

1

1.2

GPU-MMU L1 MOSAIC L1

GPU-MMU L2 MOSAIC L2

0

0.2

0.4

0.6

0.8

1

2 Apps 3 Apps 4 Apps 5 Apps

T
L

B
 H

it
 R

a
te

Figure 7.11. TLB characteristics of Mosaic.

shared TLBs. Second, we observe an increasing amount of interference in the baseline design

when more applications are running concurrently. This results in a lower TLB hit rate as the

number of applications increases. The shared TLB hit rate drops from 81% in workloads with two

applications to 62% in workloads with five applications.

While Figure 7.10 shows several samples of individual performance comparison between dif-

ferent designs, Figures 7.12a and 7.12b provide the performance comparison for all individual

workload we evaluated from all configurations (235 workloads in total). From Figure 7.12a, we

observe that Mosaic is able to limit the performance impact of address translation to less than 10%

for more than half of the workloads we evaluated. Second, we observe that in cases where both

the GPU-MMU baseline and Mosaic’s performance falls far short of the ideal performance, these

workloads has a significant amount of compulsory misses (up to 5.7% of the total TLB accesses).

These two observations suggest that while Mosaic is effective in increasing the range of TLBs,

reducing the latency of page table walk is an important next step to improve the performance of

these GPGPU applications. Third, we observe from Figure 7.12b that in most cases, Mosaic out-

performs the state-of-the-art GPU-MMU baseline by up to a factor of 6 (clipped from the plot),

mainly due to the improvement in the overall TLB miss reduction as shown in Figure 7.11.

144

0.6

0.8

1
M

O
S

A
IC

 v
s

.
Id

e
al

0

0.2

0.4

M
O

S
A

IC
 v

s
.

Id
e

al

Workloads
(a) Mosaic vs ideal.

2.5

3

3.5

4

M
O

S
A

IC

vs
.

G
P

U
-M

M
U

0

0.5

1

1.5

2

M
O

S
A

IC

vs
.

G
P

U

Workloads
(b) Mosaic vs. GPU-MMU.

Figure 7.12. The performance of Mosaic across 235 workloads. (a) shows the performance of
Mosaic relative to the ideal performance with no address translation overhead. (b) shows the
performance of Mosaic relative to previously proposed state-of-the-art TLB design [303]

7.5.3. Fragmentation and Memory Bloat

When multiple concurrent GPGPU programs share the GPU, it is possible that a series of

memory allocation and deallocation requests could create significant data fragmentation. While

we do not observe this trend in any of the workloads we evaluate, as discussed in Section 7.3.2.1,

Mosaic can potentially introduce data fragmentation and memory bloat. In order to perform addi-

tional analyses, we study the effect of pre-fragmenting the physical memory with random data, as

described in Section 7.4, on performance.

In this study, we show the impact of data fragmentation and DRAM contention with Mosaic as a

performance overhead compared to the baseline Mosaic with no pre-fragmented data. Additionally,

we provide the memory footprint in terms of memory bloat after CAC performs all data movements

during the compaction process throughout the execution of the workload. In Table 7.2, we pre-

fragment a percentage of pages in main memory according to the fragmentation index, and within

these fragmented large pages, we pre-allocate a percentage of base pages with some data that

must be moved before coalescing. Then, we evaluate the performance of Mosaic with and without

CAC, and provide the optimized CAC, which utilizes the in-DRAM bulk copy [64, 331]. any data

movement.

145

Fragmentation Large Page Memory Performance Improvement
Index Occupancy Bloat (%) Overhead % VS.

(Optimized) no CAC
90% 1% 0.02% 0.03% (0.02%) 46.7%
90% 25% 0.06% 0.7% (0.7%) 45.6%
90% 50% 0.16% 5% (5%) 39.1%
95% 25% 0.39% 9.96% (9.9%) 33.4%
95% 50% 0.54% 12.6% (12.6%) 30.3%
97% 25% 0.75% 14.5% (14.4%) 24.3%
97% 50% 0.45% 17.1% (17.0%) 25.2%

100% 1% 10.66% 12.7% (5.3%) 30.2%
100% 10% 7.56% 26.5% (15.67%) 15.9%
100% 25% 7.20% 29.8% (21.7%) 13.0%
100% 35% 5.22% 30.6% (30.3%) 10.3%
100% 50% 3.37% 32.1% (30.4%) 11.0%
100% 75% 2.22% 33.3% (33.0%) 10.1%

Table 7.2. Performance comparison of Mosaic with various degree of fragmentation.

