3-2013

High-Level Abstractions for Safe Parallelism

Robert Bocchino
Carnegie Mellon University

Hannes Mehnert
IT University of Copenhagen

Jonathan Aldrich
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/isr

Part of the [Software Engineering Commons](https://scholar.google.com/scholar?cluster=17715317870193606231&hl=en&as_sdt=0,5)

This Conference Proceeding is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been accepted for inclusion in Institute for Software Research by an authorized administrator of Research Showcase @ CMU. For more information, please contact research-showcase@andrew.cmu.edu.
High-Level Abstractions for Safe Parallelism

Robert L. Bocchino Jr.
Carnegie Mellon University
rbocchin@cs.cmu.edu

Hannes Mehnert
IT University of Copenhagen
hame@itu.dk

Jonathan Aldrich
Carnegie Mellon University
jonathan.aldrich@cs.cmu.edu

Abstract
Recent research efforts have developed sophisticated type systems for eliminating unwanted interference (i.e., read-write conflicts) from parallel code. While these systems are powerful, they suffer from potential barriers to adoption in that (1) they rely upon complex and/or restrictive features that may be difficult for programmers to understand and use; and (2) they impose a nontrivial annotation burden.

In this work we explore a different approach: instead of extending the type system to do all the work of proving noninterference, we rely upon high-level abstractions that capture important patterns of noninterfering parallelism — for example, performing a parallel divide-and-conquer update on an array, or updating different array cells in parallel while reading memory disjoint from the array. We show how, with suitably designed APIs, a few simple type system extensions can guarantee that user code is noninterfering, assuming the APIs are correctly implemented. Of course someone still must check the API implementation; but such checking (which can be done, e.g., with program logic) is hidden from the user of the API.

To illustrate the idea, we present a prototype implementation in Standard ML, including several parallel APIs and two realistic client programs. We sketch the typing annotations and verification methodology we have in mind. We pose several research questions raised by the prototype and suggest ideas for extending the work.

1. Introduction
Single-processor size and speed have hit a scaling wall, and commodity hardware is becoming more parallel. There are more parallel APIs available than ever before. Software, however, poses significant development and maintenance challenges. One important challenge is the possibility of data races, which occur when two concurrent tasks access the same memory without coordination, and when at least one of the accesses is a write. Data races can result in nondeterministic computation results and subtle errors.

Researchers have proposed different ways to avoid races and/or ensure deterministic execution, typically using types and related annotations to represent effects [17, 28] or permissions [19, 26, 38, 39]. Overall, the strategy of these approaches is to use program annotations to track where interference (i.e., parallel read-write conflicts) may potentially occur, and ensure correct synchronization. These systems can provide impressive guarantees, for example excluding all data races at compile time [18, 39], or even assuring that the program executes deterministically [15, 17, 28].

The cost of these guarantees, however, can be high. First, the burden of understanding and writing the annotations is nontrivial. Second, the type systems can impose awkward restrictions, such as disallowing common patterns of assignment (in the case of region types, such as DPJ [16]) or aliasing (in the case of uniqueness types [26, 38, 39]). Finally, the more esoteric aspects of these systems (for example wildcard regions in DPJ, or “borrowing” rules in uniqueness-based systems) can be intimidating for programmers.

In this work we explore a different approach: instead of extending the type system to do all the work of proving noninterference, we rely upon high-level abstractions that capture important patterns of noninterfering parallelism — for example, performing a parallel divide-and-conquer update on an array, or updating different array cells in parallel while reading memory disjoint from the array. We show how, with suitably designed APIs, a few simple type system extensions can guarantee that user code is noninterfering, assuming the APIs are correctly implemented. Of course someone still must check the API implementation; but such checking (which can be done, e.g., with program logic) is hidden from the user of the API.

