℓ2-consistency of primal subvector). If λnd ≤ C2

min

10Dmax
, then as n → +∞, we

have

‖θ̂S − θ∗S‖2 = Op

(√
dλn

)
→ 0. (31)

See Appendix A.2 for the proof of this claim.
Our final technical lemma provides control on the the remainder term (29):

Lemma 4. If nλ2
n > log(p) and dλn is sufficiently small, then for mutual incoherence

parameter α ∈ (0, 1], we have

P

(
2 − α

λn

‖Rn‖∞ ≥ α

4

)
= O(exp

(
−nλ2

n + log(p)
)
) → 0. (32)

See Appendix A.3 for the proof of this claim.

4.2 Proof of Proposition 1

Using these lemmas, we can now complete the proof of Proposition 1. Recalling our short-
hand Qn = ∇2

θℓ(θ
∗; {x(i)}), we re-write condition (28) in block form as:

Qn
ScS [θ̂S − θ∗S ] = W n

Sc − λnẑSc + Rn
Sc , (33a)

Qn
SS [θ̂S − θ∗S ] = W n

S − λnẑS + Rn
S. (33b)

Since the matrix Qn
SS is invertible by assumption, the conditions (33) can be re-written as

Qn
ScS (Qn

SS)−1 [W n
S − λnẑS + Rn

S ] = W n
Sc − λnẑSc + Rn

Sc . (34)

Rearranging yields the condition

[W n
Sc − Rn

Sc ] − Qn
ScS (Qn

SS)−1 [W n
S − Rn

S ] + λnQn
ScS (Qn

SS)−1ẑS = λnẑSc . (35)

Strict dual feasibility We now demonstrate that for the dual sub-vector ẑSc defined
by equation (35), we have ‖ẑSc‖∞ < 1. Using the triangle inequality and the mutual
incoherence bound (13), we have that

‖ẑSc‖∞ ≤ |||Qn
ScS (Qn

SS)−1|||∞
[‖W n

S ‖∞
λn

+
‖Rn

S‖∞
λn

+ 1

]
+

‖Rn
Sc‖∞
λn

+
‖W n

Sc‖∞
λn

≤ (1 − α) + (2 − α)

[‖Rn‖∞
λn

+
‖W n‖∞

λn

]
(36)
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Next, applying Lemmas 2 and 4, we have

‖ẑSc‖∞ ≤ (1 − α) +
α

4
+

α

4
= 1 − α

2
.

with probability converging to one.

Correct sign recovery: We next show that our primal sub-vector θ̂S defined by equa-
tion (24) satisfies sign consistency, meaning, sgn(θ̂S) = sgn(θ∗S). In order to establish this,
it suffices to show that

‖θS − θ∗S‖∞ ≤ θ∗min

2

where we recall the notation θ∗min := min(r,t)∈E |θ∗rt|. From Lemma 3, we have ‖θS − θ∗S‖2 =

Op(
√

dλn), so that

2

θ∗min

‖θS − θ∗S‖∞ ≤ 2

θ∗min

‖θS − θ∗S‖2 (37)

= O
(√

dλn

θ∗min

)
(38)

Since θ∗min decays no faster than Θ(1/
√

d), the right-hand side is upper bounded by
O(λnd), which can be made smaller than 1 by choosing λn sufficiently small, as asserted in
Proposition 1.

5 Uniform convergence of sample information matrices

In this section, we complete the proof of Theorem 1 by showing that if the dependency (A1)
and incoherence (A2) assumptions are imposed on the population Fisher information matrix
then under the specified scaling of (n, p, d), analogous bounds hold for the sample Fisher
information matrices with probability converging to one. These results are not immediate
consequences of classical random matrix theory (e.g., Davidson and Szarek (2001)), since
the elements of Qn are highly dependent.