From Table 7.2, we make four conclusions. First, we conclude that CAC is effective in re-

ducing the memory bloat, limiting the additional memory usage down to within 10.6% on average.

Second, we found that the benefit of moving pages always outweighs the cost. Thus, we always ob-

serve performance improvement when CAC is applied, regardless of how fragmented the DRAM

is. Third, we found that applying in-DRAM bulk copy can provide additional performance bene-

fits when the physical DRAM fragmentation is sparse (i.e., high fragmentation index, but low page

occupancy). This improvement comes from the fact that sparse DRAM increases the chance that

CAC-optimized can find a target destination page that is either in the same subarray or in the same

DRAM bank. Fourth, we do not observe any performance when fragmentation drops below 90%.

7.6. Mosaic: Conclusion

This dissertation explores the design space for transparent large page support for GPUs to

sidestep the tradeoffs between TLB reach and demand paging latency. Our design, Mosaic, tracks

temporal and spatial locality to inform policies for transparent coalescing of frequently accessed

base pages and transparent splintering of large pages to reduce fragmentation, increase contiguity,

146

or reduce page far-fault latencies. Mosaic relies on techniques to preserve contiguity, allowing it

to minimize synchronization and memory copy in the common case. A novel mechanism called

LAZY-COALESCER allows application-level updates to virtual pages to proceed concurrently with

coalescing or splintering, preserving atomicity for page table updates. Evaluation of a Mosaic

prototype shows that using large pages lowers address translation overhead significantly without

harming demand paging performance. Mosaic improves performance over TLB designs in the

literature by 38.2%.

147

Chapter 8

Common Principles and Lesson Learned

This dissertation introduces several techniques that reduce memory interference in GPU-based

systems. In this chapter, we provide a list of common design principles that are used throughout

this dissertation as well as a summary of key lessons learned.

8.1. Common Design Principles

While techniques proposed in this dissertation are applied in different parts of the memory hi-

erarchy, they share several key common principles. In this section, we reiterate over these common

principles.

Identification of the Benefits of Threads from Using Shared Resources. The first common

principle in this dissertation is to give shared resources only to threads that benefit from such shared

resources. In many throughput processors, shared resources throughout the memory hierarchy are

heavily contended due to the parallelism of these throughput processors. As a result, allowing

all threads to freely use these shared resources usually leads to memory interference as we have

analyzed thoroughly in Chapters 4, 5, 6 and 7. We observed that intelligently limiting the number

of threads that use these shared resources often leads to significant performance improvement of

GPU-based systems.

To this end, all mechanisms proposed in this dissertation modify shared resources such that

148

they 1) always prioritize threads that benefit from utilizing shared resources and 2) deprioritize

threads that do not benefit from utilizing shared resources to avoid memory interference.

Division of Key Tasks of a Monolithic Structure into Simpler Structures. Another common

principle that is utilized is the decoupling of key tasks on monolithic structures throughout the

memory hierarchy. In MeDiC and MASK (See Chapters 4 and 6), we provide a mechanism that

decouples the monolithic memory request buffer commonly used in modern systems into multiple

queues, where different queues deal with different types of GPU memory requests. We found

that the division of the monolithic request buffer simplifies the design of the memory scheduler.

Specifically, it simplifies memory scheduler logic as the logic can now apply the same scheduling

policy on each queue. A similar technique applies to SMS (See Chapter 5), which is a memory

controller design for heterogeneous CPU-GPU systems.

8.2. Lessons Learned

This dissertation provides several techniques that together attempt to mitigate the performance

impact of memory interference. While our analysis and evaluation have shown that our proposed

techniques are effective in reducing the memory interference on various types of GPU-based sys-

tems, this dissertation also provides two important lessons. In this section, we summarize these

two major lessons learned from our analysis.