Our main insight is that verified parallel APIs — plus an “ordinary” user type system augmented with a few simple extensions — can do the same work as the more complex type system extensions in previous work. The primary benefit is that the user experience should be more familiar: instead of mastering a complex type system, the user just has to understand and use the API. The annotation burden should also be less: for example, there are no uniqueness or effect annotations. Finally, there are no restrictions on assignment or aliasing, other than those imposed by the minimally extended type system. Of course the programmer is restricted to using available APIs, but if another API is needed, then (assuming its design is possible) it can be easily added. Overall, our approach is similar to the work on parallel frameworks in DPJ [16], but with more robust API design and far less user-side annotation.

We illustrate our idea by describing a prototype implementation in Standard ML. We describe several parallel APIs and two realistic client programs (a merge sort and an n-body simulation), including the typing annotations and verification methodology we have in mind. Then we discuss some research questions raised by our prototype. After that we discuss related work and ideas for future work.

2. Examples
In this section we illustrate our idea with two examples from our prototype implementation, written in Standard ML (SML). ML is well suited to this work because its type and module systems are elegant and powerful for expressing higher-order functional APIs; and yet it supports imperative computations with in-place updates, e.g., using ref and array types. However, we believe this choice is not essential; for example, we have written similar examples in Scala and F# (we discuss the F# implementation in Section 3). The full source code for our examples is available on GitHub [6].

2.1 Disjoint Array Slices
Our first example is an SML module DisjointSlices, which supports in-place divide-and-conquer operations on collections of disjoint array slices. By “array slice” we mean a sequence of index positions into an array. By “disjoint” we mean that any two slices in the collection represent non-overlapping memory, either because they index into different arrays, or because the index ranges do not
overlap. We show how to (1) write the DisjointSlices module so that it supports noninterfering divide-and-conquer parallelism on arrays and (2) use the module to write parallel merge sort.

Our module uses types Array and ArraySlice from the SML Standard Basis Library. An Array represents a type-polymorphic array with in-place update, and an ArraySlice represents an array slice as described above. In particular, creating an ArraySlice does not copy any array data; instead the slice stores a reference to the underlying array. That way several ArraySlice objects can read and write the same underlying array.

```
signature DISJOINT_SLICES =
  sig
  (* A list of disjoint array slices *)
  mutable type 'a slices
  (* A list of lists of disjoint array slices *)
  mutable type 'a partitions

  (* Create fresh array slices from
     (length, initial value) pairs *)
  val slices : (int * 'a) list -> 'a slices

  (* Wrap an array in a singleton slice *)
  val fromArray : 'a Array . array -> 'a slices

  (* Add fresh array slices *)
  val add : 'a slices * (int * 'a) list -> 'a slices

  (* S -> I -> P splits each slice in S using the corresponding index list in I *)
  val split : 'a slices -> int list list -> 'a partitions

  (* Transpose the list of lists of slices *)
  val transpose : 'a partitions -> 'a partitions

  (* Apply function in parallel to each element *)
  val apply : ('a slices -> unit) -> 'a partitions -> unit

  (* Get the list representation of the slices *)
  val getList : 'a slices -> 'a ArraySlice . slice list

end
```

Figure 1. Signature for the DisjointSlices module (partial).

Module signature. Figure 1 shows selected members of the signature for our DisjointSlices module. We have extended the SML syntax with a keyword mutable (highlighted in blue bold face in the figure, and discussed below), but otherwise this is plain SML.

In Figure 1 lines 4–8, the signature defines two abstract types, slices and partitions. Type slices represents a list of disjoint slices. Type partitions represents a list of lists of disjoint slices; a value of this type results from splitting one or more of the elements of a slices into sub-slices, to represent sub-computations on parts of the data. The user of this API expresses a divide-and-conquer parallel algorithm as a higher-order function that (1) takes a slices type as an argument; (2) splits the slices into partitions; and (3) applies itself to the partitions.

