
Carnegie Mellon University
Research Showcase @ CMU

Institute for Software Research School of Computer Science

12-2014

Measuring and Modeling Programming
Experience
Janet Siegmund
Universitat Passau

Christian Kästner
Carnegie Mellon University

Jörg Liebig
Universitat Passau

Sven Apel
Universitat Passau

Stefan Hanenberg
Universitat Duisburg-Essen

Follow this and additional works at: http://repository.cmu.edu/isr

Part of the Software Engineering Commons

This Article is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been accepted for
inclusion in Institute for Software Research by an authorized administrator of Research Showcase @ CMU. For more information, please contact
research-showcase@andrew.cmu.edu.

Published In
Empirical Software Engineering, 19, 5, 1299-1334.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fisr%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/isr?utm_source=repository.cmu.edu%2Fisr%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fisr%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/isr?utm_source=repository.cmu.edu%2Fisr%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=repository.cmu.edu%2Fisr%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu


Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Measuring and Modeling Programming Experience

Janet Siegmund · Christian Kästner ·
Jörg Liebig · Sven Apel · Stefan
Hanenberg

Received: date / Accepted: date

Abstract Programming experience is an important confounding parameter in
controlled experiments regarding program comprehension. In literature, ways
to measure or control programming experience vary. Often, researchers neglect
it or do not specify how they controlled for it. We set out to find a well-defined
understanding of programming experience and a way to measure it. From
published comprehension experiments, we extracted questions that assess pro-
gramming experience. In a controlled experiment, we compare the answers of
computer-science students to these questions with their performance in solv-
ing program-comprehension tasks. We found that self estimation seems to be a
reliable way to measure programming experience. Furthermore, we applied ex-
ploratory and confirmatory factor analyses to extract and evaluate a model of
programming experience. With our analysis, we initiate a path toward validly
and reliably measuring and describing programming experience to better un-
derstand and control its influence in program-comprehension experiments.

1 Introduction

In software-engineering experiments, program comprehension is frequently mea-
sured, for example, for the evaluation of programming-language constructs or
software-development tools [3,9,18,22,35]. Program comprehension is an in-
ternal cognitive process that we cannot observe directly. Instead, we often
conduct controlled experiments, in which we observe the behavior of partici-
pants and draw conclusions about their program comprehension.

To conduct controlled experiments, we have to control for confounding
parameters, which influence the outcome of an experiment in addition to the
evaluated concept [21]. One important confounding parameter is programming
experience, which can be defined as “the amount of acquired knowledge re-
garding the development of programs, so that the ability to analyze and create
programs is improved”. The more experienced a participant, the better she un-
derstands a program compared to an inexperienced participant. (Accidentally)

Janet Siegmund (born Feigenspan), Jörg Liebig, and Sven Apel
University of Passau
E-mail: siegmunj@fim.uni-passau.de,joliebig@fim.uni-passau.de, apel@uni-passau.de

Christian Kästner
Carnegie Mellon University

Stefan Hanenberg
University of Duisburg-Essen
E-mail: stefan.hanenberg@icb.uni-due.de



2 Janet Siegmund et al.

assigning more experienced participants to one treatment can seriously bias
the results. Hence, programming experience should always be considered in
such kind of experiments.

However, there is no agreed way to measure programming experience. In-
stead, researchers use different, sometimes not specified, measures or do not
assess it at all. However, a common understanding of programming experience
can increase the validity of experiments and helps interpreting results.

Our goal is to evaluate how reliable different ways to measure program-
ming experience are. To this end, we conducted a controlled experiment, in
which participants completed a questionnaire that contained questions related
to programming experience based on a literature review. Additionally, partic-
ipants solved programming tasks. Then, we compared the performance in the
programming tasks with the answers in the questionnaire.

As a result, we identified two questions as an indicator for programming
experience using stepwise regression: Self-estimated programming experience
compared to class mates and self-estimated experience with logical program-
ming. Furthermore, we propose a five-factor model that describes program-
ming experience using exploratory and confirmatory factor analyses. The con-
tributions of this paper are the following:

– Literature review about the state of the art of measuring and controlling
the influence of programming experience.

– A questionnaire that contains common questions to measure programming
experience.

– Reusable experimental design to evaluate the questionnaire.
– Initial evaluation of this questionnaire with undergraduate students.
– Proposal and evaluation of two relevant questions to measure programming

experience.
– Proposal and evaluation of a model of programming experience.

This article is an extended version of the conference paper “Measuring
Programming Experience” presented at the International Conference on Pro-
gram Comprehension [17]. The first four contributions were already made in
the conference paper. In this version, we add an evaluation of the two rele-
vant questions to measure programming experience based on additional data
(Section 6.3). This way, we can confirm that the two questions are suitable in-
dicators for programming experience. Furthermore, we evaluate the extracted
model of programming experience with a confirmatory factor analysis, for
which we collected new data of 148 students (Section 7.2). Thus, we get a
better understanding of the nature of programming experience.

2 Literature Review

To get an overview of whether and how researchers measure programming
experience, we conducted a literature review based on the guidelines for sys-
tematic literature reviews provided by Kitchenham and Chartes [28]. We con-
sidered the years 2001 to 2010 of highly ranked conferences and journals in the
domain of (empirical) software engineering and program comprehension: Inter-
national Conference on Software Engineering (ICSE), European Software En-
gineering Conference/Symposium on the Foundations on Software Engineering
(FSE), International Conference on Program Comprehension (ICPC),1 In-
ternational Symposium on Software Engineering and Measurement (ESEM),2

1 ICPC was a workshop until 2005 (IWPC), which we also included.
2 ESEM first took place in 2007.



Measuring and Modeling Programming Experience 3

Years

Education

Self Estimation

Quesitonnaire

Size

Pretest

Supervisor

Not controlled

Not specified

0 5040302010

ESE

453525155

TOSEM
TSE
ICPC
ICSE
FSE
ESEM

Fig. 1: Overview of how programming experience is operationalized.

Empirical Software Engineering Journal (ESE), Transactions on Software En-
gineering (TSE), and Transactions on Software Engineering and Methodology
(TOSEM).

To extract the papers, we read title and abstract of each paper. If an experi-
ment with human participants was mentioned, we included the paper in our se-
lection. If the abstract was not conclusive, we skimmed the paper and searched
for the keywords (programming) experience, expert, expertise, professional,
participant, and participant, which are typical for program-comprehension ex-
periments. We extracted 288 (of 2161) papers. We read each paper of our se-
lection and excluded those papers that evaluated a concept too far away from
program comprehension (e.g., cost estimation of software projects). When un-
certain whether a concept was too far away, we discussed it until we reached
an agreement. The literature-review team consisted of the first author and a
research assistant. When still in doubt, we included the paper to have a broad
overview of the understanding of programming experience. The final selection
consists of 161 papers. An overview of our initial and final selection of papers
is available at the project’s website (http://fosd.net/PE/).

In the selected papers, we found several ways of managing programming
experience, which we divide into 9 categories (Fig. 1). The categories are not
disjoint; when authors combined indicators, the according paper counts for
each category.

1. Years: In many papers (47), the years a participant was programming at
all or programming in a company or certain language was used to mea-
sure programming experience. For example, Sillito and others assessed the
number of years a participant was programming professionally [35].

2. Education: The education of participants was used to indicate their expe-
rience in 19 of the reviewed papers. Education includes information such
as the level of education (e.g., undergraduate or graduate student) or the
grades of courses. For example, Ricca and others recruited undergradu-
ate students as low experience and graduate students as high-experience
participants [33].

3. Self estimation: In twelve papers, participants were asked to estimate their
experience themselves. For example, Bunse let his participants estimate
their experience on a five-point scale [9].

http://fosd.net/PE/


4 Janet Siegmund et al.

4. Unspecified questionnaire: Some authors applied a questionnaire to assess
programming experience (9 papers). For example, Erdogmus and others let
participants fill out a questionnaire before the experiment [14]. However,
it was not specified what the questionnaire looked like.

5. Size: The size of programs participants had written was used as an indicator
in six papers. For example, Müller [31] asked how many lines of code the
largest program has that participants have implemented.

6. Unspecified pretest: In three papers, a pretest was conducted to assess
the participants’ programming experience. For example, Biffl and Gross-
mann [7] used a pretest to create three groups of skill levels (excellent,
medium, little). However, it was not specified in the papers what the pretest
looked like.

7. Supervisor: In two papers, in which professional programmers were re-
cruited as participants, the supervising manager estimated the experience
of participants [3,23].

8. Not specified/not controlled: Often, the authors state that they measured
programming experience, but did not specify how. This was the case in
39 papers. Even more often (45 papers), programming experience was not
mentioned at all, which may threaten the validity of the corresponding
experiments.

Another interesting observation is that, in none of the papers, we found
a definition of programming experience, but authors only described how they
measured it. There seems to be an implicit consensus of what programming
experience is. To make this understanding explicit, we asked four programming
experts to define programming experience. In summary, most experts had dif-
ficulties finding a clear, explicit definition. During discussions, we encountered
similarities in the opinion, which we summarized in the following preliminary
definition:

“Programming experience describes the amount of acquired knowledge
regarding the development of programs, so that the ability to analyze
and create programs is improved.”

Note that experience and ability appear very similar, but differ slightly. Exper-
perience describes what developers have done and learned when programming,
not how good they were at it.

To summarize, the measurement of programming experience is diverse.
This could threaten the validity of experiments, because researchers use their
own definition of programming experience without validating it. Furthermore,
conducting meta analysis on these experiments is difficult, because the in-
fluence of programming experience is not clearly defined, making the results
across different experiments not comparable. To evaluate the measurement of
programming experience, we created a questionnaire based on the results of
the literature review.

3 Questionnaire

Most measurements of programming experience we found in literature can
be performed as part of a questionnaire. Only pretest and supervisor estima-
tion require additional effort, but are also rarely used in our analyzed papers.
Hence, we excluded both categories. Furthermore, we excluded the category
unspecified questionnaire, because the contents of questionnaires were not spec-
ified in our analyzed papers.

We designed a single questionnaire, which includes questions of the follow-
ing categories: years, education, self estimation, and size. For each category,



Measuring and Modeling Programming Experience 5

we selected multiple questions we found in literature. Additionally, we added
questions that we found in previous experiments to be related to programming
experience. This way, we aim at having a more exhaustive set of indicators for
programming experience and, consequently, a better definition of program-
ming experience. Some questions are specific to students; when working with
different participants (e.g., experts), they need to be adapted.