Memory Latency is Important for the Performance of Throughput Processors. Typically,

limited off-chip memory bandwidth is the major performance bottleneck of throughput processors.

In this work, we show that the latency of memory requests also plays an important role in increasing

the performance of throughput processors. First, we show that it is possible to reduce the number of

cycles many warps are stalled by prioritizing the slowest thread within each warp. Our techniques

allow these slow threads to benefit from the lower latency of the shared cache.

Second, we show that the memory latency of the page-walk-related requests is very important

to the performance of GPU-based systems. In Chapters 6 and 7, we show that page walks can

significantly reduces the memory hiding capability of GPU-based systems. As a result, it is crucial

149

to reduce the latency of these page-walk-related memory requests.

How to Design the GPU Memory Hierarchy to Avoid Memory Interference? This disserta-

tion introduces several techniques across the main memory hierarchy of GPU-based systems. In

this section, we provide recommended modifications for the memory hierarchy for both discrete

GPUs as well as heterogeneous CPU-GPU systems.

The memory hierarchy of a discrete GPU should be designed to provide high throughput on

both single-application and multi-application setups. As a result, the shared L2 data cache, the

off-chip main memory and the shared TLB should be designed to minimize memory interference.

To this end, MeDiC, MASK, and Mosaic (See Chapters 4, 6 and 7 for the detailed designs and

analyses of these mechanisms) can be combined together to improve the efficiency of shared re-

sources (the shared L2 cache, the shared TLB and the main memory). Specifically, we recommend

system designers to modify the shared cache to 1) prioritize to threads that benefit from the shared

L2 cache (e.g., threads from the mostly-hit and all-hit warp types), 2) deprioritize threads that are

less likely to benefit from the shared L2 cache (e.g., threads from the mostly-miss and all-miss

warp types), and 3) only cache page-walk-related data that would only benefit from using the

shared data cache. Additionally, we recommend system designers to decouple the memory con-

troller to perform two tasks hierarchically. The first task is to divide GPU memory request buffer

into three different queues (Golden, Silver and Normal queues) similar to the design of MASK

(See Section 6). To combine MASK with MeDiC, requests from the mostly-hit and all-hit warp

types should be inserted into the Silver Queue to ensure that these requests have more priority than

other data requests. Lastly, system designers should modify the GPU memory allocator to enforce

the soft guarantee as defined in Section 7.3.2, which enables the GPU to provide low-overhead

multi-page-size support.

To integrate our techniques into a CPU-GPU heterogeneous system, additional per-application

FIFO queues can be integrated into the memory hierarchy as described in Section 5.3. This results

in a memory hierarchy design that minimizes all types of memory interference that occur in GPU-

based systems.

150

Chapter 9

Conclusions and Future Directions

In summary, the goal of this dissertation is to develop shared resource management mecha-

nisms that can reduce memory interference in current and future throughput processors. To this

end, we analyze memory interference that occurs in Graphics Processing Units, which are the

prime example of throughput processors. Based on our analysis of GPU characteristics and the

source of memory interference, we categorize memory interference into three different types:

intra-application interference, inter-application interference and inter-address-space interference.

We propose changes to the cache management and memory scheduling mechanisms to mitigate

intra-application interference in GPGPU applications. We propose changes to the memory con-

troller design and its scheduling policy to mitigate inter-application interference in heterogeneous

CPU-GPU systems. We redesign the memory management unit and the memory hierarchy in

GPUs to be aware of TLB-related data in order to mitigate the inter-address-space interference that

originates from the address translation process. We introduce a hardware-software cooperative

technique that modifies the memory allocation policy to enable large page support in order to fur-

ther reduce the inter-address-space interference at the shared TLB. Our evaluations show that the

GPU-aware cache and memory management techniques proposed in this dissertation are effective

at mitigating the interference caused by GPUs on current and future GPU-based systems.

151

9.1. Future Research Directions

While this dissertation focuses on methods to mitigate memory interference in various GPU-

based systems, this dissertation also uncovers new research topics. In this section, we describe

potential research directions to further increase the performance of GPU-based systems.

