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members and revoke access from old members. Student organizations that have members rotating 
every semester, for example, need a simple and reliable way to revoke and grant access to shared 
equipment closets.  

Few existing security solutions support these needs as core functionality. Indeed, in a longitudinal 
field study of the access control habits of a local group who shared a work space, Bauer et al. found 
that existing strategies for authentication and access control (i.e., sharing physical keys) could not 
support the group’s ideal policies [9], which accords with Ackerman’s broader argument of the socio-
technical gap between the social requirements and the technical capabilities of computing systems 
[1]. Taken together, it appears that a more nuanced social approach can make authentication more 
usable and useful. 

While there has, so far, been little work on creating better local group authenticators, there has been 
some promising research that explores the problem domain. Toomim et al. introduced a photo access 
control mechanism where the correct audience should be able to answer a question based on shared 
knowledge [104]. Gilbert created a social encryption tool, OpenBook, that obfuscates messages in a 
way that can only be reconstructed by the shared social context between sender and receiver [46]. 
And, Egelman et al. and Brush introduced the “Family Account” [16,37]—a shared account for all 
family members. Still, Family Accounts are for access control, not authentication. 

One solution is to create a form of authentication that allows group members to share just a single 
secret but that can still identify individuals. Sensable gestures and mechanical expressions are one 
promising direction: the shared secret can be the gesture, while each individual might still be 
predictably unique in their expression of the gesture. My key idea with Thumprint is to use physical 
knocks as shared group secrets that have varying individual expressions. For instance, 
accelerometers in mobile devices have been used for detecting a wide range of gestures, activities 
and hand postures [47]. There has been increasing interest in using these forms of sensable user 
behavior for authentication. One notable example is the use of keystroke dynamics(i.e., the rhythm 
with which people type) for authentication [58,77]. With TapSongs, Wobbrock extended this 
approach to intentional behaviors in the form of rhythmic up-down taps on a binary sensor to match 
a known jingle timing model [112]. Lin, Ashbrook and White used a similar approach to pair I/O 
constrained devices through entry of a secret “tapword” on both devices [73]. In all of these cases, 
outsider rejection was not perfect (~20% failure rates), but insider acceptance was promising. 

These approaches, while inspirational, were not designed to be inclusive nor were they meant for 
groups. With Thumprint, I extend these advances in sensing intentional behaviors for group 
authentication in order to begin exploring the space of “inclusive” cybersecurity. 

System Design 

Design Inspiration  
There are many analogues in the offline world that illustrate the use of shared secrets for group 
authentication [11]. There is the famous biblical example of correctly pronouncing the word 
“shibboleth” that the Gileadites used to identify the invading Ephraimites who could not pronounce 
the “sh” sound [117]. Other examples include secret handshakes (e.g., the use of selective pressure in 
handshakes) and code phrases (e.g., saying the words “open sesame” to gain access to a secret lair) 
[11]. In all of these cases, the shared secret not only authenticates, but is inclusive and reinforces 
group cohesion [107]. Thumprint is inspired by the secret knocks used at speakeasies during the 
Prohibition era of the U.S. [67]. At that time, secret knocks were used to identify prospective bar 
patrons when sale of alcohol was illegal. They could only be learned through social channels and 
knowledge of a secret knock identified an unknown stranger as part of a broader social collective. 

Borrowing from that pattern, Thumprint authenticates local groups with a secret knock consisting of 
a shared secret token and pattern. The token can simply be a finger or a knuckle, but any small, solid 
object can be used (e.g., a pen or coin). The pattern can be any sequence of knocks within a three-
second period. Authentication occurs by entering the knock on a sensor surface. Furthermore, as 
each person mechanical enters the knock differently, Thumprint can also identify individuals. 
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Overview 
Figure 11 shows a high-level description of how Thumprint works. To operate, Thumprint requires 
two components: a surface instrumented with an accelerometer and microphone (or a device already 
containing these sensors, such as a smartphone), and an endpoint to regulate access.  

The sensed surface can take on many forms—e.g., a tablet touchscreen, a door, or tabletop. As a proof-
of-concept implementation, we used an Android smartphone as our sensed surface. Meanwhile, the 
authentication end-point can be anything that regulates access control, such as a tablet or an 
electronic smart lock.  

To use Thumprint, a group of at least two members must register themselves by entering the shared 
secret knock. To register, each member enters the secret knock on the sensed surface five to ten 
times. Thumprint records three-seconds of accelerometer and microphone data from each of the 
registration attempts, extracts a set of time- and frequency-domain features from those sensor 
streams, and stores each feature vector labeled with the individual's ID as training data. We selected 
a three-second duration to allow for sufficient variation in knock expression. Thumprint then 
processes these training data to “learn” both the shared secret knock and each individual’s 
expression of the knock.  

To later authenticate, an individual should reproduce the secret knock roughly in the same manner in 
which she registered. The system extracts an unlabeled feature vector from the authentication 
attempt and compares it against training data. If the unlabeled feature vector is similar enough to the 
group thumprint, it is authenticated as the member whose training data is most similar. Moreover, 
Thumprint computes a similarity score for each group member—so, depending on the security needs 
of the group, it is possible to provide tiered access control so that a knock is only authenticated if its 
similarity score is sufficiently high. If the score is too low, it is possible to provide lower tier access, 
or prompt the user to repeat the knock. 

Training Pipeline 
Once participants have provided a set of training data during the registration process, the key 
question is how can one use this training data to later authenticate group members? More formally, if 
we have an unlabeled authentication attempt, �⃗� , we must determine determine whether or not to 
authenticate �⃗�  and, if so, which group member is most likely to have produced �⃗� . 

One approach is to use a one-class classifier, but these typically require a large amount of training 
data—dozens, if not hundreds of training points per group member. Instead, to make accurate 
decisions with fewer training data, we use a form of template matching: i.e., we compare �⃗�  to the set 
of templates, 𝑇, that are constructed during training to represent individual expressions of the 

shared secret knocks. If the distance between �⃗�  and any 𝑡 ∈ 𝑇  is sufficiently low, then we 
authenticate �⃗�  as coming from the user who produced 𝑡 . Otherwise, we reject �⃗�  as coming from an 
outsider. In brief, this process requires three implementation steps: feature extraction, feature 
processing, and template construction. 