Recall the definitions

Q∗ := Eθ∗

[
η(X; θ∗)X\rX

T
\r

]
, and Qn := Ê

[
η(X; θ∗)X\rX

T
\r

]
, (39)

where Eθ∗ denotes the population expectation, and Ê denotes the empirical expectation, and
the variance function η was defined previously equation (11). The following lemma asserts
the eigenvalue bounds in Assumption A1 hold with high probability for sample covariance
matrices:

Lemma 5. Suppose that assumption A1 holds for the population matrix Q∗ and Eθ∗ [XXT ].
For any δ > 0 and some fixed constants A and B, we have

P

[
Λmax

[ 1
n

n∑

i=1

x
(i)
\r (x

(i)
\r )T

]
≥ Dmax + δ

]
≤ 2 exp

(
−A

δ2n

d2
+ B log(d)

)
. (40a)

P[Λmin(Qn
SS) ≤ Cmin − δ] ≤ 2 exp

(
−A

δ2n

d2
+ B log(d)

)
. (40b)
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The following result is the analog for the incoherence assumption (A2), showing that
the scaling of (n, p, d) given in Theorem 1 guarantees that population incoherence implies
sample incoherence.

Lemma 6. If the population covariance satisfies a mutual incoherence condition (13) with

parameter α ∈ (0, 1] as in Assumption A2, then the sample matrix satisfies an analogous

version, with high probability, in the sense that

P

[
|||Qn

ScS(Qn
SS)−1|||∞ ≥ 1 − α

2

]
≤ exp

(
−K

n

d3
+ log(p)

)
. (41)

Proofs of these two lemmas are provided in the following sections. Before proceeding, we
begin by taking note of a simple bound to be used repeatedly throughout our arguments.
By definition of the matrices Qn(θ) and Q(θ) (see equations (17) and (10)), the (j, k)th

element of the difference matrix Qn(θ) − Q(θ) can be written as an i.i.d. sum of the form

Zjk = 1
n

∑n
i=1 Z

(i)
jk , where each Z

(i)
jk is zero-mean and bounded (in particular, |Z(i)

jk | ≤ 4).
By the Azuma-Hoeffding bound (Hoeffding, 1963), for any indices j, k = 1, . . . , d and for
any ǫ > 0, we have

P[(Zjk)
2 ≥ ǫ2] = P[| 1

n

n∑

i=1

Z
(i)
jk | ≥ ǫ] ≤ 2 exp

(
−ǫ2n

32

)
. (42)

So as to simplify notation, throughout this section, we use K to denote a universal positive
constant, independent of (n, p, d). Note that the precise value and meaning of K may differ
from line to line.

5.1 Proof of Lemma 5

By the Courant-Fischer variational representation (Horn and Johnson, 1985), we have

Λmin(QSS) = min
‖x‖2=1

xT QSSx

= min
‖x‖2=1

{
xT Qn

SSx + xT (QSS − Qn
SS)x

}

≤ yTQn
SSy + yT (QSS − Qn

SS)y,

where y ∈ R
d is a unit-norm minimal eigenvector of Qn

SS. Therefore, we have

Λmin(Qn
SS) ≥ Λmin(QSS) − |||QSS − Qn

SS|||2 ≥ Cmin − |||QSS − Qn
SS |||2.

Hence it suffices to obtain a bound on the spectral norm |||QSS − Qn
SS|||2. Observe that

|||Qn
SS − QSS|||2 ≤

[ d∑

j=1

d∑

k=1

(Zjk)
2
]1

2 .

Setting ǫ2 = δ2/d2 in equation (42) and applying the union bound over the d2 index pairs
(j, k) then yields

P[|||Qn
SS − QSS|||2 ≥ δ] ≤ 2 exp

(
−K

δ2n

d2
+ 2 log(d)

)
. (43)
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Similarly, we have

P[Λmax(
1

n

n∑

i=1

x
(i)
\r (x

(i)
\r )T ) ≥ Dmax] ≤ P

[
|||
( 1

n

n∑

i=1

x
(i)
\r (x

(i)
\r )T

)
− Eθ∗[X\rX

T
\r]|||2 ≥ δ

]
,

which obeys the same upper bound (43), by following the analogous argument.