9.1.1. Improving the Performance of the Memory Hierarchy in GPU-based Systems

Ways to Exploit Emerging High-Bandwidth Memory Technologies. 3D-stacked

DRAM [155,156,157,170,213,232] is an emerging main memory design that provides high band-

width and high energy efficiency. We believe that analyzing how this new type of DRAM operates

can expose techniques that might benefit modern GPU-based systems.

Aside from 3D-stacked memory, recent proposals provide methods to reduce DRAM la-

tency [63, 199, 214, 215, 216], a method to utilize multi-ported DRAM [217], or methods to

perform some computations within DRAM in order to reduce the amount of DRAM band-

width [64, 151, 330, 331]. We think that these techniques, combined with observations on GPU

applications’ characteristics provided in this dissertation, can be applied to GPUs and should pro-

vide significant performance improvement for GPU-based systems.

Other Methods to Exploit Warp-type Heterogeneity and TLB-related Data in GPU-based

system. In this dissertation, we show in Chapter 4 how GPU-based systems exploit warp-type

heterogeneity to reduce intra-application interference and improve the effectiveness of the cache

and the main memory. We also show in Chapter 6 how to design a GPU memory hierarchy that is

aware of TLB data to minimize inter-address-space interference. We believe that it is beneficial

to integrate these warp-type and TLB-awareness characteristics to the memory hierarchy in GPU-

based systems to further improve system performance.

Potential Denial-of-service in Software Managed Shared Memory. Allowing GPU-based

systems to be shared across multiple GPGPU applications potentially introduces new performance

bottlenecks. Concurrently running multiple GPU applications creates a unique resource contention

at GPU’s software-managed Shared Scratchpad Memory. Because this particular resource is man-

152

aged by the GPGPU applications (in software), GPGPU applications that share the GPU all con-

tend for this resource. The lack of communication between each GPGPU application prevents one

application to inform its demand for the Shared Scratchpad Memory to other applications. As

a result, one application can completely block other applications by using all Shared Scratchpad

Memory.

It is possible to solve this unique problem through modifications in the hypervisor. For exam-

ple, additional kernel scheduling techniques can be applied to 1) probe how much Shared Scratch-

pad Memory is needed by each application and 2) enforce a proper policy that only grants each

application a portion of the Shared Scratchpad Memory.

Interference Management in GPUs for Emerging Applications. The emergence of embed-

ded applications introduces a new requirement: real-time deadlines. Traditionally, these applica-

tions run on an embedded device which contains multiple application-specific integrated circuits

(ASICs) to handle most of the computations. However, the rise of integrated GPUs in modern

System-on-Chips (e.g., [71, 249, 268, 269]) as well as better GPU support in several cloud infras-

tructures (e.g., [28, 29, 368, 381]) allow these applications to perform these computations on the

GPUs. While the GPUs can provide good IPC throughput due to their parallelism, the GPUs and

the GPUs’ memory hierarchy, also need to provide a low response time, or in many cases enforce

hard performance guarantees (i.e., an application must finish its execution within a certain time

limit).

Even though mechanisms proposed in this dissertation aim to minimize the slowdown caused

by interference, these mechanisms do not provide actual performance guarantees. However, we

believe it is possible to use observations in this dissertation to aid in designing mechanisms to

provide a hard performance guarantee and limit the amount of memory interference when multiple

of these new embedded applications are concurrently sharing GPU-based systems.

153

9.1.2. Low-overhead Virtualization Support in GPU-based Systems

While this dissertation proposes mechanisms to minimize inter-address-space interference in

GPU-based systems, there are several open-ended research questions on how to efficiently virtual-

ize GPU-based systems and how to efficiently shared other non-memory resources across multiple

applications.

Maintaining Virtual Address Space Contiguity. While Chapter 7 provides a mechanism that

maintains contiguous physical address, Mosaic does not perform compaction in the virtual address

space as this dissertation does not observe virtual address space fragmentation in current GPGPU

applications. However, it might be possible that a long chain of small size memory allocations and

deallocations can break contiguity within the virtual address space. In this case, the virtual address

space has to be remapped in order to create a contiguous chunk of unallocated virtual memory.