 

Figure 11. With Thumprint, users enter secret knocks on an instrumented sensor surface (A) from 
which a variety of time and frequency domain features are extracted (B). These readings are projected 

onto a reduced feature space, where each authentication attempt is compared against previously 
learned thumprint expressions from group members (C). If a match, Thumprint will provide access by 

regulating an end-point such as an electronic lock (D). 
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Feature Extraction 
I extracted a set of features from each of the input acceleration and acoustic signals that users 
entered during registration. Features were extracted from the raw time-domain PCM values, as well 
as a Daubechies D4 wavelet and Fourier transformation (FFT) of the signals. For the raw-time 
domain and FFTs, I extracted features for each one-second segment of the signal to better preserve 
the temporal variance of the thumprints across the three-second window (i.e., to characterize 
thumprints that may be intentionally non-rhythmic and irregular). This was unnecessary for the 
wavelet transformation, as wavelet coefficients capture temporal variation by design [13]. Finally, for 
the acoustic signal, I also extracted features from the mel-frequency cepstral coefficients (MFCCs) 
computed for each 25 millisecond time-window of the signal. See Table 19 for an overview of 
features used. 

At the end of the feature extraction process, we have a matrix, 𝐹 ∈ ℝ𝑚𝑥𝑛, where m is the number of 
training attempts in the system and n is the number of features that have been extracted. Each row of 
this matrix represents the features extracted for a particular training attempt. We also have a class 
vector, 𝑦 ∈ ℤ𝑚 , that represents which participant produced which row of F.  

Feature Processing 
Next, I employ a number of supervised pre-processing techniques on F. First, I use correlation-based 
feature subset selection (CFS) [50] to reduce the feature space to a parsimonious subset that 
distinguishes group members. The reduced feature space is reduced to at most one feature per row of 
training data to mitigate overfitting. I then discretize the feature space using Fayyad-Irani 
discretization [41]—a technique to bin continuous variables into discretized intervals that minimize 
the entropy of known class values in each bin. Supervised discretization can enhance predictive 
performance in many cases [41]. More intuitively, I discretize the feature space so that the template 
matching algorithm is less sensitive to micro-fluctuations in raw feature values. At the end of the 
feature selection and discretization process, we have a reduced matrix, 𝐴 ∈ ℤ𝑚𝑥𝑘 =
𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒(𝐶𝐹𝑆(𝐹, 𝑦 )), where 𝑘 ≤ 𝑚 is the number of features in the reduced feature space.  

Template Construction  
Following feature selection and discretization, we need to deconstruct the training matrix, 𝐴, into a 
set of known templates, 𝑇. The two most straightforward approaches are: (1) create a single template 
for each user by averaging all of their training attempts; and, (2) create a distinct template for each 
training attempt. However, both are suboptimal. The first approach fails to acknowledge that 
individuals might have multiple expressions of the shared secret knock—for example, one might 
sometimes enter the knock with more force, or other times at a slower pace. If all of these different 

Signal 
Transformation 

Applicable 
sensor 
streams 

Signal 
partitioning 

Extracted 
features 

 

Time-domain 
Acceleration 
& Acoustic 

Whole & 
One-second 
windows 

Mean, mean absolute value, std. dev., max, min, RMS, 
zero-crossings, total energy, 2nd order average, third 
order average, average amplitude change. 

Wavelets (D4) 
Acceleration 
& Acoustic 

Whole 
Total power, max power, power bands, mean absolute 
coefficient value per band, coefficient standard 
deviation per band. 

Fourier 
Acceleration 
& Acoustic 

One-second 
windows 

Dominant frequency, spectral centroid, spectral 
rolloff, spectral crest factor, spectral flatness, lower 
1kHz bins. 

MFCCs Acoustic 
25ms 
windows 

For each of the 12 coefficients, over all 25 ms 
windows: mean value, std. dev., mean first order-
change, mean second-order change. 

Table 19. Features extracted for every thumprint, drawn from recommendations in prior work in 
sensing techniques. In total, 1020 features are extracted, though the feature space is dramatically 

reduced in later steps to avoid overfitting. 
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expressions are averaged, then the average will look different than any of the individual expressions. 
The second approach fails to learn common patterns across training attempts and reduces security 
by expanding the surface area in the feature space that represents the group shared secret. Thus, a 
single stray training attempt can compromise the security of the group by expanding the acceptable 
definition of the group’s shared secret.  

Instead, I take a middle-ground approach by clustering together related training attempts into 
distinct templates. With this compromised approach, we can detect multiple distinct expressions of 
the secret knock within users, but still minimize the surface area that represents the group shared 
secret in feature space. To do so, I run a k-means clustering algorithm on the training data for each 
individual group member and automatically determine the number of clusters that are appropriate 
using the average silhouette width method [91]. At the end of this process, we have a set of 
templates, 𝑇, that each contain a subset of the training attempts derived from one registered group 
member. 

Authentication  
Once training is complete, making an authentication decision on an unlabeled attempt, �⃗� , is a matter 
of finding the cluster(s) closest to �⃗�  and then thresholding on the distance between �⃗�  and the closest 
cluster centroid: 

min
𝑖

 𝑑(�⃗� , 𝑖) =
(∑

|�⃗� − 𝑡𝑖𝑗⃗⃗⃗⃗ |
𝑘

)𝑗

|𝑇𝑖|
⁄  

where 𝑇𝑖 represents the 𝑖th cluster and 𝑡𝑖𝑗⃗⃗⃗⃗  represents the 𝑗th training vector in 𝑇𝑖, |𝑇𝑖| represents the 

size of 𝑇𝑖, and 𝑘 represents the size of the feature space after feature reduction. In practice, the value 
of 𝑑(�⃗� , 𝑖) should typically fall within a range of 0 to 1 for any reasonably close attempt. Lower 𝑑(�⃗� , 𝑖) 
suggests a closer match between �⃗�  and 𝑇𝑖  so in the simplest case of identification without 
authentication, we can identify �⃗�  as coming from the member who produced the cluster that 
minimizes min

𝑖
𝑑(𝑢,⃗⃗  ⃗ 𝑖). To add authentication, we can introduce a threshold ℎ. If 𝑑(�⃗� , 𝑖) ≤ ℎ, then we 

authenticate; otherwise, we reject. Figure 12 visually illustrates the process.  

 

One potential concern is drift—or the idea that individuals might gradually change their expression 
of the secret knock over time. I handle drift by incrementally updating the training model as new 
training data is available (e.g., as a group member successfully authenticates over time) and by 
increasing the weight of more recent training attempts. 

 

Figure 12. To authenticate, an unlabeled feature vector is transformed into the reduced feature space 
and then its distance to nearby training clusters is calculated. In this case, the unlabeled attempt 

would not be authenticated because it is too far from candidate clusters. 
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Feasibility Evaluation  
To evaluate the feasibility of my Thumprint concept, I ran an initial lab study with 15 participants 
ranging in age from 18-55 years old (mean age 26, eight females). My goal with this feasibility 
evaluation was to answer the questions: Given a group of pre-registered users who all share a 
thumprint and a set of un-registered adversaries who know the group’s shared thumprint, (i) how 
easily can outsiders impersonate group members? (ii) how often are group members confused as 
outsiders? And, (iii) how often are group members are confused for one another?  