Our goal is to evaluate which questions from which categories have the
highest prediction power for programming experience. In the long run, we
plan to evolve our questionnaire (by removing questions with little prediction
power and potentially adding others) into a standard questionnaire.

In Table 1, we summarize our questionnaire. We also show the scale of
the answers, that is, how participants should answer the questions. In column
“Abbreviation”, we show the abbreviation of each question, which we use in
the remainder of this paper. The version of the questionnaire we used in our
experiment is available at the project’s website. Next, we explain each question
in detail.

3.1 Years

Questions of this category mostly referred to how many years participants
were programming in general and professionally. Programming in general in-
cludes the time when participants started programming, including hello-world-
like programs. Professional programming describes when participants earned
money for programming, which typically requires a certain experience level.
In our questionnaire, we asked both questions. We believe that both questions
are an indicator for programming experience, because the longer someone is
programming, the more source code she implemented and, thus, the higher
her programming experience should be.

3.2 Education

This category contains questions that assess educational aspects. We asked
participants to state the number of courses they took in which they imple-
mented source code and the year in which they enrolled (recoded into number
of years a participant has been enrolled). The number of courses roughly indi-
cates how much source code participants had implemented. With the years a
participant is studying, we get an indicator of the education level: The longer
a participant has been studying, the more experience she should have gained
through her studies.



6 Janet Siegmund et al.

T
a
b
le

1
:

Q
u

es
ti

o
n

s
to

a
ss

es
s

p
ro

g
ra

m
m

in
g

ex
p

er
ie

n
ce

.

S
o
u

rc
e

Q
u

es
ti

o
n

S
ca

le
A

b
b

re
v
ia

ti
o
n

Y
ea

rs
F

o
r

h
o
w

m
a
n
y

y
ea

rs
h

a
v
e

y
o
u

b
ee

n
p

ro
g
ra

m
m

in
g
?

In
te

g
er

y.
P

ro
g

F
o
r

h
o
w

m
a
n
y

y
ea

rs
h

a
v
e

y
o
u

b
ee

n
p

ro
g
ra

m
m

in
g

fo
r

la
rg

er
so

ft
-

w
a
re

p
ro

je
ct

s,
e.

g
.,

in
a

co
m

p
a
n
y
?

In
te

g
er

y.
P

ro
g
P

ro
f

E
d

u
ca

ti
o
n

W
h

a
t

y
ea

r
d

id
y
o
u

en
ro

ll
a
t

u
n

iv
er

si
ty

?
In

te
g
er

e.
Y

ea
rs

H
o
w

m
a
n
y

co
u

rs
es

d
id

y
o
u

ta
k
e

in
w

h
ic

h
y
o
u

h
a
d

to
im

p
le

m
en

t
so

u
rc

e
co

d
e?

In
te

g
er

e.
C

o
u

rs
es

S
el

f
es

ti
m

a
ti

o
n

O
n

a
sc

a
le

fr
o
m

1
to

1
0
,

h
o
w

d
o

y
o
u

es
ti

m
a
te

y
o
u

r
p

ro
g
ra

m
m

in
g

ex
p

er
ie

n
ce

?
1
:

v
er

y
in

ex
p

er
ie

n
ce

d
to

1
0
:

v
er

y
ex

p
er

ie
n

ce
d

s.
P

E

H
o
w

d
o

y
o
u

es
ti

m
a
te

y
o
u

r
p

ro
g
ra

m
m

in
g

ex
p

er
ie

n
ce

co
m

p
a
re

d
to

ex
p

er
ts

w
it

h
2
0

y
ea

rs
o
f

p
ra

ct
ic

a
l

ex
p

er
ie

n
ce

?
1
:

v
er

y
in

ex
p

er
ie

n
ce

d
to

5
:

v
er

y
ex

p
er

ie
n

ce
d

s.
E

x
p

er
ts

H
o
w

d
o

y
o
u

es
ti

m
a
te

y
o
u

r
p

ro
g
ra

m
m

in
g

ex
p

er
ie

n
ce

co
m

p
a
re

d
to

y
o
u

r
cl

a
ss

m
a
te

s?
1
:

v
er

y
in

ex
p

er
ie

n
ce

d
to

5
:

v
er

y
ex

p
er

ie
n

ce
d

s.
C

la
ss

M
a
te

s

H
o
w

ex
p

er
ie

n
ce

d
a
re

y
o
u

w
it

h
th

e
fo

ll
o
w

in
g

la
n

g
u

a
g
es

:
J
a
v
a
/
C

/
H

a
sk

el
l/

P
ro

lo
g

1
:

v
er

y
in

ex
p

er
ie

n
ce

d
to

5
:

v
er

y
ex

p
er

ie
n

ce
d

s.
J
a
v
a
/
s.

C
/
s.

H
a
sk

el
l/

s.
P

ro
lo

g
H

o
w

m
a
n
y

a
d

d
it

io
n

a
l

la
n

g
u

a
g
es

d
o

y
o
u

k
n

o
w

(m
ed

iu
m

ex
p

er
i-

en
ce

o
r

b
et

te
r)

?
In

te
g
er

s.
N

u
m

L
a
n

g
u

a
g
es

H
o
w

ex
p

er
ie

n
ce

d
a
re

y
o
u

w
it

h
th

e
fo

ll
o
w

in
g

p
ro

g
ra

m
m

in
g

p
a
ra

d
ig

m
s:

fu
n

ct
io

n
a
l/

im
p

er
a
ti

v
e/

lo
g
ic

a
l/

o
b

je
ct

-o
ri

en
te

d
p

ro
-

g
ra

m
m

in
g
?

1
:

v
er

y
in

ex
p

er
ie

n
ce

d
to

5
:

v
er

y
ex

p
er

ie
n

ce
d

s.
F

u
n
ct

io
n

a
l/

s.
Im

p
er

a
ti

v
e/

s.
L

o
g
ic

a
l/

s.
O

b
je

ct
O

ri
en

te
d

S
iz

e
H

o
w

la
rg

e
w

er
e

th
e

p
ro

fe
ss

io
n

a
l

p
ro

je
ct

s
ty

p
ic

a
ll
y
?

N
A

,
<

9
0
0
,

9
0
0
-4

0
0
0
0
,

>
4
0
0
0
0

z.
S

iz
e

O
th

er
H

o
w

o
ld

a
re

y
o
u

?
In

te
g
er

o
.A

g
e

In
te

g
er

:
A

n
sw

er
is

a
n

in
te

g
er

;
T

h
e

a
b
b

re
v
ia

ti
o
n

o
f

ea
ch

q
u

es
ti

o
n

en
co

d
es

a
ls

o
th

e
ca

te
g
o
ry

to
w

h
ic

h
it

b
el

o
n

g
s.



Measuring and Modeling Programming Experience 7

3.3 Self Estimation

In this category, participants were asked to estimate their own experience
level. We included several questions in this category. With the first question,
we asked participants to estimate their programming experience on a scale
from 1 to 10. We did not clarify what we mean by programming experience,
but let participants use their intuitive definition of programming experience
to not use a definition that felt unnatural. We used a 10-point scale to have a
fine-grained estimation. In the remaining questions, we used a five-point scale,
because we think that a coarse-grained estimation is better for participants to
estimate their experience in these more specific questions.

Next, we asked participants to relate their programming experience to
experienced programmers and their class mates to let participants think more
thoroughly about their level of experience.

Additionally, we asked participants how familiar they are with certain pro-
gramming languages. We chose Java, C, Haskell, and Prolog, because these are
common and are taught at the universities our participants were enrolled at.
The more programming languages developers are familiar with, the more they
have learned about programming in general and their experience should be
larger. Furthermore, experience with the underlying programming language of
the experiment can be assessed. Beyond that, we asked participants to list the
number of programming languages in which they are experienced at least to
a medium level. The same counts for familiarity with different programming
paradigms.

3.4 Size

We asked participants with professional experience about the size of their
projects. We used the categorization into small, medium, and large based
on the lines of code according to van Mayrhauser and Vans [38]. Since with
increasing size, software systems tend to get more complex, a larger size may
also mean higher programming experience.

In addition, we also included the age of participants in the questionnaire,
because the older participants are, the more time they had to increase their
programming experience. This way, we aim at having a more exhaustive un-
derstanding of programming experience.

4 Empirical Validation

Constructing and validating a questionnaire is a long and tedious endeavor
that requires several (replicated) experiments [32]. In this paper, we start this
process.

To this end, we use a two-step approach: First, we recruited undergrad-
uate computer-science students and compared their answers in the question-
naire with performance in tasks that are related to programming experience.
Based on these data, we extracted questions of the questionnaire that showed
a sufficient correlation to programming experience (in terms of performance
in programming tasks).

Second, we compared the answers of undergraduate and graduate students
in the questionnaire. Since graduate students have more programming experi-
ence than undergraduate students, the extracted questions should reflect the
difference in programming experience—otherwise, they cannot differentiate
between the experience level of graduate and undergraduate students.



8 Janet Siegmund et al.

We recruited students, because we found in our review that they are of-
ten recruited as participants in software-engineering experiments. Hence, they
represent an important sample. Furthermore, students can be comparable to
experts under certain conditions [24,37].

Since we recruit students, we expect only little variation for some questions
(e.g., o.Age). We asked these questions anyway to have a more exhaustive data
set. Of course, further experiments with different groups of participants (e.g.,
professional programmers) are necessary. To this end, our experimental design
can be reused, which we plan to do in future work.

To present our experiment, we use the guidelines suggested by Jedlitschka
and Ciolkowski [27]. For brevity, we describe only necessary details to under-
stand our experiment. More information (e.g., tasks, overview of statistical
analysis) is available at the project’s website.

4.1 Objective

With our experiment, we aim at evaluating how the questions relate to pro-
gramming experience. To this end, we need an indicator for programming ex-
perience to which we can compare the answers of our programming-experience
questionnaire. Hence, we designed programming tasks that participants should
solve in a given time. For each task, we measure whether participants solve a
task correctly and how long they need to complete a task. This operationaliza-
tion of programming experience is based on two assumptions: First, the more
experienced participants are, the more tasks they solve correctly. Since expe-
rienced participants have seen more source code compared to inexperienced
participants, they should have less trouble in analyzing what source code does
and, hence, solve more tasks correctly. Second, experienced participants are
faster in analyzing source code, because they have done it more often and
know better what to look for.