5.2 Proof of Lemma 6

We begin by decomposing the sample matrix as the sum Qn
ScS(Qn

SS)−1 = T1 +T2 +T3 +T4,
where we define

T1 := Q∗
ScS

[
(Qn

SS)−1 − (Q∗
SS)−1

]
(44a)

T2 := [Qn
ScS − Q∗

ScS ] (Q∗
SS)−1 (44b)

T3 := [Qn
ScS − Q∗

ScS ]
[
(Qn

SS)−1 − (Q∗
SS)−1

]
(44c)

T4 := Q∗
ScS(Q∗

SS)−1 (44d)

The fourth term is easily controlled; indeed, we have |||T4|||∞ = |||Q∗
ScS(Q∗

SS)−1|||∞ ≤ 1−α by
the incoherence assumption A2. If we can show that |||Ti|||∞ ≤ α

6 for the remaining indices
i = 1, 2, 3, then by our four term decomposition and the triangle inequality, the sample
version satisfies the bound (41), as claimed. We deal with these remaining terms using the
following lemmas:

Lemma 7. For any δ > 0 and constants K,K ′, the following bounds hold:

P[|||Qn
ScS − Q∗

ScS |||∞ ≥ δ] ≤ 2 exp

(
−K

n δ2

d2
+ log(d) + log(p − d)

)
(45a)

P[|||Qn
SS − Q∗

SS|||∞ ≥ δ] ≤ 2 exp

(
−K

n δ2

d2
+ 2 log(d)

)
(45b)

P[|||(Qn
SS)−1 − (Q∗

SS)−1|||∞ ≥ δ] ≤ 4 exp

(
−K

n δ2

d3
+ K ′ log(d)

)
. (45c)

See Appendix B for the proof of these claims.

Control of first term: Turning to the first term, we first re-factorize it as

T1 = Q∗
ScS(Q∗

SS)−1 [Qn
SS − Q∗

SS ] (Qn
SS)−1,

and then bound it (using the sub-multiplicative property |||AB|||∞ ≤ |||A|||∞|||B|||∞) as follows

|||T1|||∞ ≤ |||Q∗
ScS(Q∗

SS)−1|||∞|||Qn
SS − Q∗

SS |||∞|||(Qn
SS)−1|||∞

≤ (1 − α) |||Qn
SS − Q∗

SS|||∞
{√

d |||(Qn
SS)−1|||2

}
,

where we have used the incoherence assumption A2. Using the bound (40b) from Lemma 5
with δ = Cmin/2, we have |||(Qn

SS)−1|||2 = [Λmin(Qn
SS)]−1 ≤ 2

Cmin
with probability greater
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than 1 − exp
(
−Kn/d2 + 2 log(d)

)
. Next, applying the bound (45b) with δ = c/

√
d, we

conclude that with probability greater than 1 − 2 exp
(
−Knc2/d3 + log(d)

)
, we have

|||Qn
SS − Q∗

SS|||∞ ≤ c/
√

d.

By choosing the constant c > 0 sufficiently small, we are guaranteed that

P[|||T1|||∞ ≥ α/6] ≤ 2 exp

(
−K

nc2

d3
+ log(d)

)
. (46)

Control of second term: To bound T2, we first write

|||T2|||∞ ≤
√

d|||(Q∗
SS)−1|||2 |||Qn

ScS − Q∗
ScS|||∞

≤
√

d

Cmin

|||Qn
ScS − Q∗

ScS |||∞

We then apply bound (45a) with δ = α
3

Cmin√
d

to conclude that

P[|||T2|||∞ ≥ α/3] ≤ 2 exp
(
−K

n

d3
+ log(p − d)

)
. (47)

Control of third term: Finally, in order to bound the third term T3, we apply the
bounds (45a) and (45b), both with δ =

√
α/3, and use the fact that log(d) ≤ log(p − d) to

conclude that

P[|||T3|||∞ ≥ α/3] ≤ 4 exp
(
−K

n

d3
+ log(p − d)

)
. (48)

Putting together all of the pieces, we conclude that

P[|||Qn
ScS(Qn

SS)−1|||∞ ≥ 1 − α/2] = O
(
exp(−K

n

d3
+ log(p))

)
.

as claimed.

6 Experimental results

We now describe experimental results that illustrate some consequences of Theorem 1, for
various types of graphs and scalings of (n, p, d). In all cases, we solved the ℓ1-regularized
logistic regression using special purpose interior-point code developed and described by Koh
et al. (2007).