Procedure  
To answer these questions, I ran a lab study. Consenting participants proceeded through two flows: a 
flow in which they entered pre-selected thumprints, and a flow in which I had them create their own 
unique thumprints. Participants entered their thumprints on a Nexus 5 Android phone running 
custom software. For each thumprint, my application recorded three-seconds of accelerometer data 
sampled at 2kHz and three-seconds of microphone data sampled at 44.1 kHz.  

In the first flow, I selected 10 example objects that spanned a variety of materials: a wooden letter 
opener, a rubber eraser and fridge magnet, a plastic eye drop bottle, pen and chapstick, a metal Swiss 
army knife and watch, a leather wallet, and the participant’s knuckle. Participants were instructed to 
hold the phone comfortably in their non-dominant hand. Then, for each of the 10 thumprints, 
participants held the object in their dominant hand (or used the knuckle of their dominant hand) and 
knocked repeatedly on the center of the screen for three seconds. They repeated the entry of each 
thumprint 10 times in total.  

After completing this flow, participants were allowed to create their own custom thumprints. 
Participants selected four tokens from the 10 objects provided and then had to develop their own 
unique knock for each of these tokens. Thus, participants could knock using any part of an object, 
anywhere on the screen and in any pattern. I demonstrated these options to participants prior to 
start of this flow. Participants again had to repeat each of their four unique thumprints ten times 
each. I video-recorded participants entering their unique thumprints so that I could later use these 
recordings to simulate shoulder surfing adversaries. Data from this flow was primarily used as raw 
material for the second study. 

To improve data collection, the study interface provided a progress bar to inform participants of 
their three-second time limit. For the first flow, the interface also contained a target at the center of 
the screen to assist participants with their aim. Figure 13 shows screenshots of the process. 

  

Figure 13. Screenshots of the app in which participants entered preset (left) and custom (middle) 
thumprints. The right most figure shows how participants actually used the application interface. 
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With 15 participants, 14 thumprints, and 10 repetitions per thumprint, the study yielded 2100 
thumprints consisting of three-second accelerometer and acoustic streams. I computed the 
aforementioned time and frequency domain features for each of these instances. 

Results  
To answer questions (i), (ii), and (iii), I needed to simulate data from small groups with a shared 
thumprint, as well as outsiders attempting to break those thumprints. For the 10 pre-defined 
thumprints (first flow), simulating small groups and competent outsiders was straightforward. As 
each participant produced the same set of 10 thumprints, every participant could effectively be 
partnered with some number of other participants to simulate a small group, and every other 
participant could be a casual adversary.  

Thus, I randomly aggregated different subsets of 𝑛 ∈ [3,5,10] participants to represent small groups 
of varying sizes. For training, I used a random sample of 80% of each group member’s data, and kept 
a holdout set of 20% for testing. Then, for each simple thumprint, I used data from the remaining 
15 − 𝑛 participants to simulate a strong adversary who knew the group thumprint (as all users in the 
first flow entered the same thumprints).  

It is worth noting that I did not design Thumprint to be extremely strong against adversaries who 
exactly knew the group thumprint. Yet, my results exceeded expectations.  

Figure 14 shows the mean minimum feature vector difference, min
𝑖

𝑑(�⃗� , 𝑖), for authentication 

attempts by actual group members versus those of adversaries. From Figure 14, we can see a large 
and clear separation between the feature vector differences of authentic attempts (d=0.32) from 
adversarial attempts (d=1.06). In Figure 15, I plot the acceptance rate of these attempts as a function 
of a configurable authentication threshold. We can see that Thumprint worked well: at a threshold 
between [0.5, 0.75], we achieved 100% true positives and no false positives.  

This result is promising—suggesting that thumprints might provide reasonable outsider rejection 
while maintaining high insider acceptance. However, it is worth keeping in mind that the adversaries 
in this evaluation were not specifically trying to replicate a thumprint in a way that they observed 
someone else. Furthermore, I collected all data within a single session, so it is not surprising that 
people’s testing attempts were quite similar to their training attempts. I address these weaknesses in 

   

Figure 14. Mean feature vector difference (along 
with 95% confidence intervals) for user testing 

attempts (relative to their own training data and 
other group member training data), as well as 

outsider attempts. 

 

Figure 15. Acceptance rate as a function of feature 
vector difference. The black vertical line is where 
100% of user attempts are accepted, and the blue 
dashed line is where >0% of outsider attempts are 

first accepted. 
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my second study. 

Consistency and Security Evaluation  
I ran a second lab study, with 15 new participants, ranging in age from 18-57 years old (mean age 28, 
five females). My goal with this study was to answer the following two questions: (iv) can people 
consistently enter complex thumprints after time-separated sessions? And (v) how well can 
thumprint reject motivated adversaries? 

Procedure  
This study consisted of two 30-minute sessions that took place 24 hours apart. Broadly, I had 
participants register a thumprint in the first session and re-enter the same thumprint a day later. In 
addition, I had participants play the role of an adversary attempting to break into others’ thumprints, 
given a set of capabilities and constraints. 

Session 1: Participants initially had to enter four simple, pre-defined thumprints to familiarize 
themselves with the application interface. This flow was the same as it was in the first study, where 
participants selected from a set of provided objects and tapped them repeatedly on the center of the 
screen. Once they had completed the pre-defined thumprint flow, they were shown a video of a 
custom thumprint created by a participant from the second flow in first study. Participants were 
allowed to watch the video as often as they liked. Once satisfied, they were instructed to replicate 
what they saw to the best of their ability. Participants were also told that they would have to re-enter 
this thumprint the next day.  

Of note, participants were shown one of three custom thumprints corresponding to the study group 
to which they were assigned. I selected three groups because I wanted several participants to learn 
the same thumprint so that I could later group them, and to ensure that the results were not tied to 
any single thumprint.  

Part. T1 T2 T3 T4 T5 T6 

1 Main S V V+T  V+T 

2 Main V T V+T  V+T 

3 Main T S V+T  V+T 

4 Main S V V+T  V+T 

5 Main V T V+T  V+T 

6 S Main T V+T V+T  

7 V Main S V+T V+T  

8 T Main V V+T V+T  

9 S Main T V+T V+T  

10 V Main S V+T V+T  

11 V T Main  V+T V+T 

12 T S Main  V+T V+T 

13 S V Main  V+T V+T 

14 V T Main  V+T V+T 

15 T S Main  V+T V+T 

Main: Group thumprint; V: video+wrong token; S: sound only;  
T: token only; V+T: video+correct token. 

Table 20. Study 2 flow for each participant. The columns represent the six thumprints selected from Study 
1. Cell values with “main” refer to thumprints participants learned in session 1 and replicated in session 2. 

