7-2006

Which Thousand Words are Worth a Picture? Experiments on Video Retrieval using a Thousand Concepts

Wei-Hao Lin
Carnegie Mellon University

Alexander Hauptmann
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/compsci
WHICH THOUSAND WORDS ARE WORTH A PICTURE? EXPERIMENTS ON VIDEO RETRIEVAL USING A THOUSAND CONCEPTS

Wei-Hao Lin and Alexander Hauptmann

Language Technologies Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 U.S.A.

ABSTRACT

In contrast to traditional video retrieval that represents visual content with low-level features (e.g. color and texture), emerging concept-based video retrieval allows users to search video archives by specifying a limited number of high-level concepts (e.g. outdoors and car). Recent studies have demonstrated the feasibility of concept-based retrieval, but a fundamental question remains: what kinds of concepts should we index? We analyze a large video archive annotated with more than a thousand high-level concepts, and develop guidelines for choosing concepts of high utility to video retrieval.

1. INTRODUCTION

Video retrieval aims at finding shots in a video archive that are relevant to a query. Early systems require humans to annotate video with text descriptions [1], which is time-consuming and does not scale to large video collections. On the contrary, content-based video retrieval (e.g. [2]) employs technologies from image processing and computer vision to automatically index visual content with low-level image features (e.g. color and texture). Although this removes the burden of manual indexing, users are required to prepare image examples or specify esoteric image parameters. Recent work in video retrieval combine advantages of both indexing schemes to index video content with high-level semantic concepts (e.g. outdoors and car) automatically derived from low-level features [3]. For example, a user with information need, “find shots of one or more roads with lots of vehicles”, can directly specify concepts such as “road” or “vehicle” in the query.

Which concepts should be automatically indexed, however, is still an open research question. The characteristics of visual concepts have been studied in the context of news story tracking [4], but it remains unclear how these characteristics apply to video retrieval. One might simply disregard the concept selection problem, and propose to index as many concepts as possible, for example, adopting the Thesaurus for Graphic Materials from the Library of Congress. Building automatic detectors is by no means trivial. Some high-level concepts, for example, “face”, take decades of research. As a compromise between coverage and research effort, we argue that the near-term research goal of concept-based retrieval should give priority to concepts that are likely to benefit as many queries as possible. The effort of developing “helpful” concept detectors can then be amortized over a large number of queries.

To identify concepts of high utility to video retrieval, we analyze a large video archive annotated with more than a thousand concepts and relevance judgment, as described in Section 2. In Section 3 we describe how concept utility is estimated using mutual information. We present a series of analysis in Section 4, and finally develop specific guidelines for choosing video concepts of high utility to video retrieval.

2. VIDEO ARCHIVE AND ANNOTATIONS

The video archive used in our analysis is from the 2003 TREC Video Retrieval Evaluation (TRECVID) [5]. The TRECVID 2003 development set consists of 62.2 hours of ABC World News Tonight, CNN Headline News, and C-SPAN programs. We assess the relevance of all shots to 20 search topics in TRECVID 2003\(^1\). The TRECVID topics are designed to represent a variety of search types. The average number of relevant shots of a topic is 21.5 (min 3, max 49).

The video archive was annotated collaboratively [6] by TRECVID 2003 participants. Annotators tagged each video shot with concepts from a 133-concept ontology, and can also type in free text to describe content not covered by the pre-defined set. Ultimately annotators added additional 935 concepts, resulting in a total of 1068 concepts. There are a total of 201757 annotations for 48098 shots, and the average number of annotation per shot is 4.19.

\(^1\)which are 25 official topics minus Topic 106, 114, 116, 118, and 119 that have no relevant shots in the development set.

This material is based on work supported by the National Science Foundation under Grant No. IIS-0535056 and by the Advanced Research and Development Activity under contract number H98230-04-C-0406.
Table 1. Examples of concepts in each category.