The keyword mutable appearing in lines 5 and 8 specifies that types slices and partitions represent values encapsulating references to mutable state (for example, an SML reference or array, or a record or tuple transitively containing a reference or array). On the other hand, the type variable ‘a must be an immutable value. To allow binding of mutable data to ‘a we would write mutable ‘a. We envision a simple extension to the SML type system that enforces consistency with respect to these annotations. For example, given the type shown in Figure 1 line 5, it would be a type error (1) for the implementor to omit the mutable before the type keyword in the signature and then implement the type with references or mutable arrays; or (2) for the user to bind a mutable data type to a plain ‘a with no mutable keyword in the signature.

Lines 10–19 illustrate functions for creating and transforming slices types. Function slices takes a list of parameters (length and initial value) and uses them to populate a slices with fresh slices. Function fromArray accepts an existing array and wraps it in a slices. Function add adds fresh slices to an existing slices.

Lines 21–28 illustrate functions for creating and transforming partitions types. Function split takes a slices S and a list I of index lists, where I and S have equal length (if not, a runtime exception occurs). It produces a partitions type by splitting each of the slices in S according to the corresponding index list in I. For example, inputs [A, B] and [[m1, n1], [m2, n2]] yield [[A1, A2], [B1, B2]], where A1 represents the first m indices of A, and A2 represents the rest, and similarly for B1, B2, and n. Function transpose performs a standard matrix transpose on a list of lists: for example, transpose [[A1, A2], [B1, B2]] yields [[A1, B1], [A2, B2]].

Function apply (line 30 and following) applies a higher-order function in parallel to each element in the list of slices types represented by the partitions input. Again we extend the SML type system slightly: we assume the function type ‘a slices -> unit guarantees that (1) ‘a is an immutable value type, as before; and (2) calling the function does not touch any globally visible mutable state, such as a reference variable defined outside the function body. If a function does touch global mutable state, then its type must be annotated global. For example, the function

```
fn x => let val y = ref x in fn z => (y := !y + z; !y)
```

has type int -> global (int -> int). The function itself is not global (there are no free variables in its definition), but the returned function type (variable y is free in its definition and has type int ref). In Figure 1 line 30 there is no global annotation, so we can infer from the type that the only mutable state entering apply is the partitions in the second argument; no such state may be ‘smuggled in’ via the first argument. Note, however, that the user-defined function bound to the first argument can freely allocate and use its own (local) mutable state.

Merge sort. Figure 2 shows how to use the DisjointSlices module to implement parallel merge sort with a four-way recursive split. This code is based on the merge sort program in the DPJ benchmarks [3]. Calls to functions declared in DISJOINT_SLICES are set off in green bold face.

Function sort (lines 33 and following) accepts an int array to sort. It wraps the array in a slices, adds a fresh array to the slices, and passes the result to the helper function sortSlices. Function sortSlices (lines 8 and following) accepts a slices that wraps disjoint slices A and B. A is the input to be sorted, and B is an auxiliary array required by the sorting algorithm. At the end of a call to sortSlices, A is sorted in place.

If A is smaller than a predetermined size, then sortSlices applies a sequential quicksort to A. Otherwise, it (1) divides A into quarters and sorts each one in parallel; (2) in parallel merges each pair of quarters of A into a half of B; and (3) merges the halves of B back into A. The quarters and halves (lines 19–22) are created by splitting and then transposing, as discussed above. Function splitFirst (lines 23–24) splits slice A only; it applies split to transform [A, B] into [[A1, A2], [B1, B2]], and then it applies flatten to transform that into [A1, A2, B].