Other cell values refer to thumprints replicated as adversaries. 
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Session 2: Participants came back for a follow-up session a day later. Their first task in this follow-up 
session was to re-enter the custom thumprint they had seen at the end of the previous day’s session. 
They had to do so from memory—no assistance was provided. Once completed, each participant had 
to enter four more custom thumprints. This time, however, I had participants play the role of 
adversary. Their task was to replicate other thumprints given a set of constraints to simulate 
different adversary models.  

The four adversary models and their corresponding affordances were: (1) video+correct token: the 
full video recording of thumprint entry and use of the correct token; (2) video+wrong token: the full 
video recording of thumprint entry, but the correct token could not be used; (3) sound only: the audio 
recording of thumprint being entered (stripped from the video recording) and a best-guess attempt 
at picking the correct token; and, (4) token only: only knowledge of the correct token provided. Table 
20 shows all of the thumprints each participant had to enter, along with the relevant constraints. 
Note that, as before, participants entered 10 repetitions for each thumprint.  

At the end of the study, I had data for three thumprints (T1, T2, and T3) across two sessions from five 
participants each. For each of these thumprints, I also had 10 video+wrong, token only and sound only 
adversarial replications. For another set of three thumprints (T4, T5, T6), I had 10 video+correct 
adversarial replications. Notably, as video+correct adversaries can be considered authentic group 
members (if their data is included in the process of training Thumprint), I can divide the 10 
video+correct replications into subsets of group members and adversaries as necessary.  

Results  
To answer the question (iv), can people remember and enter complex thumprints over time, I trained 
a model on data collected for T1, T2, and T3 from the first day’s session and tested it on data 
collected for those same thumprints collected in the second day’s session. Specifically, I calculated 
the minimum feature vector difference of the authentication attempts from the second session 
relative to data from the same user in the first session. As a point of reference, I also calculated the 
minimum feature vector difference of the 10 video+wrong, sound only, and token only adversarial 
attempts relative to group member training data from the first session. To see if group members 

 

Figure 16. Mean feature vector difference (along with 95% confidence intervals) for T1-T3 across 
authentic and adversarial attempts. User testing data was collected one day after the training 

data. 
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could be misidentified with each other, I also calculated the minimum feature vector difference 
between user authentication attempts and the training data for other group members. Figure 16 
shows the results. 

We can see that mean feature vector difference for all authentication attempts by participants as 
compared to their own training data (d=0.38) from a previous session is much lower than the three 
adversary models (ds=0.70, 0.74, 0.70), as well as those of the wrong group members (d=0.76). In 
fact, participants are not much more inconsistent across time-separated sessions than they are 
within the same session (d=0.32 in Study 1). This marked difference between authentic user and 
adversarial attempts lends support to the conjecture that users can effectively replicate thumprints 
over time and cannot easily be impersonated by casual but motivated adversaries. 

To definitively answer question (v), I next sought to translate these findings into individual 
authentication decisions. In addition to the models for T1-T3 that I used in the previous analysis, I 
also included models for T4-T6. Specifically, for each of T4, T5 and T6, I selected five participants to 
be “group members” and five participants to be video+correct token adversaries. I trained a model on 
80% of the available data for the group members, holding out the additional 20% for testing.  

Figure 17 shows a plot of acceptance rates for correctly identified group members (“correct 
member”), all four adversary types (video+wrong, sound only, token only and video+correct), as well 
as how often a user would be authenticated but misidentified as another member of the group (the 
“wrong member” trend line).  

Expectedly, these results are not as optimistic as the analysis from my first study, when all data was 
collected from a single session and when the adversaries were not explicitly trying to exactly 
replicate the thumprint expression of a specific group member. One immediately notable result is 
that group members are rarely misidentified—this makes sense, as the preprocessing pipeline 
during training uses differences between group members to learn individual expressions of the 
thumprint.  

However, adversaries can have some success at cracking thumprints, particularly at higher 
thresholds. A good compromise between false positives and false negatives appears to occur in 
between the threshold values of 0.45 and 0.5. In between those thresholds, authentic user attempts 

 

Figure 17. Acceptance rate as a function of minimum acceptable threshold across all thumprints. There 
is no threshold value to perfectly distinguish authentic attempts from adversarial attempts, but 

threshold values between 0.4 and 0.5 yield high true positives and low false positives. 
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are correctly let in between 85 and 91% of the time, while adversaries are granted acceptance 
between an average of 13% and 19% of the time. While these adversarial success rates seem high, 
they are comparable to other intentional behavioral approaches, such as TapSongs (83.2% user 
recognition, 19.4% adversarial acceptance) [112] and keystroke dynamics for user identification (83-
92% recognition) [77].  

Interestingly, what I believed was the “weakest” adversary model, the token only model, was most 
successful at cracking thumprints. This appears to be because adversaries with more information 
quickly honed in on how they would try to replicate the thumprint and simply repeated this process 
for all ten attempts. Token only adversaries, however, explored a wider space of possibilities with 
their 10 replications (i.e., they tried many different knocks as opposed to just one knock).  

Finally, it is important to remember that Thumprint is not designed to provide perfect security 
against strong, motivated adversaries (who have advantages such as a video of the secret knock and 
ten unfettered attempts). I designed Thumprint to provide reasonable security, but emphasized 
inclusivity with identifiability, equitable distribution of responsibility and ease of sharing and 
revoking access. Indeed, for local group resources that are already largely physically secure (e.g., in 
homes), I believe these results suggest sufficient security. 

It should also be noted that any probabilistic authenticator carries some risk of accidentally 
authenticating outsiders (e.g., even stronger, more sophisticated ones like Apple’s TouchID [85]). 
Indeed, given the similarity in outsider rejection performance between my approach, TapSongs [112] 
and RhythmLink [73], this detection rate could be a natural limitation of using sensable behavioral 
interactions for authentication—at least using existing sensors and modeling techniques. Still, I argue 
that this level of outsider rejection is reasonable for the small, local-group setting, especially given 
the focus on inclusiveness. 

Discussion  
The evaluations suggest that groups of users who enter the same thumprint can reliably be 
distinguished from one another; that users can enter their thumprints fairly consistently over time; 
and, that casual but motivated adversaries are often detectable and can thus be protected against. 
Taken together, these results suggest that Thumprint is a promising step towards the vision of 
socially-inclusive authentication for small, local groups. This evidence does not, however, suggest 
that Thumprint is immediately ready for mainstream use. 

Though immediate viability is often an objective of traditional authentication research, I believe that 
this objective can be short-sighted. Traditional authentication works well for the purpose of 
identifying individuals who access private accounts, but Thumprint, and any other form of socially-
inclusive authentication, is a significant departure from these models. Indeed, if the goal of 
traditional authentication is to create hard, impermeable boundaries that differentiate any two 
individuals, the goal of socially-inclusive authentication is to construct tweakable, semi-permeable 
boundaries between an in and out-group. While identifiability within the in-group is important, the 
process of identifying the individual should not raise hard barriers between those in the group. 