We performed experiments for three different classes of graphs: four-nearest neighbor
lattices, (b) eight-nearest neighbor lattices, and (c) star-shaped graphs, as illustrated in
Figure 1. Given a distribution Pθ∗ of the Ising form (1), we generated random data sets
{x(1), . . . , x(n)} by Gibbs sampling for the lattice models, and by exact sampling for the
star graph. For a given graph class and edge strength ω > 0, we examined the performance
of models with mixed couplings, meaning θ∗st = ±ω with equal probability, or with positive
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(a) (b) (c)

Figure 1. Illustrations of different graph classes used in simulations. (a) Four-nearest
neighbor grid (d = 4). (b) Eight-nearest neighbor grid (d = 8). (c) Star-shaped graph
(d = Θ(p), or d = Θ(log(p))).

couplings, meaning that θ∗st = ω for all edges (s, t). In all cases, we set the regularization

parameter as λn = Θ(
√

log p
n

). Above the threshold sample size n predicted by Theorem 1,

this choice ensured correct model selection with high probability, consistent with the the-
oretical prediction. For any given graph and coupling type, we performed simulations for
sample sizes n scaling as n = 10βd log(p), where the control parameter β ranged from 0.1
to upwards of 2, depending on the graph type.

Figure 2 shows results for the 4-nearest-neighbor grid model, illustrated in Figure 1(a),
for three different graph sizes p ∈ {64, 100, 225}, with mixed couplings (panel (a)) and
attractive couplings (panel (b)). Each curve corresponds to a given problem size, and cor-
responds to the success probability versus the control parameter β. Each point corresponds
to the average of N = 200 trials. Notice how despite the very different regimes of (n, p)
that underlie each curve, the different curves all line up with one another quite well. This
fact shows that for a fixed degree graph (in this case deg = 4), the ratio n/ log(p) controls
the success/failure of our model selection procedure, consistent with the prediction of The-
orem 1. Figure 3 shows analogous results for the 8-nearest-neighbor lattice model (d = 8),
for the same range of problem size p ∈ {64, 100, 225}, as well as both mixed and attractive
couplings. Notice how once again the curves for different problem sizes are all well-aligned,
consistent with the prediction of Theorem 1.

For our last set of experiments, we investigated the performance of our method for a
class of graphs with unbounded maximum degree d. In particular, we constructed star-
shaped graphs with p vertices by designating one node as the spoke, and connecting it to
d < (p−1) of its neighbors. For linear sparsity, we chose d = ⌈0.1p⌉, whereas for logarithmic
sparsity we choose d = ⌈log(p)⌉. We again studied a triple of graph sizes p ∈ {64, 100, 225}
and Figure 4 shows the resulting curves of success probability versus control parameter
β = n/[10d log(p)]. Panels (a) and (b) correspond respectively to the cases of logarithmic
and linear degrees. As with the bounded degree models in Figure 2 and 3, these curves
align with one another, showing a transition from failure to success with probability one.
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Figure 2. Plots of success probability P[N̂±(r) = N (r), ∀r] versus the control parameter
β(n, p, d) = n/[10d log(p)] for Ising models on 2-D grids with four nearest-neighbor interac-
tions (d = 4). (a) Randomly chosen mixed sign couplings θ∗

st
= ±0.50. (b) All positive

couplings θ∗
st

= 0.50.
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Figure 3. Plots of success probability P[N̂±(r) = N±(r)] versus the control parameter
β(n, p, d) = n/[10d log(p)] for Ising models on 2-D grids with eight nearest-neighbor inter-
actions (d = 8). (a) Randomly chosen mixed sign couplings θ∗

st
= ±0.25. (b) All positive

couplings θ∗
st

= 0.25.
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Figure 4. Plots of success probability N̂±(r) = N±(r)] versus the control parameter
β(n, p, d) = n/[10d log(p)] for star-shaped graphs, in which d = Θ(p), for attractive cou-
plings. (a) Logarithmic growth in degrees. (b) Linear growth in degrees.