As we are starting the validation, we have no hypotheses about how our
questions relate to the performance in the programming tasks.

4.2 Material

We designed 10 program-comprehension tasks which we presented in a fixed
order. We gave participants source code and asked what executing this code
would print. To succeed, participants had to mentally simulate the code—
executing or editing it was not possible. Furthermore, participants had to
explain what the source code is doing. In Figure 2, we show the source code of
the first task to give an impression (all other tasks are available on the project’s
website). The source code sorts an array of numbers, so the correct answer is
5, 7, 14. The remaining tasks were roughly similar: Two tasks were about a
stack, five about a linked list, one involved command-line parameters, and the
last was a bug-fixing task. An answer was correct when it matches the outcome
of the given program, ignoring whitespace. When an answer diverged from the
expected result, a programming expert looked at participants’ explanation of
the source code and decided whether the answer could be counted as correct.

To match the average experience level of undergraduate students (who we
recruited as participants), we selected typical algorithms presented in introduc-
tory programming lectures. Of course, these simple tasks are not appropriate
in every context, for example, when working with graduate students or pro-
fessional programmers. Furthermore, not letting participants execute the code
limits external vaildity. However, while running a program and having sophis-
ticated tool support may help with understanding source code, programmers



Measuring and Modeling Programming Experience 9

1 public class Class1 {
2 public static void main(String[] args) {
3 int array[] = {14,5,7};
4 for (int counter1 = 0; counter1 < array.length; counter1++) {
5 for (int counter2 = counter1; counter2 > 0; counter2--) {
6 if (array[counter2 - 1] > array[counter2]) {
7 int variable1 = array[counter2];
8 array[counter2] = array[counter2 - 1];
9 array[counter2 - 1] = variable1;

10 }
11 }
12 }
13 for (int counter3 = 0; counter3 < array.length; counter3++)
14 System.out.println(array[counter3]);
15 }
16 }

Fig. 2: Source code for the first task.

still have to read code by themselves for understanding. Additionally, while
large tasks are usually preferable, an experiment with large tasks is not easy
to conduct and unlikely fits into a university schedule.

To identify highly experienced participants among second-year undergrad-
uate students (since some students start programming before their study), we
included two tasks that required a higher experience level: In Task 9, we used
command-line parameters, which are not typically taught at undergraduate
level. In the last task, we use source code of MobileMedia, a software for ma-
nipulating multi-media data on mobile devices [20]. It consists of 2 800 lines
of code in 21 classes. We expected that only highly experienced participants
should be able to complete this task. All source code was in Java, the language
that participants were most familiar with.

We had 10 tasks so that only experienced participants would be able to
complete all tasks in the given time, which we confirmed in a pretest with
PhD students from the University of Magdeburg. This way, we can better
differentiate between high and low experienced participants. To make sure that
participants are not disappointed with their performance in the experiment,
we explained that they would not be able to solve all tasks, but should simply
proceed as far as possible within given time.

To present the questionnaire, tasks, and source code, we used our tool
infrastructure PROPHET3, which we designed to conduct comprehension ex-
periments [19]. It lets participants enter answers, logs the time participants
spend on each task, and logs the behavior of participants (e.g., opening files).
This way, we control the influence of participants’ familiarity with an IDE.
There may be other confounding parameters, such as intelligence or ability;
however, with our large sample, the influence of these confounders should be
ruled out.

4.3 Participants

Participants came from the University of Passau (27), Philipps University
Marburg (31), and University of Magdeburg (70), so we had 128 participants
in total. All universities are located in Germany. Participants from Passau
and Marburg were in the end of their third semester and attended a course
on software engineering. Participants from Magdeburg were at the beginning
of their fourth semester and from different courses. The level of education

3 http://www.infosun.fim.uni-passau.de/spl/janet/prophet/

http://www.infosun.fim.uni-passau.de/spl/janet/prophet/


10 Janet Siegmund et al.

of all participants was comparable, because no courses took place between
semesters and participants had to complete similar courses at all universi-
ties. Thus, we reduced the variation of programming experience, which makes
it easier to reveal possible relationships between questions in the question-
naire and answers to tasks. Since this is the first experiment to evaluate the
programming-experience questionnaire, restricting the sample to a homoge-
neous group is a legitimate step. We discuss resulting limitations of external
validity in Section 8.

All students were offered different kinds of bonus points for their course
(e.g., omitting one homework assignment) for participating in the experiment
independent of their performance. All students participated voluntarily, were
aware that they took part in an experiment, and could quit anytime. Data was
logged anonymously.

Since we recruited participants from different universities, we actually have
different samples. However, only the question s.ClassMates is specific for each
university, because participants can only compare themselves to the students of
their university. A Kruskal-Wallis test for s.ClassMates revealed no significant
differences between the three universities (χ2 = 1.275, df = 2, p = 0.529) [1].
Furthermore, we selected the tasks to be typical examples of what students
learn in introductory programming courses at their universities. Hence, we can
treat our three samples as one sample.

To control for cognitive bias, that is, that students over- or underestimate
their experience, we asked our subjects to do their best effort in giving correct
and honest answers. Furthermore, since our sample is large, we assume that
over/underestimation behave like a random variable and, thus, cancel each
other out.

4.4 Execution

The experiments took place in January and April 2011 at the Universities of
Passau, Marburg, and Magdeburg as part of a regular lecture session. First, we
let participants complete the programming-experience questionnaire without
knowing its specific purpose. Then, we gave participants an introduction about
the general purpose and proceeding of the experiment, without revealing our
goal. The introduction was given by the same experimenter each time. After
all questions were answered, participants worked on the tasks on their own.
They were told to work as quickly and as correctly as possible. Since we had
time constraints, the time limit for the experiment was set to 40 minutes. After
time ran out, participants were allowed to finish the task they were currently
working on. Two to three experimenters checked that participants worked as
planned. After the experiment, we revealed the purpose of this experiment to
participants.

4.5 Deviation

The presentation of the programming-experience questionnaire had a bug, such
that we could not measure s.PE for all participants. Hence, we only have the
answer of 70 out of 128 participants for this question.

5 Experiment Results

First, we describe descriptive statistics to get an overview of our data. Sec-
ond, we present how each question correlates with the performance in the



Measuring and Modeling Programming Experience 11

Table 2: Overview of response time for each task.

Response time
Variable Distribution Mean N Correct

Task 1 ●●●●●●●● 4.44 124 70

Task 2 ●●●● ●● 3.65 123 90

Task 3 ● ●● 5.02 121 97

Task 4 ● 6.17 117 22

Task 5 ● ● 4.06 118 46

Task 6 ● 4.72 111 40

Task 7 ●●● ●●● ● 2.34 92 31

Task 8 ● ●●● ● 4.1 82 69

Task 9 ●● 1.94 78 11

Task 10 ● 9.64 30 22

0 5 10 15 20 25

N: number of participants who completed this task;
Correct: number of participants with correct solution.

tasks. This way, we get an impression of how important each question is as an
indicator for programming experience in our sample.

5.1 Means and Standard Deviations

In Table 2, we give an overview of how participants solved the tasks. Column
“Mean” contains the average time in minutes of participants who completed
a task. Since not all participants finished all tasks, they cannot be interpreted
across tasks. We discuss the most important values. Task 10 took the longest
time to complete (on average, 9.6 minutes). This is caused by the large un-
derlying size of the source code for the last task with over 2 800 lines of code.
To solve Task 9, participants needed on average 1.9 minutes; most likely, be-
cause its source code consisted of only 10 lines. Furthermore, only 11 partici-
pants solved it correctly. To solve this task, participants must be familiar with
command-line parameters, which is not typical for the average second-year un-
dergraduate student. Considering the correctness of Task 4, we see that only
22 participants solved this task correctly. In this task, elements were added
to an initially empty linked list, such that the list is sorted in a descending
order after the insertion. In most of the wrong answers, we found that the
order of the elements was wrong. We believe that participants did not analyze
the insert algorithm thoroughly enough and assumed an ascending order of
elements.

In Fig. 3, we show the number of correctly solved tasks per participant. As
we expected, none of our participants solved more than eight tasks correctly.
(cf. Section 4.2). Especially the last two tasks (Task 9: command-line param-
eters; Task 10: 2,800 lines of code) required an experience level beyond that
of second-year undergraduate students. More than half of the students (72)
solved two to four tasks correctly. Taking into account the time constraints
(40 minutes to solve 10 tasks), it is not surprising that the number of tasks
that a student solved correctly lies in this interval.

In Table 3, we show the answers participants gave in our questionnaire. The
median for s.PE varies between 2 and 3, which we would expect from second-
year undergraduate students. In general, participants felt very inexperienced
with logical programming and experienced with object-oriented programming.
The median of how long participants are programming is 4 years, but only few



12 Janet Siegmund et al.

0 1 2 3 4 5 6 7 8

Number of correct answers

F
re

qu
en

cy

0
5

10
15

20
25

30

Fig. 3: Frequencies of number of correct answers.

Table 3: Overview of answers in questionnaire.

No. Question Distribution N

1 s.PE 70

2 s.Experts 126

3 s.ClassMates 127

4 s.Java 124

5 s.C 127

6 s.Haskell 128

7 s.Prolog 128

8 s.NumLanguages 0 ●●●6 118

9 s.Functional 127

10 s.Imperative 128

11 s.Logical 126

12 s.ObjectOriented 127

13 y.Prog 0 ●● ●● ●● ●● 25 123

14 y.ProgProf 0 ●● ● ●●● ●● ● ●● ●●● ●● ● ●●● ●● ● ●● ●●● 7 127

15 e.Years 0 ●●● ●● ●● ●●● ●● 9 126

16 e.Courses 0 ●● ● ●●● ●● ● ●20 123

17 z.Size 128

18 o.Age 19 ● ●● ●●●●● ● ● ●●● ●● ●●●●● ● ● 40 128

participants said they were programming for more than 10 years. Although
participants took an undergraduate course, some participants were enrolled for
more than 3 years,4 which could also explain why some participants completed
numerous courses in which they had to implement source code.

5.2 Correlations

In Table 4, we give an overview of the correlation of the number of correct
answers with the answers of the questionnaire. Since we correlate ordinal data,
we use the Spearman rank correlation [1]. For about half of the questions of
self estimation, we obtain small to strong correlations.5 The highest correlation
with number of correct answer has s.PE. The lowest significant correlation is
with s.NumLanguages. Regarding y.Prog and y.ProgProf, we have medium
correlations with the number of correct answers. E.Years does not correlate

4 The German system allows students to take courses in a flexible order and timing.
5 Small: ±0.1 to ±0.3; medium: ±0.3 to ±0.5; strong: ±0.5 to ±1 [10].