Accordingly, while I have evaluated Thumprint to the standards expected of traditional 
authentication tools (e.g., with formally modeled adversaries), I believe this work opens up more 
interesting lines of inquiry. I reflect on some of these open questions and limitations, as well as 
discuss strategies for tackling them in future work. 

Uncovering Hidden Group Authentication Needs 
In designing Thumprint, I synthesized a number of unmet group authentication needs through a 
survey of the existing literature. However, these needs have only been explored in the socio-technical 
context of traditional authentication. As passwords and other typical forms of authentication have 
been long ingrained into everyday technology use, it may be difficult for users to conceptualize forms 
of authentication that are more group-friendly. 

Accordingly, in future work, it would be pertinent to deploy Thumprint and other forms of socially-
inclusive authentication as design probes in a field study with real groups. Through this field study, I 
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may uncover additional insights into how local groups use socially-inclusive authenticators and how 
they can be improved. 

Designing for Group Variety 
While Thumprint was designed to better cater to the authentication needs of local groups, these 
groups can have tremendous variety in their structure, composition and broader social context [109]. 
Families, for example, typically have little to no churn and often have clear power structures. Groups 
of friends, on the other hand, may be more egalitarian and prefer equal access to collectively shared 
resources. Work teams may have a lot of churn, be short lived, or require compatibility with broader 
security infrastructures. Student organizations may have expensive equipment that should be 
sharable, but require audit logs to keep track of who had access to what. 

Many other factors no doubt affect how appropriate solutions like Thumprint are for groups. For 
example, some groups may have greater risk perception than others (e.g., a group of journalists). 
Other groups may be aversive towards probabilistic authentication as opposed to deterministic 
authentication. Still other groups may value anonymity and want to do away with identifiability, 
while preserving an equitable distribution of security responsibility.  

Thumprint, thus, is likely to better suited to the needs of some groups than others – it is not a 
panacea. Still, I believe it is a promising a step forward and could be a starting point for further 
explorations into the design space of socially-inclusive authentication for different groups. 

Strength of Security 
Thumprint is not and was not designed to be perfectly secure. Though it is about as secure as 
comparable approaches for individuals (e.g., TapSongs [112], keystroke dynamics [77] and 
RhythmLink [73]), it is likely that a motivated adversary who observes individual group members 
entering the secret knock would be able to fool the model. Still, Thumprint’s security may improve as 
more data from multiple time-separated sessions become available. As group members continue to 
use Thumprint for extended periods of time, there may be enough training data to employ these 
more sophisticated models (e.g., one-class classifiers) for stronger outsider rejection. In future work, 
I would like to explore this possibility. 

Socially-Intelligent Interactive Security Systems 
More generally, whereas the social proof nudges from Chapter 6 were an example of the first social 
prescription I prescribed, Thumprint is an example of the second: designing novel end-user facing 
security systems that are more social. Specifically, I designed Thumprint to quickly and easily 
authenticate and identify individual members of a small group with a single shared secret. Through 
two user studies, I found that individuals who enter the same thumprint can be reliably distinguished 
from one another, that people can enter thumprints consistently over time, and that Thumprint 
provides reasonable security against a variety of casual but motivated adversaries. 

Thumprint is a promising first step towards the vision of socially-intelligent cybersecurity that better 
accomodates human social behavior in small group settings. It provides a degree of inclusivity that is 
atypical in traditional security systems and behaviors. Still, it is just a first step for a specific use-case. 
Thumprint is not the final form factor of social cybersecurity systems, but it is an illustrative example 
that social understanding and cybersecurity goals are not mutually exclusive. 
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Chapter 8: Discussion & Conclusions 
Summary 
The organizing question driving much of this work is: How can we design systems that encourage 
better cybersecurity behaviors? Engaging with this question is both important and urgent. 

Designing systems that encourage better cybersecurity behaviors is important because security and 
privacy help realize the full potential of computing. Without authentication and encryption, for 
example, few would use digital wallets, social media or even e-mail.  So it is unsurprising that the 
exploitation of weak security behaviors remains a massive enterprise. One estimate, calculated 
through a survey of over 3000 companies in the U.S., U.K. and Germany, suggests that the cybercrime 
industry is worth about $450 billion dollars annually [49], with much of this value deriving from the 
exploitation of weak security behaviors—re-using passwords, ignoring software updates, neglecting 
two-factor authentication, etc. While the defenses necessary to combat much of today’s cybercrime 
already exists, few use those defenses in the way that experts recommend [60]. In other words, while 
existing defenses may be effective, their usage remains low. 

Designing systems that encourage better cybersecurity behaviors is also urgent because cybercrime 
is emboldened by poor security habits. As Bruce Schneier argues, physical crime is largely prevented 
by social inertia [94]—that is, there are many social forces (e.g., family shame, legal reprimands, and 
stigma), that prevent burglary before a would-be burglar can ever get near one’s front door. 
Cybercrime has a relatively short history by comparison and the habits that make up the social 
inertia for cybersecurity are only being formed now. To date, these habits have been underlined by a 
sense of nonchalance: i.e., low awareness of security threats and available defenses, low motivation 
to act on security, and low knowledge of how to properly use security tools. This cannot continue. As 
computing encompasses more of our lives, we are tasked with making increasingly more security 
decisions. Simultaneously, the cost of every breach is swelling. Today, a security breach might 
compromise sensitive data about our finances and schedules as well as deeply personal data about 
our health, communications, and interests. Tomorrow, as we enter an era of pervasive smart things, 
that breach might compromise access to our homes, vehicles and bodies.  

In this thesis, I have outlined one promising way in which we may be able to design systems that 
encourage better cybersecurity behaviors: by understanding and leveraging social influence. Social 
influence is known to be a big factor in human decision making, yet, prior to my work in this thesis, 
little was known about how it manifests in securty decision making. To bridge that gap, I have done 
formative empirical work to construct an initial theory for social cybersecurity, combining both 
qualitative and large scale quantitative approaches. 

In Chapter 3, I introduced an initial typology of social influences that affect security behaviors, 
finding that social influence plays a significant role in security decision making and that it can 
manifest in many ways. Chief among these is observability—when possible, people observe and 
emulate the security behaviors of others. Often, however, secuirty behaviors are designed to be 
invisible or unobservable so it is difficult or impossible to spread through observability. In Chapter 4, 
I outlined the different types of conversations people tend to have about security, finding that people 
primarily speak to each other about security in order to warn or to teach, and that experts are often 
hesistant to share their knowledge for fear of being “boring” or sounding “preachy”. Finally, in 
Chapter 5, I presented an analysis of how having friends who use security tools affects one’s own 
likelihood to use those tools, uncovering the first large-scale empirical evidence that social influence 
affects security behaviors and that the design of a security tool strongly affects its potential for social 
spread. Specifically, security tools that are more observable, inclusive and stewarded are more 
amenable to social spread. 