7 Conclusion

We have shown that a technique based on ℓ1-regularized logistic regression can be used
to perform consistent model selection in discrete graphical models, with polynomial com-
putational complexity and sample complexity logarithmic in the graph size. Our analysis
applies to the high-dimensional setting, in which both the number of nodes p and maximum
neighborhood sizes d are allowed to grow as a function of the number of observations n.
There are a number of possible directions for future work. For bounded degree graphs,
our results show that the structure can be recovered with high probability once n/ log(p) is
sufficiently large. Up to constant factors, this result matches known information-theoretic
lower bounds (Bresler et al., 2008, Santhanam and Wainwright, 2008). On the other hand,
our experimental results on graphs with growing degrees (star-shaped graphs) are consis-
tent with the conjecture that the logistic regression procedure exhibits a threshold at a
sample size n = Θ(d log p), at least for problems where the minimum value θ∗min stays
bounded away from zero. It would be interesting to provide a sharp threshold result for
this problem, to parallel the known thresholds for ℓ1-regularized linear regression, or the
Lasso (see Wainwright (2006)). Finally, the ideas described here, while specialized in this
paper to the pairwise binary case, are more broadly applicable to discrete graphical models
with a higher number of states; this is an interesting direction for future research.
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A Proofs for Section 4.1

In this section, we provide proofs of Lemmas 2, Lemma 3 and Lemma 4, previously stated
in Section 4.1.

A.1 Proof of Lemma 2

Note that any entry of W n has the form W n
u = 1

n

∑n
i=1 Z

(i)
u , where for i = 1, 2, . . . , n, the

variables

Z(i)
u := x

(i)
\r

{
x(i)

r − Pθ∗ [xr = 1 | x
(i)
\r ] + Pθ∗ [xr = −1 | x

(i)
\r ]
}

are zero-mean under Pθ∗, i.i.d., and bounded (|Z(i)
u | ≤ 2). Therefore, by the Azuma-

Hoeffding inequality (Hoeffding, 1963), we have, for any δ > 0, P [|W n
u | > δ] ≤ 2 exp

(
−nδ2

8

)
.

Setting δ = αλn

4 (2−α) , we obtain

P

[
2 − α

λn
|W n

u | >
α

4

]
≤ 2 exp

(
−Knλ2

n

)

for some constant K. Finally, applying a union bound over the indices u of W n yields

P

[
2 − α

λn

‖W n‖∞ >
α

4

]
≤ 2 exp

(
−Knλ2

n + log(p)
)
,

as claimed.

A.2 Proof of Lemma 3

Following a method of Rothman et al. (2008), we define the function G : R
d → R by

G(uS) := ℓ(θ∗S + uS ; {x(i)}) − ℓ(θ∗S ; {x(i)}) + λn (‖θ∗S + uS‖ − ‖θ∗S‖) . (49)

It can be seen from equation (24) that û = θ̂S−θ∗S minimizes G. Note also that G is convex,
and moreover G(0) = 0 by construction; therefore, we must have G(û) ≤ 0. Suppose that
we show that for some radius B > 0, and for u ∈ R

d with ‖u‖2 = B, we have G(u) > 0. We
then claim that ‖û‖2 ≤ B. Indeed, if û lay outside the ball of radius B, then the convex
combination tû + (1 − t)(0) would lie on the boundary of the ball, for an appropriately
chosen t ∈ (0, 1). By convexity,

G (tû + (1 − t)(0)) ≤ tG(û) + (1 − t)G(0) ≤ 0,

contradicting the assumed strict positivity of G on the boundary.
It thus suffices to establish strict positivity of G on the boundary of the ball with radius

B = Mλn

√
d, where M > 0 is a parameter to be chosen later in the proof. Let u ∈ R

d be
an arbitrary vector with ‖u‖2 = B. Recalling the notation W = ∇ℓ(θ∗; {x(i)}), by a Taylor
series expansion of the log likelihood component of G, we have

G(u) = W T
S u + uT

[
∇2ℓ(θ∗S + αu)

]
u + λn (‖θ∗S + uS‖ − ‖θ∗S‖) , (50)
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for some α ∈ [0, 1]. For the first term, we have the bound

|W T
S u| ≤ ‖WS‖∞‖u‖1 ≤ ‖WS‖∞

√
d ‖u‖2 ≤

(
λn

√
d
)2 M

4
, (51)

since ‖WS‖∞ ≤ λn

4 with probability converging to one from Lemma 2.
Applying the triangle inequality to the last term in the expansion (50) yields