Function merge (lines 3 and following) accepts slices type containing slices [A1, A2, B]; it merges A1 and A2 into B in
or applying a transformation such as API and enumerate all the ways that a partitions the index sets are disjoint. To prove this fact, we must examine the of slices such that for each pair of slices, the arrays are different or one to another, or flatten a partitions the only way the user can get a of lists is hidden outside the module implementation. Therefore we do not extend the type system so that it is powerful enough to stated in the introduction, in contrast to approaches like DPJ [17], safe, regardless of the values of f and ps provided by the user. As noted in the introduction, in contrast to approaches like DPI [17], we do not extend the type system so that it is powerful enough to carry out this proof; instead, the extended type system just provides enough information so the proof is possible looking only at the API implementation code. We imagine that the proof would be done either manually or with an automatic or semi-automatic theorem prover. Below we sketch how the proof might go.

By the semantics of the parallel map, and the semantics of function types discussed above, it suffices to prove that any ps passed to apply represents a disjoint partition, i.e., a list of lists of slices such that for each pair of slices, the arrays are different or the index sets are disjoint. To prove this fact, we must examine the API and enumerate all the ways that a partitions can be produced. Here the ML module system helps us. Because of the opaque constraint ::> in Figure 3 line 1, together with the abstract type in Figure 1 line 8, the representation of the type partitions as a list of lists is hidden outside the module implementation. Therefore the only way the user can get a partitions is by splitting a slices or applying a transformation such as transpose on an existing partitions. Similarly, to obtain a slices the user must create one using a constructor provided by the module signature, or transform one to another, or flatten a partitions into a slices. Thus it suffices to prove two facts: (1) any constructor for slices creates a disjoint

Figure 2. Merge sort implementation using DisjointSlices.

- **Module implementation.** Figure 3 shows a possible implementation of the DisjointSlices module. In line 34, we assume the existence of a function ParallelList.apply that applies the function f in parallel over the elements of ps.

To ensure the safety of this module, we must prove that the parallel application in the implementation of apply (line 34) is safe, regardless of the values of f and ps provided by the user. As stated in the introduction, in contrast to approaches like DPI [17], we do not extend the type system so that it is powerful enough to carry out this proof; instead, the extended type system just provides enough information so the proof is possible looking only at the API implementation code. We imagine that the proof would be done either manually or with an automatic or semi-automatic theorem prover. Below we sketch how the proof might go.

- By the semantics of the parallel map, and the semantics of function types discussed above, it suffices to prove that any ps passed to apply represents a disjoint partition, i.e., a list of lists of slices such that for each pair of slices, the arrays are different or the index sets are disjoint. To prove this fact, we must examine the API and enumerate all the ways that a partitions can be produced. Here the ML module system helps us. Because of the opaque constraint ::> in Figure 3 line 1, together with the abstract type in Figure 1 line 8, the representation of the type partitions as a list of lists is hidden outside the module implementation. Therefore the only way the user can get a partitions is by splitting a slices or applying a transformation such as transpose on an existing partitions. Similarly, to obtain a slices the user must create one using a constructor provided by the module signature, or transform one to another, or flatten a partitions into a slices. Thus it suffices to prove two facts: (1) any constructor for slices creates a disjoint

Figure 3. Implementation of the DisjointSlices module.

- slices; and (2) any transformation that maps one slices or partitions to another preserves disjointness.

As an example of checking fact 1, notice that the API shown in Figure 1 supports constructing a slices from fresh arrays (function slices in line 12) or wrapping a single array in a slices (function fromArray). In the first case, the fresh arrays are disjoint by the semantics of the SML array operations used in line 10 of Figure 3, while in the second case the single array is trivially disjoint. Significantly, because of the hidden representation, the user may not simply take an arbitrary list of slices (which might not be disjoint) and wrap them in a slices. As an example of checking fact 2, consider function split (Figure 3 line 27), which maps a slices to a partitions. Because split partitions the components of the slices into disjoint pieces, it should be straightforward to prove from its implementation that if the sliceList input is disjoint, then the partitions output is disjoint as well.