I then outlined two ways that this formative theory of social cybersecurity can be used to encourage 
better cybersecurity behaviors: (i) by constructing simple socially-inspired interface nudges; and, (ii) 
by implementing new end-user facing security systems that are more social by design. Exemplifying 
the first, I presented an experiment with 50,000 Facebook users showing that we can increase the 
adoption of existing security systems by increasing the observability of security tool usage among 
friends through simple notifications that provide social proof. Exemplifying the second, I presented 
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Thumprint: a novel, socially-inclusive form of authentication that can authenticate and identify 
members of a small, local group through a single shared secret knock. Taken together, my work 
suggests that social influence, when properly understood and leveraged in the context of 
cybersecurity, can indeed be used to encourage better cybersecurity behaviors. 

This thesis provides both descriptive takeaways of how social influence affects security behaviors 
and prescriptive implications of how social influence can be used to improve end-user security. Next, 
I outline the most pertinent of these takeaways and implications. 

Take-aways 

Social influences strongly affect security behaviors 
My thesis work provides some of the first empirical evidence that social influence strongly affects 
cybersecurity behaviors, and sometimes in unique and surprising ways that challenge expectations 
derived from social psychology. 

Through my initial interview work (Chapter 3), I found that social influence accounted for nearly half 
of the recent security behavior changes made by my participants. Later, in the quantitative analysis 
of how security tools diffuse through social networks (Chapter 5), I found that social influence 
significantly affected the adoption of optional security tools on Facebook. 

The mechanisms through which this social influence affects security behavior are manifold. 
Specifically, I distilled the following list of security-relevant social influences: observing and 
emulating others’ security behaviors; hearing about others’ negative experiences; 
serendipitous teachable moments (e.g., pranks and demonstrations); collaborative sensemaking 
(i.e., collectively discussing and making sense of security decisions and news events); and sharing 
digital resources. While likely non-exhaustive, this list offers an intial typology of how social 
influences affect security behaviors. 

Notably, security system design, today, does not leverage these influences to improve security 
sensitivity. For example, while observability is one of the most intuitive and effective ways to spread 
good security behaviors, most security systems and behaviors are designed to be invisible. Thus 
there is a vast design space of social cybersecurity that remains largely untapped. 

Security behaviors can have negative social consequences 
As documented in Chapter 4 and in prior work by Gaw et al. [45], early adopters of security tools and 
behaviors are sometimes perceived as “paranoid”, “nutty” or as going “above and beyond” what is 
required. In other words, there is a social stigma to being overly cautious in the virtual world, just as 
there is in the physical world (e.g., the early perception of seat belts being uncool). This stigma has 
two strong negative effects. 

The first negative effect is that the early adopters of security tools can create a disaffiliation effect 
where laypeople perceive good security behaviors as an indication that one is paranoid or has 
something to hide. In Chapter 5, I presented some empirical evidence that illustrates this negative 
effect of social influence: at low levels of exposure to friends who use standard security tools like 
Facebook’s Login Notifications and Login Approvals, social influence has a negative effect on the 
further adoption of those tools. This negative effect did not, however, manifest for a more socially 
inclusive security tool: Trusted Contacts. Rather, the adoption of Trusted Contacts was positively 
affected by social influence even at low levels of exposure. 

The second negative effect of this social stigma is that security experts often do not want to share 
their expertise. In the interview studies I presented in Chapters 3 and 4, for example, experts 
mentioned that they did not want to be perceived as “nagging” or “boring” so they did not often share 
their security knowledge. Unfortunately, experts presently have no outlet for sharing their concern 
for their friends and loved ones security that would portray them in a more positive light. 

Existing end-user cybersecurity is often anti-social 
Much of physical safety is rooted in sociality: for example, the ability to observe and emulate good 
safety behaviors (e.g., locking doors, wearing seatbelts) and the ability to implicitly offer protection 
to one and another through the idea of strength in numbers (e.g., walking home in pairs is safer than 
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walking home alone). Today’s end-user facing cybersecurity systems fail to take advantage of 
sociality in at least three ways. 

First, as I previously argued, is the lack of observability. Observability can help spread good security 
behaviors. In the physical world, we can often see threats to our physical safety and can observe how 
others respond to and protect themselves against those threats. In so doing, we learn a number of 
things: that there is a threat (raising awareness), that it is important to protect ourselves against that 
threat (raising motivation) and how to go about protecting ourselves from that threat (raising 
knowledge). In the virtual world, however, we are immersed in a fog of war. We cannot see the 
cybersecurity threats that may or may not be pertinent. We also cannot see how or even if others are 
responding to these threats. 

Second is the lack of inclusivity. In the physical world, two people are generally physically safer 
together than they are apart because their strength aggregates: for example, it is generally easier for 
two people to fend off a burglar than just one person. In the virtual world, however, security does not 
aggregate in a group setting—instead, the strength of security for a group is only as strong as its 
“weakest” link. For example, if Alice has strong security behaviors and shares her files with Bob, who 
has weak security behaviors, the files Alice shares with Bob are only as secure as Bob’s security. 
Thus, inclusivity in security is discouraged: experts are hurt by sharing data with laypeople, and 
laypeople do not benefit from being in a group with experts. 

Third is a lack of stewardship. To use a more crude physical world analogue, it is sometimes easy to 
act on one’s concerns for the safety of one’s friends. For example, Bob can offer Alice a ride home at 
night if he believes it is not safe for Alice to walk home alone. It is easy for Alice to take Bob up on the 
offer, and it is relatively simple for Bob to provide Alice with a ride. In the virtual world, however, 
while there is a much larger divide between the knowledge and behaviors of experts versus non-
experts than the physical safety differences between Alice and Bob, experts have no simple way to 
act on their concern for the security of their loved ones short of offering advice that can be perceived 
as nagging or boring. 

Given this lack of observability, inclusivity and stewardship—all fundamental to our understanding 
and practice of physical security—perhaps it is no wonder that the general population’s security 
sensitivity remains low. 

The design of a security tool strongly affects its potential for social spread 
In the analysis of how security tools diffuse through social networks I presented in Chapter 5, each of 
the three security tools I analyzed were affected by social influence differently. The adoption of 
standard security tools like Facebook’s Login Notifications and Login Approvals was negatively 
affected by social influence at low levels of exposure to friends who use those tools. The effect 
eventually turned positive for Login Approvals at the highest level of exposure I tested, but remained 
negative for Login Notifications. For Trusted Contacts, however, the effect of social influence was 
positive throughout—i.e., even at the lowest level of exposure to friends who used Trusted Contacts, 
social influence had a positive effect on its adoption.  