This can lower the performance of GPU-based systems.

Utilizing High-bandwidth Interconnects to Transfer Data between CPU Memory and GPU

Memory. As shown in Chapter 7, demand paging can be costly, especially when a large amount

of data has to be transferred to the GPU. The long latency of demand paging can lead to signifi-

cant stall time for GPU cores. Methods to improve the performance of demand paging remain a

potential research problem. Emerging technologies such as NVIDIA’s NVLink [108] and AMD’s

Infinity [71] can improve the data transfer rate between the CPUs and the GPUs. However, there is

a lack of details on how to integrate these high-bandwidth interconnects to existing GPU hardware.

Analyzing how these technologies operate, and providing a detailed study of their potential benefits

and limitations is crucial for the integration of these new technologies in GPU-based systems.

Aside from techniques that utilize new technologies, architectural techniques can also mitigate

the long data transfer latency between CPU memory and GPU memory. We believe that methods

such as preemptively fetching the data of potential pages or proactively evicting potentially unused

data in GPU memory can be effective in reducing the performance impact of demand paging.

154

9.1.3. Providing an Optimal Method to Concurrently Execute GPGPU Applications

While this dissertation allows applications to share the GPUs more efficiently by limiting the

memory interference, how to schedule kernels and how to map these kernels to GPU cores remain

an open research problem. In this work, we assume 1) an equal partitioning of GPU cores for

each GPGPU application, and 2) every application is scheduled to start at the same time. Because

applications have a different amount of parallelism as well as bandwidth demand, the optimal

number of GPU cores that should be assigned to each application varies not only across different

applications, but also across different workload setups.

As a result, providing an optimal method to manage the execution of GPGPU applications on

GPU-based systems is a very complex problem. However, we believe that using the knowledge of

the resource demand of each application between system software and the GPU hardware can sig-

nificantly reduce the complexity of the scheduler. Information such as the amount of thread-level

parallelism, the expected amount of data parallelism, the expected memory usage, cache locality,

memory locality, etc. can be used as hints to assist in providing desirable application-to-GPU-core

mappings and kernel scheduling decisions. In this dissertation, we provide several observations

regarding GPGPU applications’ characteristics that might be useful for assisting the system soft-

ware to provide better mapping and scheduling decisions (e.g., memory allocation behavior, warp

characteristics).

9.2. Final Summary

We conclude and hope that this dissertation, with the analyses of memory interference and

mechanisms to mitigate this memory interference, enables many new research directions that fur-

ther improve the capability of GPU-based systems.

155

Other Contributions by the Author

During my Ph.D., I had opportunities to be involved in many other research projects. While

these projects do not fit into the theme of this dissertation, they have helped me tremendously in

learning an in-depth knowledge about the memory hierarchy as well as the GPU architecture. I

would like to acknowledge these projects as well as my early works on Network-on-Chip (NoCs)

that kicked start my Ph.D.

My interest in studying memory interference in the memory hierarchy starts from the interests

in Network-on-Chip. I have an opportunity in collaborating with Kevin Chang and Chris Fallin on

two power-efficient network-on-chip designs that focus on bufferless network-on-chip: HAT [61]

and MinBD [100]. In addition, I have authored another work on a hierarchical bufferless network-

on-chip design called HiRD [34, 35] and have released NOCulator, which is the simulation infras-

tructure for both MinBD and HiRD [1]. All these works focus on mechanisms to improve power

efficiency and simplifying the design of NoCs without sacrificing system performance. I also have

an opportunity collaborating with Reetuparna Das on another work called A2C [81], which studies

the placement of applications to cores in NoCs. A2C allows operating systems to be able to place

applications to cores in a way that minimize interference, which is also the main theme in this

thesis.

In collaboration with Vivek Seshadri, I have worked on techniques to allow in-DRAM bulk

copy called RowClone [331].