Finally, notice that the function getList (Figure 3 line 36) exposes the list representation of the slices type. This exposure is necessary so that the client can access the elements of the slices (for example, in Figure 2 lines 4 and 9). This exposure does not present a problem for the correctness argument sketched above. It would be a problem if the user could go the other way, i.e., could construct an arbitrary list of slices and make it into a partitions object. However, that is not allowed by the API.

2.2 Spatial Region Tree

Our second example is an SML module RegionTree, which represents a spatial region tree. This structure stores data (usually rep-
representing physical objects in space) in its leaves, while the inner nodes of the tree represent partitions of space. Such trees appear, for example, in physics simulations (to simulate particle interactions) and graphics computations (for ray tracing and collision detection).

Figure 4 shows selected members of our API design.

The reduction function takes a current value and a list of child values and reduces them to a single updated value. We use an option type so that a node may have an empty data field. As in the DisjointSlices API, 'a is an immutable value, and any mutable state accessed by a function of type 'a reduction must be local to the function definition.

To support read-only operations on the tree, we introduce an annotation readonly, indicating a type that provides a reference to mutable data but may be used only for reading, and not writing, the data. Figure 4 lines 8–9 define two readonly types, readOnlyTree and readOnlyNode, which provide read-only access to a tree or a node respectively. Function readOnly (line 26) converts a tree into a readOnlyTree; its implementation is the identity function, as only the types are significant. As shown in lines 28 and following, the API also provides functions for obtaining a readonly reference to the root of a readOnlyTree, obtaining readonly references to the children of a node, and reading data out of a node.

As with the mutable annotation discussed in Section 2.1, the compiler enforces that readonly types are consistently used (for example, that a mutable type is never bound to a readonly type parameter). However, readonly and non-readonly aliases to the same object may freely coexist: for example, applying readOnly to a variable tree does not prohibit or restrict the subsequent use of tree, as it would in systems based on access permissions [26, 38, 39]. Further, unlike previous systems incorporating immutable types, the compiler does not actually prohibit writes from occurring through references of readonly type. Instead, the readonly annotation regulates the use of the API, and the actual invariant is provided by the API design and implementation. For example, a correct RegionTree implementation must ensure that no operation on a readOnlyTree modifies the tree. This allocation of responsibility keeps the userside type system very simple and minimally restrictive.

Barnes-Hut simulation. We have used the RegionTree API to write the Barnes-Hut n-body simulation (BH) [17, 40]. BH simulates the interaction between a number of massive bodies (for example, stars or planets) in a series of time steps. At each time step, the algorithm (1) constructs a region tree containing the bodies at the leaves; (2) performs a bottom-up reduction on the tree to fill in the center-of-mass coordinates for the inner nodes; (3) uses the region tree to compute the forces on the bodies; and (4) uses the forces to update the body positions. In our implementation, steps 2 and 3 are parallel. Step 1 could also be parallelized (by adding a parallel tree build to our API), but we have not done that. The most time-consuming part of the computation — and the best opportunity for parallel speedup — occurs in step 3.

Figure 5 illustrates, in ML-like pseudocode, one time step of our implementation. Function timeStep (line 15) accepts an array of body objects and computes a new array with the updated positions for that step. Lines 16–17 use the RegionTree API to insert the bodies into the tree and fill in the center-of-mass coordinates. Lines 18–19 obtain read-only references to the tree and the array. Line 20 passes the read-only tree and array references to computeForces, which returns a new array containing bodies with updated forces. Lines 21–22 update the positions in place in that array and return the array.

Lines 4 and following show the computeForces function. This function accepts a pair (tree, bodies) of a read-only tree and a
read-only array. It constructs a function f that reads the tree and array and computes a new body for each index position i. Because the incoming tree and array types are read-only, this function is constrained to call API functions that accept a readOnlyTree or readOnlyArray as input. In particular, by the design of the RegionTree API, there is no way for f to insert an element into the tree. However, f can obtain read-only references to the tree nodes and their children, to traverse the tree and read its data.