Measuring and Modeling Programming Experience 13

Table 4: Spearman correlations of number of correct answers with answers
in questionnaire.

No. Question ρ N

1 s.PE .539 70
2 s.Experts .292 126
3 s.ClassMates .403 127
4 s.Java .277 124
5 s.C .057 127
6 s.Haskell .252 128
7 s.Prolog .186 128
8 s.NumLanguages .182 118
9 s.Functional .238 127

10 s.Imperative .244 128
11 s.Logical .128 126
12 s.ObjectOriented .354 127
13 y.Prog .359 123
14 y.ProgProf .004 127
15 e.Years -.058 126
16 e.Courses .135 123
17 z.Size -.108 128
18 o.Age -.116 128

ρ: Spearman correlation; N: number of participants;
gray cells denote significant correlations (p < .05).

with the number of correct answers. For the remaining questions, we do not
observe significant correlations.

For completeness, we show the correlations of response time with each of
the questions of our questionnaire in Table 5. Only 23 correlations, of 180,
are significant, which is in the range of coincidence, given the common α level
of 0.05. Since there are so many correlations, a meaningful interpretation is
impossible without further analysis, for example a factor analysis. However,
such analysis typically requires a large number of participants. Since we have
a decreasing number of participants with each task, we leave analyzing the
response times for future experiments. We discuss resulting limitations in Sec-
tion 8.

6 Which Questions Measure Programming Experience?

In this section, we apply stepwise regression to find the most relevant questions
to measure programming experience. For this analysis, we excluded question
s.PE, because only 70 participants answered this question (cf. Section 4.5).
Alternatively, we could have removed participants who did not answer this
question from the analysis, but this would have made our sample too small
for the exploratory analysis. Furthermore, we only use the number of correct
answers as an indicator for program comprehension, but not time, since only
few participants completed all tasks. We decided not to compute the average
response time for a task or to analyze the response times for each task, because
that would be too inaccurate.

6.1 Overview of Stepwise Regression

So, which questions are the best indicators for programming experience? The
first obvious selection criterion is to include all questions that have at least
a medium correlation (> .30) with the number of correctly solved task, be-
cause they are typically considered relevant. However, the questions themselves
might correlate with each other. For example, the s.ClassMates correlates with



14 Janet Siegmund et al.

Table 5: Spearman correlations of response times for each task with answers
in questionnaire.

Question 1 2 3 4 5 6 7 8 9 10 N

s.PE -.279 -.417 -.042 .004 -.002 .016 .014 -.182 .071 .085 68 – 27
s.Experts -.300 -.177 .047 -.026 .006 -.075 -.217 -.004 .206 .131 122 – 40
s.ClassMates -.189 -.401 -.084 -.065 -.053 -.059 -.163 -.061 .161 .100 123 – 40
s.Java .029 -.066 -.154 -.022 -.066 .003 -.040 .145 -.170 -.222 105 – 34
s.C -.175 -.124 .018 .027 .126 -.108 -.056 -.052 .043 .108 123 – 40
s.Haskell -.171 -.109 -.144 -.113 -.014 -.216 -.153 -.183 .019 .158 124 – 40
s.Prolog -.174 -.141 -.079 -.104 -.027 -.039 .076 -.239 -.047 .146 124 – 40
s.NumLanguages -.295 -.339 -.131 -.121 -.027 -.103 -.035 -.090 .232 .168 115 – 34
s.Functional -.148 -.150 -.150 -.004 -.017 -.204 -.120 -.217 .027 .175 123 – 40
s.Imperative -.283 .331 -.033 -.089 -.06 -.129 -.296 -.156 .126 .043 124 – 40
s.Logical -.209 -.105 -.158 -.136 -.022 -.014 .058 -.257 -.191 .108 122 – 40
s.ObjectOriented -.084 -.232 -.008 .012 -.093 -.034 .025 -.060 .156 .082 123 – 40

y.Prog -.241 -.379 -.144 -.071 .010 -.113 -.258 -.159 .273 .180 120 – 38
y.ProgProf -.217 -.196 -.012 -.119 -.130 .071 -.274 -.022 .044 -.010 123 – 39

e.Years -.032 .001 .018 -.152 .059 .047 -.119 .037 -.092 -.173 122 – 40
e.Courses -.146 -.088 -.040 -.062 .071 .028 -.053 -.004 .268 .058 120 – 38

z.Size -.155 -.160 -.057 -.134 .059 .003 -.201 .046 .000 -.023 124 – 40
o.Age .036 .014 .110 .082 .131 .102 -.081 .090 .059 .010 124 – 40

N: highest and smallest number of participants depending on the task;
Gray cells denote significant correlations (p < .05).

s.ObjectOriented with 0.552. Hence, we can assume both questions are not in-
dependent from each other. If we used both questions as indicators, we would
overestimate the relationship of both questions with programming experience;
that is, we would count the common part of both questions twice, although
we should count it only once.

To account for the correlations between questions, we use stepwise regres-
sion [30]. Stepwise regression builds a model of the influence of the questions
on the number of correct answers in a stepwise manner. It starts by including
the question with the highest correlation, which, in our case, is s.ClassMates.
Then, it considers the question with the next highest correlation, which is
y.Prog. Using this question, it computes the partial correlation with the num-
ber of correct answers, describing the correlation of two variables cleaned from
the influence of a third variable [11]. Thus, the correlation of y.Prog with the
number of correct answers, cleaned from the influence of s.ClassMates, is com-
puted. If this partial correlation is high enough, the question is included, else
it is excluded. The goal is to include questions with a high partial correlation
with the number of correct answers, such that as few questions as possible are
selected to have a model as parsimonious as possible. This is repeated with all
questions of the questionnaire.

6.2 Results and Interpretation

In Table 6, we show the results for our questionnaire. With stepwise regres-
sion (specifically, we used stepwise as inclusion method), we extracted two
questions: Experience with logical programming (s.Logical) and self-estimated
experience compared to class mates (s.ClassMates). The higher the Beta value,
the larger the influence of a question on the number of correctly solved tasks.
The model is significant (F2,45 = 8.472, p < .002) and the adjusted R2 is 0.241,
meaning that we explain 24.1 % of the variance in the number of correct an-
swers with our model (explaining the meaning of the values exceeds the scope
of this paper; see [30]).



Measuring and Modeling Programming Experience 15

Table 6: Resulting model of stepwise regression.

Question Beta t p value

s.ClassMates .441 3.219 .002
s.Logical .286 2.241 .030

Hence, the result of the stepwise-regression algorithm is that the questions
s.ClassMates and s.Logical contribute most to the number of correct answers:
The higher participants estimate their experience compared to class mates
and their experience with logical programming, the more tasks they solve cor-
rectly. We believe that stepwise regression extracted s.ClassMates, and not
s.Experts, because we recruited students as participants and the tasks are
taken from introductory programming lectures. Hence, if a participant esti-
mates her experience better than her class mates, she should be better in
solving the tasks.

Why was s.Logical extracted and not s.Java, which is closer to our ex-
periment? We believe that the reason is that our participants learn Java as
one of their first programming language and feel somewhat confident with it.
In contrast, learning a logical programming language is only a minor part of
the curriculum of all three universities. Hence, if students estimate that they
are familiar with logical programming, they may have an interest in learning
other ways of programming and pursue it, which increases their programming
experience.

The model received from stepwise regression describes Beta values, which
are weights for each question. For example, if a participant estimates a 4
in s.ClassMates (more experienced than class mates) and a 2 in s.Logical
(unfamiliar with logical programming), the resulting value for programming
experience is 0.441 ∗ 4 + 0.286 ∗ 2 = 2.336 (we omitted a constant to add as
part of the model for simplicity).

Hence, we have identified two questions that explain 24.1 % of the variance
of the number of correct answers. We could include more questions to im-
prove the amount of explained variance, but none of the questions contribute
a significant amount of variance. Since a model should be parsimonious, step-
wise regression excluded all other questions. Thus, for our sample, these two
questions provide the best indicators for programming experience.

6.3 Evaluation of Extracted Questions

To evaluate whether both questions measure programming experience also
in other samples, we consulted further data sets of 110 new participants in
total. In our previous experiments regarding program comprehension, we al-
ways used variants of the programming-experience questionnaire [15,16,18,
34] (also available at all the projects’ websites: http://www.infosun.fim.

uni-passau.de/spl/janet/). As participants, we mostly recruited graduate
students (third-year undergraduate students also participated, but for bet-
ter readability, we only use the term graduate students in this section), who
typically have more programming experience than undergraduate students.
Thus, the programming-experience value based on s.ClassMates and s.Logical
should differ between the second-year undergraduate students of the current
experiment and the graduate students of the previous experiments.

In Table 7, we compare the answers to both questions and the resulting
programming-experience values computed as combination of both questions
according to stepwise regression (i.e., 0.441∗s.ClassMates + 0.286∗s.Logical)
of both data sets. For s.ClassMates, the graduate students estimate their ex-

http://www.infosun.fim.uni-passau.de/spl/janet/
http://www.infosun.fim.uni-passau.de/spl/janet/


16 Janet Siegmund et al.

Table 7: Overview of answers in questionnaire.

Data set Question Distribution N U p value

Undergraduate
s.ClassMates

123
2909 0.000

Graduate 110

Undergraduate
s.Logical

123
6451 0.467

Graduate 110

Undergraduate
Programming experience

123
2943 0.000

Graduate 110

0 1 2 3 4 5

perience higher than undergraduate students. For s.Logical, the experience
of graduate and undergraduate students appears comparable. The resulting
programming-experience value of the graduate students appears to be higher
compared to the undergraduate students. A Mann-Whitney-U test shows that
the differences for s.ClassMates and programming experience are significant,
but not for s.Logical. This is also reflected in the results of stepwise regres-
sion, such that s.Logical has a lower beta value and, hence, a lower influence.
Thus, both questions combined can differentiate between the experience level
of undergraduate and graduate students. In future work, it is interesting to
evaluate whether the predictive power of s.ClassMates alone also suffices to
describe programming experience.