λn‖θ∗S + uS‖1 − ‖θ∗S‖1 ≥ −λn‖uS‖1 ≥ −λn

√
d‖uS‖2 = −M

(√
dλn

)2
. (52)

Finally, turning to the middle Hessian term, we have

q∗ := Λmin(∇2ℓ(θ∗S + αu; {x(i)})) ≥ min
α∈[0,1]

Λmin(∇2ℓ(θ∗S + αuS ; {x(i)}))

= min
α∈[0,1]

Λmin

[
1

n

n∑

i=1

η(x(i); θ∗S + αuS)x
(i)
S (x

(i)
S )T

]

By a Taylor series expansion of η(x(i); ·), we have

q∗ ≥

Λmin

[
1

n

n∑

i=1

η(x(i); θ∗S)x
(i)
S (x

(i)
S )T

]
− max

α∈[0,1]
||| 1
n

n∑

i=1

η′(x(i); θ∗S + αuS)(uT
Sx

(i)
S )x

(i)
S (x

(i)
S )T |||2

= Λmin(Q∗
SS) − max

α∈[0,1]
||| 1
n

n∑

i=1

η′(x(i); θ∗S + αuS)(uT
Sx

(i)
S )x

(i)
S (x

(i)
S )T |||2

≥ Cmin − max
α∈[0,1]

||| 1
n

n∑

i=1

η′(x(i); θ∗S + αuS)(uT
Sx

(i)
S )x

(i)
S (x

(i)
S )T |||2

It remains to control the final spectral norm. For any fixed α ∈ [0, 1] and y ∈ R
d with

‖y‖2 = 1, we have

yT

{
1

n

n∑

i=1

η′(x(i); θ∗S + αuS)(uT
Sx

(i)
S )x

(i)
S (x

(i)
S )T

}
y =

1

n

n∑

i=1

η′(x(i); θ∗S + αuS)(uT
Sx

(i)
S )

[
x

(i)
S )T y

]2

≤ 1

n

n∑

i=1

∣∣∣η′(x(i); θ∗S + αuS)(uT
Sx

(i)
S )
∣∣∣
[
x

(i)
S )T y

]2

Now note that |η′(x(i); θ∗S + αuS)| ≤ 1, and |uT
Sx

(i)
S | ≤

√
d‖uS‖2 = Mλnd. Moreover, we

have ‖ 1
n

∑n
i=1

(
x

(i)
S )T y

)
≤ ‖ 1

n

∑n
i=1 x

(i)
S (x

(i)
S )T ‖2 ≤ Dmax by assumption. Combining these

pieces, we obtain

max
α∈[0,1]

||| 1
n

n∑

i=1

η′(x(i); θ∗S + αuS)(uT
Sx

(i)
S )x

(i)
S (x

(i)
S )T |||2 ≤ DmaxMλnd

≤ Cmin

2
,
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where the last inequality follows as long as λnd ≤ Cmin

2DmaxM
. We have thus shown that

q∗ := Λmin(∇2ℓ(θ∗S + αu; {x(i)})) ≥ Cmin

2
(53)

with probability converging to one, as long as λnd is sufficiently small.
Finally, combining the bounds (51), (52), and (53) in the expression (50), we conclude

that

G(uS) ≥
(
λn

√
d
)2
{
−1

4
M +

Cmin

2
M2 − M

}
.

This expression is strictly positive for M = 5/Cmin. Moreover, for this choice of M , we

have that λnd must be upper bounded by Cmin

2DmaxM
=

C2

min

10Dmax
, as assumed in the lemma

statement.

A.3 Proof of Lemma 4

We first show that the remainder term Rn satisfies the bound ‖Rn‖∞ ≤ Dmax‖θ̂S − θ∗S‖2
2.