Lines 8–9 construct an ArrayModifier for use in generating the new body array. This API, shown in relevant part in Figure 6, encapsulates the pattern of modifying an array in place in parallel while reading disjoint state. After Figure 5 line 9, m stores a reference to an ArrayModifier modifier containing a fresh body array of the same length as bodies, and storing the read-only state (tree,bodies).

In Figure 5 line 10, the call to ArrayModifier.modifyi uses f to modify m’s array in place in parallel. As shown in Figure 6 lines 13–14, function modifyi has type

\[(a,'b)\text{ modifier} \rightarrow (a,'b)\text{ modifyiFn} \rightarrow \text{unit}\]

The type modifyiFn is defined as follows:

\[type (a,\text{readonly} 'b)\text{ modifyiFn} = 'b \rightarrow \text{int} \rightarrow a\]

Here a is the type of an array element, and b is the type of the state being read during the computation of a at each index position of the array. Notice that the readonly annotation on type variable b ensures that only read-only state can go into the modifyiFn. Thus the type system ensures that the only “modifying” here is done by the modifier itself. Also, notice that the function f in Figure 5 line 5 satisfies this constraint, because the pair (tree,bodies) is a pair of read-only types. Finally, Figure 5 line 11 gets the modified array out of the ArrayModifier object and returns it.

Correctness argument. Again, we use the type system not to make a complete correctness argument, but to provide enough information so that a correctness argument is possible without seeing any client code. In the BH example, we have used three APIs that incorporate parallelism and/or type annotations: RegionTree, Array, and ArrayModifier. For each API, we must check that (1) the readonly type annotations are correctly placed; and (2) the parallel constructs are noninterfering.

To perform the first check, we must ensure that for any API function accepting a readonly type, the function does not modify any data reachable from that type. While this kind of check can be hard for a general shared-memory program, it seems quite tractable given the closed-world assumption of our parallel APIs. For example, in our RegionTree implementation, the operations that take a readOnlyTree don’t write any memory at all; they just read data out of arrays and ref fields. In the ArrayModifier implementation, modifyi does accept read-only state and modify an array. However, since the array is created inside the ArrayModifier implementation, it cannot alias with any read-only state passed in by the user.

The second check must be done for each API function that is internally parallel; it is similar to the verification of the DisjointSlices API discussed in Section 2.1. For example, to verify the parallel reduction provided by RegionTree, we could use a technique such as separation logic [37] or regional logic [11] to verify that the tree build indeed produces a tree; and then we could use the tree shape to prove disjointness for the parallel updates. For ArrayModifier.modifyi, the verification should be easy, since the only parallel modification is to write values into array cells with disjoint indices.

3. Research Questions

In this section we pose some questions for further research suggested by the examples discussed in Section 2.

How to formalize the type system. We would like to formalize the semantics of the type annotations mutable and readonly. Specifically, we would like to write down a core calculus and work out the rules for ensuring consistency (1) between type definitions in signatures and modules and (2) between type variables and their bindings. The type system we have in mind is very simple, so we believe this formalization should be straightforward.

Whether the approach is sufficiently general. The approach we have described is feasible only if we can design a set of parallel APIs that is general enough to cover a broad range of parallel algorithms. We believe we can do at least as well as type systems such as DPJ, because for each parallel pattern that DPJ can express (such as divide-and-conquer array updates) we can design a corresponding API. However, to answer this question we must study further examples.

How to verify the API implementations. Verifying the API implementations poses several research questions. First, can we formalize the informal verification arguments sketched in Section 2? Second, can the verification be partially or totally automated, for
example using an SMT solver? Automatic or semi-automatic proof, where possible, can greatly lower the barrier to adoption of a verification technology. Third, how will the verification scale?

Whether the parallel performance is acceptable. We would like to understand the performance impact of this approach compared to approaches that rely on more powerful user type systems. We can think of two potential impacts. First, since we are providing high-level APIs, we are giving the user less control over exactly how a parallel algorithm is constructed than if we were to provide more fundamental constructs, such as parallel loops and direct memory access. We believe with a suitably designed set of APIs this problem should not be too severe.