It may seem odd that graduate students estimate better programming
experience than their class mates compared to undergraduate students. We
believe that graduate students feel more confident with programming than
undergraduate students, because they worked with more source code. This
higher confidence is reflected in the estimated programming experience com-
pared to class mates.

7 Model of Programming Experience

In the previous section, we extracted two questions to measure programming
experience in the specific setting of our experiments. The goal was to develop
an easy-to-apply instrument to reliably measure programming experience. In
this section, we start the development of a model that describes program-
ming experience. We abstract from the focus of the experiments and target a
general understanding of the underlying factors that influence programming
experience. This way, we hope to get a better, more general understanding
of programming experience and its influence as confounding parameter for
program-comprehension experiments. Furthermore, we get an impression of
what kind of questions are relevant to measure programming experience in
other experimental settings. In the long run, we hope to ease the process of
selecting questions to conveniently and reliably measure programming expe-
rience in different experimental settings, and, thus, increase the validity and
comparability of experimental results.

To develop the model, we use a two-stage approach: First, we use ex-
ploratory factor analysis to extract a model of programming experience from
the data (Section 7.1). Second, we use confirmatory factor analysis on a new
data set to evaluate whether the extracted model is general or rather appeared
randomly (Section 7.2).

The results of both factor analyses indicate that a five-factor model appears
to best describe programming experience.



Measuring and Modeling Programming Experience 17

Table 8: Factor loadings of variables in questionnaire.

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

s.C .723
s.ObjectOriented .700 .403
s.Imperative .673 .333 .303
s.Experts .600 .326
s.Java .540 .427

y.ProgProf .859
z.Size .764
s.NumLanguages .335 .489 .403
s.ClassMates .449 .403 .424

s.Functional .880
s.Haskell .879

e.Courses .795
e.Years -.460 .573
y.Prog .493 .554

s.Logical .905
s.Prolog .883

Gray cells denote main factor loadings.

7.1 Exploratory Factor Analysis

To extract a model of programming experience, we conducted an exploratory
factor analysis [2]. The goal is to reduce a number of observed variables to
a small number of underlying latent variables or factors (i.e., variables that
cannot be observed directly). To this end, the correlations of the observed
variables are analyzed to identify groups of variables that correlate among each
other. For example, the experience with Haskell and functional programming
are very similar and might be explained by a common underlying factor. The
result of an exploratory factor analysis is a number of factors that summarize
observed variables into groups. However, the meaning of the factors is not a
result of the analysis, but relies on interpretation.

In Table 8, we show the results of our exploratory factor analysis. The
numbers in the table denote correlations or factor loadings of the variables in
our questionnaire with identified factors. By convention, factor loadings that
have an absolute value of smaller than .32 are omitted, because they are too
small to be relevant [12]. There are main loadings, which are the highest factor
loading of one variable, and cross loadings, which are all other factor loadings of
a variable that have an absolute of more than .32. The higher the main loading
and the smaller the number of cross loadings, the more unambiguously the
influence of one factor on a variable is. If a variable has many cross loadings,
it is unclear what it exactly measures and more investigations on this variable
are necessary in subsequent experiments.

The first factor of our analysis summarizes the variables s.C, s.Object-
Oriented, s.Imperative, s.Experts, and s.Java. This means that these variables
have a high correlation amongst each other and can be described by this
factor. Except for s.Experts, this seems to make sense, because C and Java
and the corresponding paradigms are similar and often taught at universities.
We conjecture that s.Experts also loads on this factor, because it explains the
confidence level with mainstream programming languages. We can name this
factor experience with mainstream languages.

The second factor contains the variables y.ProgProf, z.Size, s.NumLan-
guages, and s.ClassMates. These variables fit together well, because the longer
a participant is programming professionally, the more likely she has worked



18 Janet Siegmund et al.

with large projects and the more languages she has encountered. Additionally,
since it is not typical for second-year undergraduates to program professionally,
participants who have programmed professionally estimate their experience
higher compared to their class mates. We can name this factor professional
experience.

Factors three and five group s.Functional/s.Haskell and s.Logical/s.Prolog
in an intuitive way. Hence, we name these factors functional experience and
logical experience.

The fourth factor summarizes the variables e.Courses, e.Years, and y.Prog,
which are all related to the participant’s education. We can name this factor
experience from education.

Now, we have to take a look at the cross loadings. As an example, we look
at e.Years, which also loads on functional experience with −0.460. This means
that part of this variable can also be explained by this factor. Unfortunately,
we cannot unambiguously define to which factor this variable belongs best, we
can only state e.Years has a higher loading on factor experience from education.
This could also mean that we need two factors to explain this variable. How-
ever, with a factor analysis, we are looking for a parsimonious model without
having more relationships than necessary.

To summarize the exploratory factor analysis, we extracted five factors:
experience with mainstream languages, professional experience, functional ex-
perience, experience from education, and logical experience that summarize the
questions of our questionnaire in our sample.

The next step after an exploratory analysis is a confirmatory analysis. In a
confirmatory analysis, we aim at confirming the model we received, which has
to be done with another data set. If we used the same data set, we could not
show that our model is valid in general, but for our specific data set. Next,
we describe the confirmatory factor analysis and our experimental design to
collect new data.

7.2 Confirmatory Factor Analysis

In the previous section, we extracted a five-factor model of programming ex-
perience. To evaluate whether this model holds in different data sets, not only
in our specific case (i.e., to confirm the five-factor model), we conducted a
follow-up experiment. To this end, we gave the questionnaire to over a hun-
dred undergraduate students with a major in computer science. With this new
data, we conducted a confirmatory factor analysis, which evaluates whether
the five-factor model can explain the new data of our follow-up study. We
describe the setting of our follow-up study next.

7.2.1 Experimental Design

Objective. The objective of the follow-up experiment was to evaluate whether
the five-factor model is general or whether it is valid only for our specific data
set (cf. Section 7.1). Thus, the research question is the following:

RQ: Can we confirm the five-factor model of programming experience?

To answer the question, we collected the data of 148 undergraduate students
of different German universities, so that we have new data to evaluate the
generality of the five-factor model.

Material. As material, we use our programming-experience questionnaire with-
out any modification. To present it, we used PROPHET. We did not need the
programming tasks again, because our goal was not to relate the answers in



Measuring and Modeling Programming Experience 19

the questionnaire to programming experience based on performance, but to
confirm the five-factor model, which is based only on the answers in the ques-
tionnaire.

Participants. As participants, we recruited once more 148 students from the
universities of Passau, Duisburg-Essen, Magdeburg, and Braunschweig. For
participation, students could enter a raffle for an Amazon gift card. A Kruskal-
Wallis test to evaluate showed no significant difference in s.ClassMates (χ2 =
0.618, df = 3, p = 0.892). Thus, we can treat the students as one sample.

Execution. We conducted the experiment as online survey over the course of
three months (summer 2012). Since during this time most students had no
class6 and to meet time constraints, it was the best way to contact as many
students as possible. To motivate students to complete the survey, we offered
students to enter a raffle for gift cards, one per university. For this purpose,
participants could enter their e-mail address at the end of the questionnaire.
Unfortunately, that led several students to only click through the questionnaire
without answering any questions, but only enter their e-mail address at the
end. We ignored those responses, leading to 148 relevant participants.

7.2.2 Descriptive Statistics

To get an impression of the answers in the questionnaire, we show frequen-
cies, medians, and dispersion in Table 9. For better comparability, we also
show the descriptive statistics of the first experimental run in the two right
most columns of Table 9. For most questions, participants of both experi-
ments show a similar answer pattern. Differences appear for questions s.PE,
s.ClassMates, s.C, s.Imperative. Furthermore, there are outliers for questions
s.NumLanguages, y.ProgProf, e.Years, and e.Courses. If we ignore these out-
liers, the dispersion for the according questions is comparable with the first
experiment. Thus, the answers of participants between the first run and the
follow-up experiment are similar, indicating that both samples are comparable.
Hence, we can continue our evaluation with the confirmatory factor analysis.

7.2.3 Results of Confirmatory Factor Analysis

In this section, we describe our confirmatory factor analysis (see, e.g., [6]). In
a nutshell, it takes as input the five-factor model of programming experience
and the new data set. As output, it computes the model fit in terms of fit
indices, which describe how well the model can explain the correlations in the
data set (i.e., how well the model fits to the data). In the next paragraphs, we
give a detailed overview of the procedure of the confirmatory factor analysis.

First, we specify the input for the confirmatory factor analysis, starting
with the five-factor model, which we visualize in Figure 4. It shows the five
factors we extracted and the questions that load on each factor. This is also
referred to as the measurement model, because it describes how each factor is
measured. We specify a model upfront, because we already have a hypothesis
about what factors to expect and which questions load on which factors. This
is in contrast to exploratory factor analysis, in which we explore data regarding
the presence of factors.

An important step in specifying the measurement model is to give the
factors a scale. Since they are latent variables (i.e., they are abstract and
cannot be observed directly), they have no scale by themselves. Typically,
either the variances of the factors are set to 1, or the factor loadings of one

6 At German universities, semester starts mid October.



20 Janet Siegmund et al.

Table 9: Follow-up study: Overview of answers in questionnaire. The two
columns on the right show the answers of the first experiment for better

comparability.

No. Question Distribution N Distribution N

1 s.PE 120 70

2 s.Experts 116 126

3 s.ClassMates 117 127

4 s.Java 120 124

5 s.C 116 127

6 s.Haskell 119 128

7 s.Prolog 118 128

8 s.NumLanguages 0 ●● ●●● 26 120 0 ●●●6 118

9 s.Functional 120 127

10 s.Imperative 118 128

11 s.Logical 118 126

12 s.ObjectOriented 120 127

13 y.Prog 0 ●● ●● ●●● ● 22 106 1 ●● ●● ●● ●● 25 123

14 y.ProgProf 0 ● ●● ●●●●● ● ●● ●●●● ● ●● ●● ●●●●● ● ●● ●●● 14 111 0 ●● ● ●●● ●● ● ●● ●●● ●● ● ●●● ●● ● ●● ●●● 7 127

15 e.Years 0 ● ●●●●●●●●●●● ●●●● ● ●● ●● ●●●●● ●● ●● ●●●●●●●●●●●● ● ●●●●●●●●●●● ●●●● ● ●● ●● ●●●●● ●● ●● ●●●●●●● 4 120 1 ●●● ●● ●● ●●● ●● 9 126

16 e.Courses 1 ● ●● 9 115 1 ●● ● ●●● ●● ● ●20 123

17 z.Size 120 127

18 o.Age 18 ●● ● ●●● ● 32 120 19 ● ●● ●●●●● ● ● ●●● ●● ●●●●● ● ● 40 127

Mainstream 
experience

s.ClassMates

y.ProgProf

s.NumLanguages

s.Functional

s.Haskell

e.Courses

e.Years

y.Prog

s.Logical

s.Prolog

s.Experts

s.ObjectOriented

s.Java

s.Imperative

s.C
1

z.Size

Professional 
experience

Educational 
experience

Functional 
experience

Functional 
experience

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 4: Follow-up study: Measurement model for programming experience.
Gray background color is used for better readability. 1 on an arrow indicates

fixed loadings.