Then the result of Lemma 3—namely, that ‖θ̂S − θ∗S‖2 = Op(λn

√
d)—can be used to con-

clude that ‖Rn‖∞
λn

= Op(λnd), which suffices to guarantee the claim of Lemma 4.
Focusing on element Rn

j for some index j ∈ {1, . . . , p}, we have

Rn
j =

[
∇2ℓ(θ̄(j);x) −∇2ℓ(θ∗;x)

]T
j

[θ̂ − θ∗]

=
1

n

n∑

i=1

[
η(x(i); θ̄(j)) − η(x(i); θ∗)

] [
x(i)(x(i))T

]T
j

[θ̂ − θ∗].

for some point θ̄(j) = tj θ̂ + (1 − tj)θ
∗. Setting g(t) = 4 exp(2t)

[1+exp(2t)]2 , note that η(x; θ) =

g(xr

∑
t∈V \r θrtxt). By the chain rule and another application of the mean value theorem,

we then have

Rn
j =

1

n

n∑

i=1

g′(¯̄θ(j)T x(i))(x(i))T [θ̄(j) − θ∗]
{

x
(i)
j (x(i))T [θ̂ − θ∗]

}

=
1

n

n∑

i=1

{
g′(¯̄θ(j)T x(i))x

(i)
j

}{
θ̄(j) − θ∗]T x(i)(x(i))T [θ̂ − θ∗]

}

where ¯̄θ(j) is another point on the line joining θ̂ and θ∗. Setting ai := {g′(¯̄θ(j)T x(i))x
(i)
j } and

bi := {[θ̄(j) − θ∗]T x(i)(x(i))T [θ̂ − θ∗]}2, we have

|Rn
j | =

1

n

∣∣∣∣∣

n∑

i=1

aibi

∣∣∣∣∣ ≤ 1

n
‖a‖∞‖b‖1.
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A calculation shows that ‖a‖∞ ≤ 1, and

1

n
‖b‖1 = tj [θ̂ − θ∗]T

{
1

n

n∑

i=1

x(i)(x(i))T

}
[θ̂ − θ∗]

= tj [θ̂S − θ∗S ]T

{
1

n

n∑

i=1

x
(i)
S (x

(i)
S )T

}
[θ̂S − θ∗S]

≤ Dmax‖θ̂S − θ∗S‖2
2,

where the second line uses the fact that θ̂Sc = θ∗Sc = 0. This concludes the proof.

B Proof of Lemma 7

Recall from the discussion leading up to the bound (42) that element (j, k) of the matrix
difference Qn − Q∗, denoted by Zjk, satisfies a sharp tail bound. By definition of the
ℓ∞-matrix norm, we have

P[|||Qn
ScS − Q∗

ScS |||∞ ≥ δ] = P[max
j∈Sc

∑

k∈S

|Zjk| ≥ δ]

≤ (p − d) P[
∑

k∈S

|Zjk| ≥ δ],

where the final inequality uses a union bound, and the fact that |Sc| ≤ p − d. Via another
union bound over the row elements, we have

P[|||Qn
ScS − Q∗

ScS |||∞ ≥ δ] ≤ (p − d) d P [|Zjk| ≥ δ/d] ,

from which the claim (45a) follows by setting ǫ = δ/d in the Hoeffding bound (42). The
proof of bound (45b) is analogous, with the pre-factor (p − d) replaced by d.

To prove the last claim (45c), we write

|||(Qn
SS)−1 − (Q∗

SS)−1|||∞ = |||(Q∗
SS)−1 [Q∗

SS − Qn
SS] (Qn

SS)−1|||∞
≤

√
d |||(Q∗

SS)−1 [Q∗
SS − Qn

SS] (Qn
SS)−1|||2

≤
√

d |||(Q∗
SS)−1|||2|||Q∗

SS − Qn
SS|||2|||(Qn

SS)−1|||2

≤
√

d

Cmin
|||Q∗

SS − Qn
SS |||2|||(Qn

SS)−1|||2.

From the proof of Lemma 5, in particular equation (43), we have

P

[
|||(Qn

SS)−1|||2 ≥ 2

Cmin

]
≤ 2 exp

(
−K δ2n

d2 + B log(d)
)

for a constants B. Moreover, from equation (43), we have

P[|||Qn
SS − QSS |||2 ≥ δ/

√
d] ≤ 2 exp

(
−K

δ2n

d3
+ 2 log(d)

)
,

so that the bound (45c) follows.
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