Second, our approach does rely on immutability more than some other approaches, such as DPJ. While our merge sort example (Section 2.1) closely tracks the DPJ merge sort benchmark, our Barnes Hut implementation (Section 2.2) relies on slightly more copying of immutable values, instead of in-place updates. For example, in the Java version, the force computation modifies the fields of body objects in place, whereas the implementation shown here generates a new array of bodies. In general, greater use of immutable values simplifies the analysis, but by introducing more copies it can also stress the allocator and garbage collector and increase working set sizes in the cache.

To make a preliminary investigation into this question, we ported the SML examples described in Section 2 to F#. We did this because F# contains a subset that is close to SML, and it has a parallel runtime, whereas SML is sequential. We ran the F# code on a virtualized Windows XP platform (running in VMWare 3.1.4 on top of OS X). For merge sort on an array of size 2^{22} we saw a speedup of 1.5x on two cores and 2x on four cores. For Barnes-Hut we measured each of the parallelized force computation, the parallelized center-of-mass computation, and the entire computation.

With an input size of 6400 bodies we saw a speedup of 1.2x on two cores for each of the three measurements. When we increased the input size to 64000 we saw no speedup.

The merge sort results are respectable, but not as good as the speedups reported for the DPJ benchmarks [17]. The Barnes-Hut results are disappointing. Further investigation is needed here. In particular, it is not clear whether the reduced performance is inherent in the API approach, or in some tuning issue in our code unrelated to our APIs (for example, the performance impact of stack-allocated structs vs. heap-allocated records in F#), or in some inherent limitation of the F# runtime versus the Java runtime. To explore this issue further, we plan to re-implement the APIs and benchmarks in either Java or Scala (both of which run on the JVM). This should provide a more direct point of comparison with DPJ, and give us a way to isolate and eliminate performance bottlenecks.

If it turns out that more in-place mutability is required for good performance, then there are at least two approaches we could take. The first one is simply to add more patterns. For example, instead of an `ArrayModifier` that writes values into an array, we could support an array with elements of type `(a, b)`, where `a` represents the fields being updated, and `b` represents the unmodified fields. This would be similar to assigning different regions to different fields of the same object in DPJ. The second approach would be to selectively add uniqueness types (for example, an array of unique references) to support additional in-place updates.

4. **Related Work**

Languages such as ML [36], OCaml [5], F# [4], C# [1], and Scala [33] already enable the general style of programming we explore here, by supporting both higher-order functional abstractions and imperative code. OCaml and F# in particular have a `mutable` keyword for distinguishing mutable from immutable object fields (Scala’s `val` and `var` are similar). However, these languages don’t support the checking of safe parallelism, because they allow unrestricted use of aliases to mutable objects. Lime [10] is a Java-based language that uses value types similar to ours; however, it is specialized to streaming and dataflow computations, whereas we aim to capture more general patterns via APIs.

The monadic capabilities of Haskell [35] are similar to the ML type system extensions we explore here: imperative computations in Haskell must occur “inside a monad,” and this prevents mutable state from entering a computation where it is not supposed to. Haskell monads have been used to write elegant concurrent APIs [30, 31]. However, Haskell monads, while powerful, are less familiar to programmers than straightforward updates of data structures such as trees, arrays, and hash maps.

Languages such as Åminium [38] and Hlp [39] provide similar safety guarantees to ours using types that express permissions or capabilities such as uniqueness and/or immutability. Haller and Odersky [27] have designed a simple capability system for guaranteeing race-safety in actor-based concurrency. Recent work by Gordon et al. [26] is similar, but with a focus on parallelism. Para-Sail [7] requires all references to globally visible mutable objects to be unique, so (for example) references cannot be used to construct cyclic data structures.