Measuring and Modeling Programming Experience 21

Table 10: Follow-up study: Fit indices of confirmatory factor analysis.

Fit index Value Threshold Confirm?

χ2 494.73 (< .05) p value > .05 no
RMSEA 0.158 < .05 no
NNFI 0.538 > .95 no
SRMR 0.207 < .08 no
CFI 0.592 > .95 no

indicator per factor are set to 1. Since it does not make a difference, we set
the factor loadings to 1. Furthermore, since we found in our exploratory study
that s.Functional and s.Haskell, as well as s.Logical and s.Prolog, have similar
factor loadings, we add the constraint that both factor loadings are equal.

Next, we have to consider the measurement error. The value we measured
(i.e., the answer to a question) is not necessarily the true value, but it is bi-
ased. For example, one participant might underestimate her experience with
logical programming to be modest, another participant might feel overconfi-
dent with logical programming and overestimate her experience. Thus, we add
error terms to each question, symbolized by incoming arrows on each question
in Figure 4. Since these errors are also latent (i.e., not directly observable, and,
consequently, without scale), we also have to fix the correlation of the errors
with the indicators, visualized by the 1.

After specifying the model, we have to treat missing values, because some
participants did not answer all questions. We can either remove according
participants from the sample or replace the missing values with neutral values,
which do not change the dispersion of answers. Since we need a large sample
size, we did not exclude participants, but replaced missing values with the
median of according questions.

Now we can run the confirmatory factor analysis, for which we used Amos.7

We summarize the most important fit indices8 in Table 10. In column “Fit
index”, we show the abbreviation of the fit index, in column “Value”, we show
the according value, in column “Threshold” the threshold that an index must
exceed to accept a model, and in column “Confirm?”, we show whether the
model can be confirmed according to the value of the fit index.

First, the χ2 index determines whether the data deviate significantly from
the specified model. Thus, it is a significance test; if the p value is smaller than
.05, model, the data deviate significantly and the model should be rejected.
However, the χ2 index is sensitive to large sample sizes and minor devia-
tions, leading to model rejection often. Second, the Root Mean Square Error
of Approximation (RMSEA) is insensitive to sample size, but sensitive to the
number of estimated parameters in a model (i.e., the lack of parsimony) [36].
A value smaller than .05 indicates good model fit. Third, the Non-normed Fit
Index (NNFI) also evaluates parsimony, but is sensitive to sample size; a value
larger than .95 indicates a good model fit. Fourth, the Standardized Root Mean
Square Residual (SRMR) expresses the residual terms; the smaller these terms
(i.e., SRMR smaller than .08), the better the model fit. Last, the Comparative
Fit Index (CFI) compares the fit of the measurement model and a theoretical
model (specifically, the independence model, in which the correlations between
all variables are assumed to be 0); a value larger than .95 indicates good model
fit.

7 http://http://www-01.ibm.com/software/analytics/spss/products/statistics/
amos/. The script of the analysis is available at the project’s website.

8 There is a heated ongoing debate about fit indices. Since there is not the best index, it
is common to present different indices that focus on different aspects [5,25,26].

http://http://www-01.ibm.com/software/analytics/spss/products/statistics/amos/
http://http://www-01.ibm.com/software/analytics/spss/products/statistics/amos/


22 Janet Siegmund et al.

Table 11: Follow-up study: Mann-Whitney-U test for questions between
first experiment and follow-up experiment.

Question U value p value Question U value p value

s.Java 8647 0.322 s.PE 4226.5 0.027
s.C 7354.5 0.002 s.Experts 8696.5 0.777
s.Haskell 5832 0.000 s.ClassMates 7669.5 0.102
s.Prolog 7229.5 0.000 y.Prog 7236.5 0.007
s.NumLanguages 3266.5 0.393 y.ProgProf 627 0.668
s.Functional 6220.5 0.000 e.Years 6387.5 0.000
s.Imperative 8847.5 0.657 e.Courses 4602.5 0.000
s.Logical 7736 0.002 z.Size 757.5 0.253
s.ObjectOriented 8699 0.365 o.Age 5249 0.000

Since all fit indices indicate bad model fit, we cannot confirm the five-
factor model of programming experience. Next, we discuss the results and
implications of both factor analyses.

7.3 Discussion and Exploration

To summarize, the exploratory factor analysis extracted a five-factor model,
which, however, the confirmatory factor analysis could not confirm. This may
have three reasons: First, when conducting confirmatory factor analysis, minor
deviations of data from the measurement model can be overestimated, leading
to a false rejection. This is a typical problem with confirmatory factor analysis
and can only be avoided in part by considering a combination of fit indices.
Second, in the exploratory factor analysis, we had cross loadings, which we did
not consider in the measurement model with the confirmatory factor analysis.
Since we are looking for a parsimonious model, it is customary not to allow
cross loadings [6]. However, we introduced further restrictions this way, namely
that the cross loadings are 0, which makes it harder to fit data to a model.
Last, the model of programming experience might simply not be valid, but
only randomly occurred with the exploratory factor analysis.

To get a better impression of why we could not confirm the five-factor
model, we took a detailed look at our data. To this end, we compared the
answers of participants of the first experiment with the answers of participants
from the follow-up study with a Mann-Whitney-U test. We show the results in
Table 11. For several questions, the answers of participants between the first
and the follow-up experiment differ, for example, in all questions that load on
factor experience from education according to the exploratory factor analysis.
We expect that especially in the case in which there are significant differences
on all indicators of a factor (i.e., factors experience from education, functional
experience, logical experience), according factors are problematic and may not
be present in the data of the follow-up study.

We hypothesize that these significant differences, together with the con-
strained cross loadings, led to a rejection of the model. Further steps could
include allowing cross loadings or omitting questions with a high cross loading.
However, this is too close to “fishing for results” [13], and we would fit the
model to our specific data set. However, we want a general model of program-
ming experience that accounts—at least—for all bachelor students of computer
science at German universities. In future work, we hope that other researchers
apply our questionnaire, so that there are more data to evaluate and improve
the model.

Thus, instead of fishing for results, we conducted as last step another ex-
ploratory factor analysis on the data of the second study to evaluate if we can
find a similar factor pattern as for the first data set. If we can find a similar



Measuring and Modeling Programming Experience 23

Table 12: Follow-up study: Results of exploratory factor analysis with new
data.

Variable Main./Prev. Prof./Prev. Func./Prev. Educ./Prev. Logi./Prev.

s.C .458 /.723 .494
s.ObjectOriented .835 /.700 .403
s.Imperative .623 /.673 .443 .333 .303
s.Experts .336 /.600 .326 -.328
s.Java .801 /.540 .427

y.ProgProf .874 /.859
z.Size .608 /.764
s.NumLanguages .335 .890 /.489 .403
s.ClassMates .306 /.449 .676/.403 .424

s.Functional .882/.880
s.Haskell .928/.879

e.Courses .631/.795
e.Years -.460 .857/.573
y.Prog .776/.493

s.Logical .821/.905
s.Prolog .792/.883

Gray cells denote main factor loadings. Prev./numbers in light gray show loadings of the
first exploratory factor analysis. Main.: Experience with mainstream languages, Prof.:
Professional experience, Func.: Functional experience, Educ.: Experience from education,
Logi.: Logical experience.

pattern, this indicates that we are on the right track with a model of program-
ming experience, because the probability of randomly obtaining the same or
a similar model twice with different data sets is low. For this analysis, we ex-
clude question s.PE, because we also did not consider it in the first analysis.
This limits external validity, but we can better compare the results of both
analyses (cf. Section 8 for a discussion).

In Table 12, we summarize the results of our second exploratory factor
analysis. For better comparability, we order the table according to the results
of the first exploratory analysis and also show the loadings of the previous
analysis in light gray. We can see similarities to the first model. First, the
factors logical experience and functional experience are present like for the
first experiment with similar factor loadings, except that s.ClassMates now
loads on factor functional experience. Thus, the higher participants estimate
their experience compared to their class mates, the higher they estimate their
experience with Haskell and functional programming. This seems reasonable,
because functional programming is only a minor part of the curriculum, so not
all students are experienced with it. Thus, a student who is experienced with
functional programming is typically more experienced than her class mates.
In the first exploratory factor analysis, we also found a loading on factor
functional experience, but it was a cross loading. Thus, s.ClassMates does not
show a completely different result from the first exploratory factor analysis.
Furthermore, factor professional experience differs from the first exploratory
analysis, in which question s.ClassMates had a main loading on this factor.

Second, we have the factor experience with mainstream languages. The dif-
ference to the first exploratory factor analysis is that question s.C shows only
a cross loading on this factor and a main loading on factor professional expe-
rience. However, both loadings have a similar value. In the first analysis, there
was no cross loading of question s.C. When we compare the answer to question
s.C between both samples (cf. Table 11), we see a significant difference, which
may have caused the difference between both exploratory factor analyses.



24 Janet Siegmund et al.

Last, question y.Prog has a loading on factor professional experience, but
not on experience from education. Thus, the more professional experience stu-
dents have, the longer they have been programming in general, which sounds
reasonable. When looking at the first exploratory factor analysis, we found a
cross loading of y.Prog on professional experience, so this question also shows
a similar behavior (as does s.ClassMates).

In summary, we found most parts of the five-factor model of programming
experience again in a new data set. Only questions s.C, s.ClassMates, and
y.Prog seem to be ambiguous when considering the results of both exploratory
factor analyses, but do not absolutely contradict the five-factor model. This
result indicates that a five-factor model of programming experience appears
valid, but we have to keep in mind that the confirmatory factor analysis re-
jected the five-factor model. Hence, we cannot state a final model of program-
ming experience, but we need further investigations and data to derive a model
of programming experience, which we discuss next.