These different manifestations of the effect of social influence across different security tools suggest 
that the design of a security tool strongly affects its potential for social spread. Specifically, security 
tools that are more social by design are more likely to spread through social channels, whereas 
standard security tools that are asocial by design are more likely to only see use within early-adopter 
expert communities.  

Greater exposure and diversity of exposure can counteract stigma 
One commonality of the effect of social influence on the adoption of all three security tools I analyzed 
in Chapter 5 was that there was a positive main effect of exposure—that is, at higher levels of 
exposure to friends who use a security tool, the effect of social influence was increasingly positive. 
Another key finding from that study was the positive relationship between exposure to friends from 
diverse communities and the effect of social influence—i.e., people with exposure to friends from 
more distinct social contexts (e.g., high school, college, work) who use a security tool are more likley 
to use that tool than people with exposure to the same number of friends from fewer social contexts. 
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These effects were replicated in my social proof nudges experiment (Chapter 6), where I found that 
the effect of social proof was greater on people who had more friends who used a promoted security 
tool as well as on people who had friends from more diverse social contexts who used those tools.  

Conversations about security are rare and are meant to warn or teach  
In Chapter 4, I synthesized an initial list outlining the types of conversations people have about 
security and privacy. There were two key findings from that analysis. First, conversations about 
security and privacy are rare. Few people, not even experts, want to have face-to-face conversations 
about security. Laypeople are generally not interested except in specific circumstances, and experts 
do not want to seem “preachy” or “boring”, so will often only talk about security if the conversation is 
prompted by someone else. Then, what are these specific circumstances in which people have 
conversations about security? There are two: when someone wants to learn/teach, or when someone 
wants to warn. In other words, conversations about security are typically educational in nature and, 
so, only happen when a security behavior must be made or changed—e.g., when configuring a new 
device or in the wake of a security breach. 

Security tools can be made more widespread by making them more social 
In Chapters 3-5, I presented formative work on developing an initial theory for social cybersecurity. 
In Chapters 6 and 7, I presented two ways to use this theoretical foundation to improve end-user 
security. The first way is socially-inspired interface nudges. While it can be difficult to re-design 
existing security systems to be more social, it is possible to use simple interface nudges to make their 
usage more observable and inclusive. I presented an example of this in Chapter 6, by experimentally 
evaluating the effectiveness of notifications promoting the use of optional security tools with and 
without social proof on Facebook. In that experiment, the best social proof announcements attracted 
significantly more clicks than the non-social control, which, in turn, resulted in significantly more 
tool adoptions. 

The second way is creating new end-user facing security tools that are more social by design, 
specifically emphasizing the design dimensions of observability, inclusivity and stewardship. In 
Chapter 7, I introduced Thumprint as an example of socially-inclusive authentication for small, local 
groups (e.g., families, small work teams). With Thumprint, I demonstrated that by relaxing the 
assumption that cybersecurity is meant to be an individual activity, it is possible to make end-user 
security systems that are social without compromising on security goals. 

More generally, new security tools are held to incredibly high technical standards, but that is not 
always conducive to envisioning better futures. Immediate viability is a noble goal, but it should not 
be the only goal — doing so can be stifling and short-sighted and preclude more risky but fruitful 
alternative design considerations. Thumprint is an example — it is not perfectly secure, but it does 
provide an alternative socially-inclusive authentication design that is secure enough for many low-
stakes use cases. Only by more fully exploring the design space of interactive security systems can we 
hope to find a design pattern that encourages better cybersecurity behaviors. 

Open Problems and the Future of Social Cybersecurity 
This thesis provides the first clear empirical evidence that social factors influence the uptake and 
spread of end-user facing security behaviors and systems. Through my work in modeling how social 
influences affect security behaviors and my work in applying those models to create more socially 
intelligent cybersecurity systems, I have laid the foundation for a new subfield that is related to yet 
distinct from usable security: social cybersecurity. This thesis, however, is just a launching pad. There 
remains a number of open problems and directions of inquiry that I expect will guide the future of 
social cybersecurity. Here, I discuss some of the more pertinent. 

Discovering and validating the mechanisms underpinning social cybersecurity 
One of the key findings of my thesis work is that social influence has a negative effect on the adoption 
of standard security behaviors and tools, like two-factor authentication. The disaffliation hypothesis 
suggests that the reason for this negative effect is that the perceived early-adopters of security tools 
might be those who are perceived as “paranoid” of “expert” or otherwise unrelatably different to 
average end-users. In turn, as a result of this perceived unrelatability, the early adopters of standard 
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security tools might cast a stigma around the use of that tool. The disaffiliation hypothesis, however, 
is just a hypothesis. Accordingly, there remains a significant opportunity to explore and 
experimentally validate both the disaffiliation hypothesis and competing explanatory mechanisms 
for why there is a negative effect of social influence on the adoption of security tools. 

Likewise, my work has only begun the exploration of applicable social psychology theory that can 
help explain end-user cybersecurity behavior. There remains much work to be done on uncovering 
the underlying mechanisms that drive security behaviors.  

Cialdini, for example, lists seven principlines of social influence: reciprocity, or that people tend to 
repay favors; commitment and consistency, or that people tend to honor commitments they explicitly 
make to others and to follow through with larger requests after agreeing to similar smaller ones; 
social proof, or that people tend to do things they see others do; authority, or that people tend to do 
as authory figures ask; liking, or that people tend to be persuaded by others they like; scarcity, or that 
people tend to value things that are believed to be scarce; and, unity, or that people tend to be more 
influenced by others with whom they identify [21,22]. Thus far, I have only experimentally validated 
the efficacy of social proof in the context of security behavior change. There remains a large 
opportunity to explore the (non)effectiveness of other principles of influence. 

Another needed and important theoretical advancement is modeling how groups of people make 
joint security decisions. The pervasion of networked “smart” objects is increasingly making 
cybersecurity decisions salient in group settings. How do families decide on a shared password for a 
Nest thermostat account? How do employees in a shared working space decide on access control 
policies for communally owned paraphrenelia like mugs and cups? How do freelance work teams 
decide on whether or not to use secure messaging applications, and, if they do, which secure 
messaging application? Security has always been studied as an individual decision. But, as security 
will increasingly interfere with our social lives, it is becoming more important that we understand 
how security decisions are made in social contexts. 

Finally, while I have shown that social influences can be used to affect behavior, it remains unclear 
whether and if there are differences in how those behaviors affect future security decisions. In other 
words, what, if any, are the differing effects, over time, between socially catalyzed behavior changes 
and non-socially catalyzed behavior changes. 