Uniqueness types are powerful, but they restrict aliasing of mutable objects. They also require the programmer to understand sometimes subtle rules about how permissions are split, joined, consumed, borrowed, etc. One of our goals here is to avoid explicit uniqueness types in user code, although uniqueness invariants might be helpful in verifying API implementations. As a point of comparison, lines 18–19 of Figure 5, which convert `mutable` to `readonly` references, are reminiscent of the splitting rules in permission-based systems [32]. But in our approach such splitting is done with ordinary function calls; there are no extra typing rules for splitting.

Effect systems such as FX [25], DPJ [17], and Liquid Effects [28] use effect annotations to achieve similar guarantees to ours. However, in those systems the user has to write and understand the effect annotations. For example, compare Figure 2 with the DPJ implementation of merge sort [3], which uses region parameters, region constraints, and effect summaries to establish the required disjointness and noninterference properties. In Kawaguchi et al.’s system [28] many of the annotations are inferred, but the overhead of writing and understanding the annotations still seems nontrivial.

There has recently been much work on compiler and runtime mechanisms for ensuring race freedom [9] and determinism [12, 13, 21, 22, 34] in parallel programs. These mechanisms are attractive because they generally require little or no programmer annotation. However, dynamic checks can add runtime overhead, and they often provide a weaker guarantee than static checks (e.g., throwing an exception when a race or determinism violation is discovered). Further, they can be brittle (e.g., providing a semantics that varies with small changes to the program). Compiler-based techniques can also require complex and possibly obscure analysis, leading to problems if programmers need to understand what is going on in order to tune their code. In this work we use mostly-functional APIs to obtain the transparency and strong guarantees of simple, type-based static checking with annotation overhead that is not much greater than the compiler and runtime approaches.

Finally, the idea of using abstractions to encapsulate parallel patterns is of course not new. For example, Clojure [2] and Ga-lois [29] provide APIs that encapsulate transactional operations, and Cilk++ [24] has `hyperobjects` that support patterns such as reduction operations. However, to our knowledge we are the first to explore the idea of verified parallel APIs for establishing a noninterference property with a minimally-extended type system.
5. Future Work

In addition to addressing the questions posed in Section 3, we would like to extend the work by developing APIs for different kinds of parallel abstractions. The abstractions presented in this paper focus on noninterfering parallelism, where concurrent access to memory is either disjoint or read-only. However, we believe that the idea is much more general. For example, one could easily add abstractions representing atomic and commutative operations on shared state [17]; atomic (not necessarily commutative) operations on shared state in the manner of transactions [18, 29]; futures [23]; pipelines [16]; or actors [8]. We believe that recent ideas in parallel programming such as concurrent revisions [20] and deterministic reservations [14] can also be adapted to work with our approach.

While the details of these abstractions still have to be worked out, the unifying idea is that all interactions between parallel tasks should occur through parallel APIs. For example, in a language with mutable objects o and arrays a, there should never be direct reads or writes to o, $a[i]$ or $a[i]$ for any o or a that is accessible by multiple tasks. Task-local operations on o and $a[i]$ are still supported, as are localized cyclic data structures (e.g., a circular list created in a single task). However, any inter-task communication, or global data structures designed to be operated on in parallel, must be managed by a safe parallel API. This is in contrast to an approach like DPJ, which allows direct access to shared mutable data, but requires region and effect annotations to prove safety.

Typically (as in the examples studied here) the API user would write a higher-order function that operates on local state and pass it into an abstraction; then the abstraction would orchestrate the application of the function to global state. That way, all parallel interaction through shared memory must be done in a way that the API implementor can “see” and verify as safe.

Acknowledgments

We thank Joshua Sunshine, Alex Potanin, and the WoDet reviewers for helpful comments. This work was supported by NSF grant #CCF-1116907 and CMU|Portugal grant CMU-PT/SE0038/2008.

References