7.4 Next Steps Toward a Model of Programming Experience

Specific suggestions for future work are to state models for programming ex-
perience and evaluate them with further data. For example, questions with
cross loadings in both exploratory factor analyses appear to be unsuitable as
indicators for programming experience and could be omitted (s.ClassMates,
s.Imperative).

Of course, we could modify the model and conduct a confirmatory factor
analysis with data from both experiments, but that would again be too close
to fishing for results, as we could easily adjust the model such that it fits
the data set. Instead, we need more data to define a model of programming
experience. That may appear like an infinite endeavor, but finding a model of
programming experience requires a lot of work and data and is easily a worthy
topic for a complete PhD thesis.

8 Threats to Validity

8.1 Internal Validity

A first threat to internal validity is caused by the tasks. With other tasks,
results may look different. However, we selected tasks representative for the
experience level of undergraduate students and with varying difficulty. Thus,
more experienced participants should perform better than less experienced
participants. Hence, the task selection is appropriate for our purpose.

Another threat is that we did not compare self estimation with all identified
ways to measure programming experience. For practical reasons, we neglected
pretests and supervisor assessment in this work, because this would have re-
quired too much effort. Despite those, we considered all other identified ways.
Thus, we believe we controlled this threat sufficiently.

A further threat to internal validity is that we could not control for all
confounding parameters related to the person of students, for example intel-
ligence, ability, or evaluation apprehension. However, our samples are rather
large, so possible influences of such parameters are negligible. Especially gen-
der appears critical, because women typically underestimate their experience
compared to males. However, we found that for most questions, there is no
difference in the self-estimation questions, but due to the large difference in
the number of males and females, we need further investigations to get a better
impression of the influence of gender.



Measuring and Modeling Programming Experience 25

Furthermore, we did not randomize the question order, but assume that
most questions are orthogonal and ordering effects are minimal, but we cannot
check with our design.

Additionally, we let participants finish a task after time had run out, which
may bias the measured programming experience (i.e., number of correctly
solved tasks in a given time frame). However, to minimize frustration of par-
ticipants, we decided to not automatically abort a task after time had run
out.

Another threat to internal validity is that we found almost no correlation
of the response time of tasks with the answers in the questionnaire. However,
there are simply too many correlations to reasonably interpret them. Further-
more, with higher task number, we have less data, because we set a time limit
for all tasks, so not all participants worked on all tasks. With the current
setting, we cannot exclude this threat to validity.

A threat for the confirmatory factor analysis is caused by the selection of
participants. Since a considerable number of students just clicked through the
questionnaire to enter the raffle for the gift card, we do not have the data
of all students, but only the motivated ones. This is in contrast to our first
study, in which most of the students genuinely completed the experiment and
the questionnaire. However, since we conducted the follow-up study online to
contact as many students as possible, we had less control over participating
students. Thus, the participants might differ too much from our participants
of the first run to confirm the model.

8.2 Statistical Conclusion Validity

A first threat to statistical conclusion validity is caused by the stepwise in-
clusion method of stepwise regression, as it is order sensitive. To reduce this
threat, we validated the selected variables and their beta values with backward
and forward inclusion.

A threat for the confirmatory factor analysis is caused by our sample size.
Although we have 148 participants, it is not enough for a measurement model
of our size. Westland suggests as lower bound to have 172 participants for a
model of our complexity (i.e., depending on the number of latent variables
and indicators) [39]. The sample size might have led to falsely rejecting the
model instead of confirming it. With more participants, some fit indices might
confirm a model of programming experience.

8.3 External Validity

The major threat to external validity for our experiment and the follow-up
study is the sample: We recruited only undergraduate students. Our results
can be interpreted only in the context of participants with similar experience,
because our questions may have a different meaning for professionals. For ex-
ample, s.ClassMates is not suitable for professional programmers, because they
do not spend their time with their class mates, but with their colleagues. We
could ask professional programmers to estimate their experience compared to
their colleagues, but it is also not clear whether it has the same meaning as ask-
ing students to estimate their experience compared to their class mates. When
applying the results to professional programmers, other indicators, such as the
years of programming (professionally) may be a better indicator than self es-
timation. Furthermore, experience might not grow linearly past the university
stage, but rather unpredictable, which may further increase the difficulty of
measuring programming experience with expert programmers. However, since



26 Janet Siegmund et al.

most experiments are conducted with students, our results are useful for many
researchers.

A further threat is that we evaluated the five-factor model of programming
experience only with one additional data set (with the first data, we extracted
the model). As a result, we cannot be sure how general it is. To increase
external validity, we need to conduct additional confirmatory analysis with
different data.

Furthermore, we cannot be sure that we included all relevant questions for
programming experience. With more or different questions, the model might
look different. However, since we based the development of the questionnaire
on an intensive literature review, we have included the most relevant questions.
Thus, we believe that we sufficiently controlled this threat. Nevertheless, one
way to extend our work is to evaluate which other questions might be relevant
for a model of programming experience.

Another threat is caused by omitting s.PE also in the second exploratory
factor analysis. However, since we compared the data of the first experiment
and follow-up study, we excluded this question. To increase external validity,
we conducted another exploratory factor analysis of the new data with question
s.PE, and the results show a similar factor pattern, with question s.PE loading
on factor experience with mainstream languages. (cf. Appendix). Thus, s.PE
aligns well with the five-factor model.

9 Recommendations

So far, we have combined different questions from different categories found in
literature into a single questionnaire. We conducted a controlled experiment
with undergraduate students and explored our data for initial validation. What
have we learned in terms of recommendations for future research?

1. We showed that in literature, there are many different ways to measure
and control for programming experience. Furthermore, in many cases, the
methods are not reported. We recommend mixing questions from different
categories into a single questionnaire, of which we presented a draft. We
recommend to report precisely which measure was used and how groups
have been formed according to it. This helps to judge validity and compare
and interpret multiple studies.

2. We can recommend self estimation questions to judge programming ex-
perience among undergraduate students. In our experiment, several self-
estimation questions correlated to a strong to medium degree (s.PE: 0.539;
s.ClassMates: 0.403; s.ObjectOriented: 0.354) with the number of correct
answers—much more than questions regarding the categories education,
size, and other. Among undergraduate students, answers to questions from
the latter categories differ only slightly.

3. We extracted two relevant questions, s.ClassMates and s.Logical, that can
distinguish between the experience level of undergraduate and graduate
students. In our case, s.ClassMates alone differentiated between under-
graduate and graduate students. Thus, this one question might suffice to
reliably measure programming experience in a student population. If re-
source constraints allow it, researchers can combine multiple questions,
of which some serve as control questions to see whether participants an-
swered honestly, which is custom in designing questionnaires [32]. For ex-
ample, in our case, when using s.ClassMates, s.PE and s.ObjectOriented
are suitable control questions, since they both show a strong correlation
with s.ClassMates (s.PE: .632; s.ObjectOriented: .544).

4. Since correlations between questions confound the strength of a question as
an indicator for programming experience (cf. Section 6), we extracted and



Measuring and Modeling Programming Experience 27

evaluated, based on different data, two relevant questions, s.ClassMates
and s.Logical, that together serve as best indicator to predict the number
of correct answers in our experiment (each question can be supplied with
control questions). Furthermore, based on factor analyses, we found that
other questions are ambiguous and potentially unsuitable for measuring
programming experience (e.g., s.C, s.Imperative, y.Prog).

5. Our exploratory and confirmatory factor analyses indicate a five-factor
model of programming experience that can serve as starting point for de-
veloping a theory on programming experience. The results do not help
building a survey right away, but with additional confirmation on other
data sets, they can help understanding how programming experience works
and which kinds of questions query relevant parameters. However, to that
end, there is still a long way.

Overall note that while our literature review and the construction of the
questionnaire are intended for measuring programming experience in general,
we only validated it for a specific setting: predicting programming experience
among a homogeneous group of undergraduate students. This way, we achieve
high internal validity, because our results are not confounded by different back-
grounds of the participants. However, our recommendations remain limited to
this setting. We conjecture that with experienced programmers, questions from
the categories education, years, and size have more predictive power. Whether
self estimation remains a good indicator in this setting remains an open ques-
tion for future work.

We plan to further validate the questionnaire and five-factor model of pro-
gramming experience with other groups in further experiments. To this end,
we will reuse the experimental design and methodology developed in this work.

10 Related Work

In general, related work to ours evaluated possible criteria that can be used to
categorize participants upfront. For example, Kleinschmager and Hanenberg
analyzed the influence of self estimation, university grades, and pretests on
historical data for programming experiments [29]. To this end, they analyzed
the data of two previously conducted programming experiments with students
as participants. They compared self estimation, university grades, and pretests
with the performance of participants in the experiments and found that self
estimation was not worse than university grades or pretests in order to cat-
egorize participants. These results complement ours, as we did not look into
pretests and grades.

Askar and Davenport developed a questionnaire to measure self-efficacy
for Java programming [4]. They recruited engineering and computer-science
students to evaluate factors related to self-efficacy for Java, such as computer
experience or gender. In contrast to our work, Askar and Davenport focused on
explaining self-efficacy for Java programming, whereas we focus on measuring
and describing programming experience.

Höst and others analyze the suitability of students as participants [24].
The authors compared the performance of students with the performance of
professional software developers for non-trivial tasks regarding judgment about
factors affecting the lead-time of software-development projects. They found
no differences between groups. Thus, classification of participants had no effect
on their performance.

Bornat and others used a pretest to categorize good and bad novice pro-
grammers [8]. It relates to our work, in that we also aim at measuring good
and bad programmers, with the difference that we seek a simple-to-apply ques-
tionnaire.



28 Janet Siegmund et al.

11 Conclusion and Future Work

There is a strong need to assess programming experience in an easy and cost-
efficient way. Often, researchers do not specify their understanding of program-
ming experience or do not consider it at all, which threatens the validity of
experiments and makes interpretations across experiments difficult.

In a controlled experiment, we evaluated the measurement of programming
experience found in literature. We found that for our setting, self estimation
indicates programming experience well. Specifically, we extracted two relevant
questions:
1. Self-estimated programming experience compared to class mates
2. Self-estimated experience with logical programming
When comparing the answers of undergraduate and graduate students to both
questions, we found a significant difference, indicating that both questions dif-
ferentiate between the experience level of undergraduate and graduate stu-
dents. In conjunction with control questions, such as programming experience
in general or experience with Prolog, they can be used as an indicator for
programming experience.