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program</td>
<td>advertisement, baseball, weather news</td>
</tr>
<tr>
<td>Scene</td>
<td>indoors, outdoors, road, mountain</td>
</tr>
<tr>
<td>People</td>
<td>NBA players, officer, Pope, president Clinton</td>
</tr>
<tr>
<td>Objects</td>
<td>rabbit, car, airplane, bus, boat</td>
</tr>
<tr>
<td>Activities</td>
<td>walking, women dancing, cheering</td>
</tr>
<tr>
<td>Events</td>
<td>crash, explosion, gun shot</td>
</tr>
<tr>
<td>Graphics</td>
<td>us weather map, NBA scores, program schedule</td>
</tr>
</tbody>
</table>

We classify the 1068 concepts into eight categories proposed by the Large Scale Concept Ontology for Multimedia (LSCOM) workshop [7]. The total number and three examples of each category are shown in Figure 1 and Table 2, respectively. The largest category is Objects (33.1% of the 1068 concepts), followed by People (16.6%) and Scene (15.4%).

3. DETERMINING CONCEPT UTILITY

We employ an information-theoretic notion, mutual information (MI) [8], to determine if a concept is “helpful” in retrieving the shots relevant to a query. MI has been an effective in feature selection in other tasks such as text categorization [9]. Denote the relevance of a shot as R, and the presence or absence of a concept in a shot as C. R and C are binary random variables. The mutual information between R and C, $I(R; C)$ is defined as follows,

$$I(R; C) = \sum_{r,c} P(r,c) \log \frac{P(r,c)}{P(r)P(c)}$$

where $r \in \{\text{presence, absence}\}$, $c \in \{\text{relevance, irrelevance}\}$. MI can be interpreted as how much randomness of R, i.e., entropy, is reduced from the knowledge of C. If one becomes more certain about the relevance of a shot after knowing the presence or absence of a concept, i.e., MI is greater than zero, the concept is defined as a helpful concept for the topic. In practice it is very difficult to achieve zero mutual information when the data set is not extremely large, and thus we define a concept C as helpful only when the entropy of R using Maximum Likelihood Estimates is reduced more than 1%, which is the minimal threshold that can filter out most spuriously helpfulness from rare concepts that never occur with relevant shots.

We further divide helpful concepts into two types: positively helpful concepts (P-concept) and negatively helpful concepts (N-concept). The presence of P-concept in a shot increases the degree of relevance. On the contrary the presence of N-concepts decreases the degree of relevance. N-concepts often are employed as filters to narrow search space. P-concepts and N-concepts are determined by pointwise mutual information, defined as follows,

$$I_P(r; c) = \log \frac{P(r,c)}{P(r)P(c)}$$

If $I_P(\text{presence}; \text{relevance})$ of a concept is greater than $I_P(\text{absence}; \text{relevance})$, it is a P-concept for a topic, and an N-concept otherwise. For example, for the topic “find shots of an airplane taking off”, “sky” is a P-concept and “animal” is a N-concept.

4. ANALYZING VIDEO ARCHIVE

Given an unannotated, large video archive, how many concepts are there? As a practical question, how much video do annotators have to watch before a reasonable set of concepts are identified? To answer these questions we first plot concept frequency, i.e., the number of shots where a concept appears, against the rank of a concept by concept frequency, as shown in Figure 2. The most frequent concept in TRECVID 2003 is “male speech” (22148), followed by “text overlay” (20540) and “music” (15847). The linear relationship between concept frequency and rank approximately follow Zipf’s Law [10], as first observed by [4]. The good news is that top-ranked concepts are extremely frequent and a set of common concepts may be quickly collected without browsing through
much of a archive. To give a quantitative answer, we sim-
ulate the following scenario: an annotator browses a video
archive from the first shot of the first video, and write down
new concepts right after they appear. The results are plotted
in Figure 3, where x axis is the number of shots that an an-
notator has watched, and y axis is the accumulated concept
frequency, i.e. the number of unique concepts identified so
far so far times the frequency of each concept. The result is

very encouraging: By watching merely 1.2% (2723 seconds)
of the archive an annotator can gather a set of concepts that
account for 90% of occurences of concepts in the 62.2-hour
video collection.

However, the bad news is that most concepts occur very
infrequently. 90% of the concepts occur fewer than 100 times
in the 48098 shots, which makes it very difficult to develop
automatic detectors because statistical learning algorithms re-
quire large number of training examples [11]. Are these rare
concepts really important for answering video retrieval queries?
We investigate how concept frequency is related to video re-
trieval utility, and plot the number of the search queries that
are helped by a concept (both positively or negatively) against
concept frequency in Figure 4.