Sociality as a third dimension in addition to usability and security 
Instead of the traditional usability-security spectrum, my work on social cybersecurity suggests that 
we can instead think of usability, security and sociality as a three-dimensional design space for 
interactive cybersecurity systems. In other words, sociality is not usability. Indeed, something can be 
usable but not social (e.g., a graphical password), or social but not usable (e.g., an intelligent assistant 
that always makes the most socially appropriate authentication decision but takes 30 seconds to do 
so). Likewise, sociality is not security—we can have secure systems that are not socially intelligent 
(e.g., two-factor authentication), and socially intelligent systems that are not secure (e.g., a secret 
knock identification system that classifies a knock as definitely coming from one of a pre-registered 
set of group members). Rather, sociality is a third dimension that should be considered in the design 
of interactive cybersecurity systems. 

Better understanding this design space, however, is a ripe opportunity for future exploration. 
Particularly pertinent is unpacking how sociality interacts with usability and security. Are there 
inherent trade-offs in sociality and security? Are there inherent synergistic properties between 
usability and sociality? As “usability”, “security” and now “sociality” are all complex concepts that 
cannot easily be formalized, these are questions that will need to be answered empirically through 
the construction and evaluation of many different “social” cybsersecurity systems. 

There is also a need to have a better understanding of what it means for a security system to be social 
and how its sociality can be expected to translate into security sensitivity. In this thesis, I have argued 
that there are at least three dimensions of sociality: observability, inclusivity and stewardship. An 
open problem is understanding how to make security systems that are observable, inclusive and 
stewarded. Another avenue for future work is to uncover and validate other social design 
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dimensions, beyond observability, inclusivity and stewardship. Ultimately, to inspire a new wave of 
socially intelligent cybersecurity systems, it would be pertinent to have a checklist or a set of 
guidelines that can help designers make security more social. 

Still another avenue for future work is to better understand the boundaries of sociality in interactive 
cybersecurity system design. In other words, when is sociality important and necessary? When is it 
applicable? Usability, for example, is generally important but a lack of usability is more tolerable in 
high-risk situations (e.g., protecting national secrets). Usability, however, is of absolute importance in 
situations that are perceived to be lower-risk: e.g., in smartphone authentication, or in chat 
application encryption. Likewise, when is a lack of sociality more tolerable? When is it necessary?  

Finally, more work is needed to understand how to make security for non-social contexts more 
social. It is relatively easy to provide users with notifications that their friends use two-factor 
authentication on Facebook than to, for example, provide users with notifications that their friends 
have public keys and prefer encyrpted communications. The relative difficulty stems from the fact 
that there are few platforms, like Facebook, that have access to both security behavioral information 
and social connectivity information. 

Metrics and methods for creating and evaluating social cybersecurity systems 
More fundamentally, a large open problem is understanding the metrics and measures that can be 
used to evaluate social cybersecurity systems. If we make systems that are more observable, 
inclusive and stewarded, how can we translate those design goals into expected changes in security 
sensitivity. For example, what can we expect out of a more observable form of two-factor 
authentication? Perhaps the answer is X% higher adoption in a N-week timeframe relative to a non-
observable form of two-factor authentication, or a Y% increase in awareness that two-factor 
authentication is an option. A goal for future work, then, would be to develop a better understanding 
of what those parameters X, N, and Y might be for different social designs. So far, however, we have 
relatively little understanding of how making security more social will translate into concrete, 
measurable behavior change. 

What’s needed is a set of concrete metrics and measures that can be used for evaluating the efficacy 
of a social cybersecurity system design, as well as standards for measurement. Just as usability has 
standard measures that are applicable to the design of usable security systems (e.g., the Nielsen 
Heuristics [79] or the System Usability Scale [15]), sociality needs a set of agreed upon measures and 
measurement instruments that are applicable to the design of social cybersecurity systems. Should 
we measure a sense of group cohesion or perceived social capital between group members? Higher 
group penetration of a security behavior among local groups of individuals? More discussion of 
security and privacy among family and other small group units? If so, what are reliable measurement 
instruments we can use to take these measurements. 

These are just a few ripe opportunities and open problems for future work. My thesis has laid down a 
strong foundation for social cybersecurity, but there remains much to be done in order to develop a 
more holistic understanding of how social influences affect cybersecurity behaviors and how we can 
use those social influences to design systems that encourage better cybersecurity behaviors. 

Conclusion 
How can we design systems that encourage better cybersecurity behaviors? Despite years of 
improvements to the usability of interactive, end-user facing security systems alongside a rapid and 
sustained growth of cybercrime, many useful security systems remain underutilized. This trend 
cannot continue. As computing encompasses more of our lives, we are tasked with making 
increasingly more security and privacy decisions. Simultaneously, the cost of every breach is swelling. 
Today, a security breach might compromise sensitive data about our finances and schedules as well 
as deeply personal data about our health, communications, and interests. Tomorrow, as we enter the 
era of pervasive smart things, that breach might compromise access to our homes, vehicles and 
bodies. Accordingly, it is becoming increasingly important that security is something with which end-
users actively utilize and engage.  
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One problem is that while the usability of security systems have improved, attitudes about the 
importance of end-user security have not—the awareness of security threats and available defenses, 
the motivation to utilize recommended security tools and behaviors, and the knowledge of how to 
use recommended security tools and behaviors remain low. This security sensitivity is unlikely to 
change through improvements to usability alone. Rather, attitude adjustments require longer-term 
social change. 

Yet, to date, little theoretical work in usable privacy and security has applied social science theory to 
understand how social processes affect security sensitivity. In turn, this lack of theoretical insight has 
precluded systems work that accounts for the social consequences of security system design. Thus, 
there remains a great but largely untapped opportunity to model human social behaviors within the 
context of cybersecurity and in creating socially intelligent security systems that have a better 
understanding of these human social behaviors.  

To bridge these gaps in theory and practice, in this thesis, I offered an initial theory of how social 
influences affect cybersecurity behaviors, distilled these theoretical insights into a set of broad 
design recommendations, and then implemented and evaluated two such systems that point to a 
promising future of social intelligent cybersecurity. My work provides key supporting evidence for 
the statement: Social influences strongly affect cybersecurity behaviors, and it is possible to 
encourage better cybersecurity behaviors by designing security systems that are more social. 
More generally, through my thesis work, I hope to have conveyed the following three points: 

1. Social influence strongly affects cybersecurity behaviors, and the design of a security tool 
affects its potential for social spread. Specifically, security tools that are more observable, 
inclusive and stewarded are more likely to spread socially and spread beyond early-adopter 
expert communities. 
 

2. It is possible to increase the awareness and adoption of existing security tools and behaviors 
by making their use more social through interface nudges—for example, notifications that 
offer people some social proof that others care about and act on on their own security. 
 

3. There is a great but largely untapped opportunity to reshape interactive, end-user facing 
security systems to be more social—i.e., more observable, inclusive and/or stewarded—
without compromising on key security goals. 
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