Furthermore, we started the development of a model to describe program-
ming experience based on exploratory and confirmatory factor analyses. Re-
sults indicate that the five factors experience with mainstream languages, pro-
fessional experience, functional experience, educational experience and logical
experience seem to describe programming experience as we measured it.

To continue our work, we can collect more data for a model of program-
ming experience, which in turn can help to derive more reliable questionnaires.
Furthermore, since we already developed programming tasks, we and other re-
searchers can use them as pretest in conjunction with different indicators for
programming experience to evaluate how the identified category pretest re-
flects programming experience. Moreover, we can recruit programming experts
and compare their performance and answers to questions to novice program-
mers. This way, we can get a more holistic view of programming experience.

Acknowledgments

We thank all the reviewers for their constructive feedback. We thank Jana
Schumann for her support in the literature study and all experimenters for
their support in setting up and conducting the experiment. Thanks to Veit
Köppen for his support in the analysis of data. Siegmund’s work is supported
by BMBF project 01IM10002B, Kästner’s work by ERC grant #203099, and
Apel’s work by DFG projects AP 206/2, AP 206/4, and AP 206/5.

References

1. T. Anderson and J. Finn. The New Statistical Analysis of Data. Springer, 1996.
2. T. Anderson and H. Rubin. Statistical Inference in Factor Analysis. In Proc. Berke-

ley Symposium on Mathematical Statistics and Probability, Volume 5, pages 111–150.
University of California Press, 1956.

3. E. Arisholm, H. Gallis, T. Dyb̊a, and D. Sjøberg. Evaluating Pair Programming with
Respect to System Complexity and Programmer Expertise. IEEE Trans. Softw. Eng.,
33(2):65–86, 2007.

4. P. Askar and D. Davenport. An Investigation of Factors Related to Self-Efficacy for Java
Programming among Engineering Students. The Turkish Online Journal of Educational
Technology, 8(1):26–32, 2009.

5. R. Bagozzi and Y. Yi. Specification, Evaluation, and Interpretation of Structural Equa-
tion Models. Journal of the Academy of Marketing Science, 40(1):8–34, 2012.

6. D. Bartholomew and I. M. Martin Knott. Latent Variable Models and Factor Analysis:
A Unified Approach. Wiley Publishing, Inc., 2011.



Measuring and Modeling Programming Experience 29

7. S. Biffl and W. Grossmann. Evaluating the Accuracy of Defect Estimation Models
Based on Inspection Data from Two Inspection Cycles. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 145–154. IEEE CS, 2001.

8. R. Bornat, S. Dehnadi, and Simon. Mental Models, Consistency and Programming
Aptitude. In Proc. Conf. on Australasian Computing Education: Volume 78, pages
53–61. Australian Computer Society, Inc., 2008.

9. C. Bunse. Using Patterns for the Refinement and Translation of UML Models: A
Controlled Experiment. Empirical Softw. Eng., 11(2):227–267, 2006.

10. J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Routledge Academic
Press, second edition, 1988.

11. J. Cohen and P. Cohen. Applied Multiple Regression: Correlation Analysis for the
Behavioral Sciences. Addison Wesley, second edition, 1983.

12. A. Costello and J. Osborne. Best Practices in Exploratory Factor Analysis: Four Recom-
mendations for Getting the Most from your Analysis. Practical Assessment, Research
& Evaluation, 10(7):173–178, 2005.

13. S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting Empirical Methods
for Software Engineering Research. In Guide to Advanced Empirical Software Engi-
neering, pages 285–311. Springer, 2008.

14. H. Erdogmus, M. Morisio, and M. Torchiano. On the Effectiveness of the Test-First
Approach to Programming. IEEE Trans. Softw. Eng., 31(3):226–237, 2005.

15. J. Feigenspan, S. Apel, J. Liebig, and C. Kästner. Exploring Software Measures to Assess
Program Comprehension. In Proc. Int’l Symposium Empirical Software Engineering
and Measurement (ESEM), pages 1–10. IEEE CS, 2011. paper 3.

16. J. Feigenspan, C. Kästner, S. Apel, J. Liebig, M. Schulze, R. Dachselt, M. Papendieck,
T. Leich, and G. Saake. Do Background Colors Improve Program Comprehension in
the #ifdef Hell? Empirical Softw. Eng., 2012. DOI: 10.1007/s10664-012-9208-x.

17. J. Feigenspan, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg. Measuring Program-
ming Experience. In Proc. Int’l Conf. Program Comprehension (ICPC), pages 73–82.
IEEE CS, 2012.

18. J. Feigenspan, M. Schulze, M. Papendieck, C. Kästner, R. Dachselt, V. Köppen, and
M. Frisch. Using Background Colors to Support Program Comprehension in Software
Product Lines. In Proc. Int’l Conf. Evaluation and Assessment in Software Engineering
(EASE), pages 66–75. Institution of Engineering and Technology, 2011.

19. J. Feigenspan and N. Siegmund. Supporting Comprehension Experiments with Human
Subjects. In Proc. Int’l Conf. Program Comprehension (ICPC), pages 244–246. IEEE
CS, 2012. Tool demo.

20. E. Figueiredo, N. Cacho, M. Monteiro, U. Kulesza, R. Garcia, S. Soares, F. Ferrari,
S. Khan, F. Filho, and F. Dantas. Evolving Software Product Lines with Aspects: An
Empirical Study on Design Stability. In Proc. Int’l Conf. Software Engineering (ICSE),
pages 261–270. ACM Press, 2008.

21. J. Goodwin. Research in Psychology: Methods and Design. Wiley Publishing, Inc.,
second edition, 1999.

22. S. Hanenberg, S. Kleinschmager, and M. Josupeit-Walter. Does Aspect-Oriented Pro-
gramming Increase the Development Speed for Crosscutting Code? An Empirical Study.
In Proc. Int’l Symposium Empirical Software Engineering and Measurement (ESEM),
pages 156–167. IEEE CS, 2009.

23. J. Hannay, E. Arisholm, H. Engvik, and D. Sjøberg. Effects of Personality on Pair
Programming. IEEE Trans. Softw. Eng., 36(1):61–80, 2010.

24. M. Höst, B. Regnell, and C. Wohlin. Using Students as Subjects: A Comparative Study
of Students and Professionals in Lead-Time Impact Assessment. Empirical Softw. Eng.,
5(3):201–214, 2000.

25. L. Hu and P. M. Bentler. CutoffC riteria for Fit Indexes in Covariance Structure
Analysis: Conventional Criteria Versus New Alternatives. Structural Equation Modeling,
6(1):1–55, 199.

26. L. Hu and P. M. Bentler. Fit Indexes in Covariance Structure Modeling: Sensitivity
to Underparameterized Model Misspecification. Psychological Methods, 3(4):424–453,
1998.

27. A. Jedlitschka, M. Ciolkowski, and D. Pfahl. Reporting Experiments in Software
Engineering. In Guide to Advanced Empirical Software Engineering, pages 201–228.
Springer, 2008.

28. B. Kitchenham and S. Charters. Guidelines for Performing Systematic Literature Re-
views in Software Engineering. Technical Report EBSE 2007-001, Keele University and
Durham University Joint Report, 2007.

29. S. Kleinschmager and S. Hanenberg. How to Rate Programming Skills in Programming
Experiments? A Preliminary, Exploratory, Study Based on University Marks, Pretests,
and Self-Estimation. In Proc. ACM SIGPLAN Workshop on Evaluation and Usability
of Programming Languages and Tools, pages 15–24. ACM Press, 2011.

30. M. Lewis-Beck. Applied Regression: An Introduction. Sage Pubications, 1980.
31. M. Müller. Are Reviews an Alternative to Pair Programming? Empirical Softw. Eng.,

9(4):335–351, 2004.
32. R. Peterson. Constructing Effective Questionnaires. Sage Publications, 2000.



30 Janet Siegmund et al.

33. F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, and M. Ceccato. The Role of Expe-
rience and Ability in Comprehension Tasks Supported by UML Stereotypes. In Proc.
Int’l Conf. Software Engineering (ICSE), pages 375–384. IEEE CS, 2007.

34. J. Siegmund, C. Kästner, J. Liebig, and S. Apel. Comparing Program Comprehension
of Physically and Virtually Separated Concerns. In Proc. Int’l Workshop on Feature-
Oriented Software Development (FOSD), pages 17–24. ACM Press, 2012.

35. J. Sillito, G. Murphy, and K. De Volder. Asking and Answering Questions during a
Programming Change Task. IEEE Trans. Softw. Eng., 34(4):434–451, 2008.

36. J. H. Steiger and J. Lind. Statistically-based Tests for the Number of Common Factors.
Presented at the Annual Meeting of the Psychometric Society, 1980.

37. W. Tichy. Hints for Reviewing Empirical Work in Software Engineering. Empirical
Softw. Eng., 5(4):309–312, 2000.

38. A. von Mayrhauser and M. Vans. Program Comprehension During Software Mainte-
nance and Evolution. Computer, 28(8):44–55, 1995.

39. C. Westland. Lower Bounds on Sample Size in Structural Equation Modeling. Electronic
Commerce Research and Applications, 9(6):476–487, 2010.



Measuring and Modeling Programming Experience 31

12 Appendix

We show the results of an exploratory factor analysis, including question s.PE,
which loads on factor experience with mainstream languages.

Table 13: Follow-up study: Factor loadings of variables in questionnaire
(including s.PE).

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

s.C .491 .462
s.ObjectOriented .825
s.Imperative .657 .402
s.Experts .368 -.329
s.Java .779
s.PE .726 .395

y.ProgProf .877
z.Size .310 .590
s.NumLanguages .884
s.ClassMates .682

s.Functional .881
s.Haskell .927

e.Courses .621
e.Years .860
y.Prog .327 .758

s.Logical .821
s.Prolog .792

Gray cells denote main factor loadings.


	Carnegie Mellon University
	Research Showcase @ CMU
	12-2014

	Measuring and Modeling Programming Experience
	Janet Siegmund
	Christian Kästner
	Jörg Liebig
	Sven Apel
	Stefan Hanenberg
	Published In


	Introduction
	Literature Review
	Questionnaire
	Empirical Validation
	Experiment Results
	Which Questions Measure Programming Experience?
	Model of Programming Experience
	Threats to Validity
	Recommendations
	Related Work
	Conclusion and Future Work
	Appendix