The results clearly show that rare concepts are unlikely
to benefit more than one query (the total curve). For exam-
ple, a rare concept, “mug”, occurs only three times and help
only one specific query, “find shots of a mug or cup of cof-
fee”. Only after concept frequency exceeds 100 can concepts
help retrieval for queries of various types. For example, a
frequent concept, “outdoors”, occurs 3853 times and bene-
fits 18 of 20 topics. We further break down the total number
of helped topics by types of help. As concept frequency in-
creases N-concepts are more likely to benefit more queries
(the N-concept curve), which is not completely surprising as
frequent concepts remove large number of irrelevant shots
more effectively than rare concepts. P-concepts demonstrate
the similar trend but to a lesser degree (the P-concept curve).
Overall frequent concepts are more important because they
can benefit more retrieval of search topics, either positively
or negatively, than rare concepts.

We further investigate which category contributes more
helpful concepts by plotting the accumulated number of the
helpful concepts against the eight categories in Figure 5. The
results are striking: the large category does not produce the
most helpful concepts. While Objects is the biggest category,
a smaller category, namely Scenes, contributes the (dispro-
portionally) largest number of helpful concepts. Also unex-
pected is that the proportion of P-concepts and N-concepts
vary from category to category. People concepts appear to
be very effective N-concepts, possibly due to their specificity.
When a search topic does not mention any people, the relevant
shots of the topic are unlikely to contain People concepts (like
“Clinton”), and thus concepts in the People category become
effective filters.

Users can include concepts in the query to concept-based
retrieval systems, but how many concepts should be speci-
fied? What are the typical number of helpful concepts for a
topic? To answer these question we plot the number of help-
ful concepts against the number of shots relevant to a topic in Figure 6. The total number of the helpful concepts, unfortunately, increases with the number of relevant shots to a search topic. This seems to pose a great challenge to both automatic retrieval system developers and interface designers: how to choose dozens of concepts from more than 1000 concepts that are potentially helpful? However, the scene unfolds very differently after we break down the total curve into P and N-concepts. While the number of the N-concepts still increases with the number of the relevant shots of a topic, the number of P-concepts levels at around 20 after the number of relevant shots is greater than 10. The increasing N-concepts, similar to the finding in Figure 4, can be partly attributed to the filtering functionality of N-concepts. The more relevant shots a search topic matches, the more concept can become effective filters. The surprisingly steady number of the P-concepts suggests that no more concepts are needed once around 20 P-concepts are specified in the query.

5. CONCLUSIONS

In this paper we investigate the problem of using a large, fixed set of semantic concepts for video retrieval. We develop several principles for selecting concepts of high utility based on our analysis on a large collection of broadcast news video annotated with more than a thousand concepts and relevance judgment. Firstly, frequent concepts play a more vital role in video retrieval than rare concepts. Unlike rare concepts that benefit none or one specific topics, frequent concepts can help multiple search topics, either by filtering out irrelevant results (N-concepts), or by promoting relevant shots (P-concepts.)

Secondly, we should carefully allocate our resources to developing automatic detectors for different categories. Specifically, concepts Scenes category are shown to be very helpful and should be developed first. Although there are many concepts in the Objects category appearing in the archive, they usually benefit at most single query, making them virtually irrelevant for general search queries.

Finally, our finding that the numbers of P-concepts and N-concepts increase differently with the number of the relevant shots of a topic gives mixed blessing for concept-based retrieval. The good news is that the number of P-concepts appears to be in a manageable size of twenty. Once around twenty P-concepts are specified, users of concept-based retrieval system can stop contemplating more P-concepts. However, the bad news is how P-concepts and N-concepts will be selected from a set of 1000 concepts, either automatically by retrieval systems equipped with machine learning algorithms, or interactively with the help of user interface. Recent user studies [12] show that users have difficulty selecting which concepts would be helpful. Automatic video retrieval systems have yet shown statistically significant improvement over concept combination. Possible solutions to the concept selection problem, also our future work, include designing user interface to facilitate concept selection from a large set, and scaling existing machine learning algorithms to a much larger set of concepts.

6. REFERENCES