In collaboration with Donghyuk Lee, I have worked on a study that characterizes latency vari-

ation in DRAM cells and provides techniques to improve the performance of DRAM by incorpo-

156

rating latency variation [214]

In collaboration with Justin Meza and Hanbin Yoon, I have worked on techniques to manage

resources for hybrid memory that consists of DRAM and Phased changed memory (PCM) [394].

In collaboration with Nandita Vijaykumar, I have worked on a technique that allows better

utilization of GPU cores called CABA [378]. CABA uses a technique similar to helper threads in

order to improve the utilization of GPUs.

In collaboration with Onur Kayiran and Gabriel H. Loh, I have worked on a technique that

manages GPU concurrency in a heterogeneous architecture in order to reduce interference [191].

In addition, I also worked on a GPU power management technique that turns down datapath com-

ponents that are not in the bottleneck [190].

157

Bibliography

[1] NOCulator. https://github.com/CMU-SAFARI/NOCulator, 2014.

[2] P. Abad et al. Rotary router: an efficient architecture for CMP interconnection networks. ISCA, 2007.

[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Man, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vigas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Distributed Systems, 2015.

[4] J. Adriaens, K. Compton, N. S. Kim, and M. Schulte. The Case for GPGPU Spatial Multitasking. In
HPCA, 2012.

[5] Advanced Micro Devices. AMD Accelerated Processing Units.

[6] Advanced Micro Devices. AMD I/O Virtualization Technology (IOMMU) Specification.

[7] Advanced Micro Devices. AMD Radeon R9 290X. http://www.amd.com/us/press-releases/
Pages/amd-radeon-r9-290x-2013oct24.aspx.

[8] Advanced Micro Devices. ATI Radeon GPGPUs. http://www.amd.com/us/products/desktop/graphics/amd-
radeon-hd-6000/Pages/amd-radeon-hd-6000.aspx.

[9] Advanced Micro Devices. OpenCL: The Future of Accelerated Application Performance Is Now.

[10] Advanced Micro Devices. AMD-V Nested Paging, 2010. http://developer.amd.com/

wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf.

[11] Advanced Micro Devices. AMD Graphics Cores Next (GCN) Architecture. http://www.amd.com/
Documents/GCN_Architecture_whitepaper.pdf, 2012.

[12] Advanced Micro Devices. Heterogeneous System Architecture: A Technical Review. http://

amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/hsa10.pdf, 2012.

[13] Advanced Micro Devices. What is Heterogeneous System Architecture (HSA)?, 2013.

[14] A. Agarwal, B. H. Lim, D. Kranz, and J. Kubiatowicz. APRIL: A Processor Architecture for Multi-
processing. Technical report, Cambridge, MA, USA, 1991.

[15] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler, and T. F. Wenisch. Unlocking Bandwidth for
GPUs in CC-NUMA Systems. In HPCA, 2015.

158

https://github.com/CMU-SAFARI/NOCulator
http://www.amd.com/us/press-releases/Pages/amd-radeon-r9-290x-2013oct24.aspx
http://www.amd.com/us/press-releases/Pages/amd-radeon-r9-290x-2013oct24.aspx
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
http://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/hsa10.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/hsa10.pdf

[16] A. Agrawal, A. Ansari, and J. Torrellas. Mosaic: Exploiting the Spatial Locality of Process Variation
to Reduce Refresh Energy in On-chip eDRAM Modules. In HPCA, 2014.

[17] A. Agrawal, M. O’Connor, E. Bolotin, N. Chatterjee, J. Emer, and S. Keckler. CLARA: Circular
Linked-List Auto and Self Refresh Architecture. In MEMSYS, 2016.

[18] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. A Scalable Processing-in-memory Accelerator for
Parallel Graph Processing. In ISCA, 2015.

[19] J. Ahn, S. Jin, and J. Huh. Revisiting Hardware-Assisted Page Walks for Virtualized Systems. In
ISCA, 2012.

[20] J. Ahn, S. Jin, and J. Huh. Fast Two-Level Address Translation for Virtualized Systems. In IEEE TC,
2015.

[21] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. PIM-enabled Instructions: A Low-overhead, Locality-aware
Processing-in-memory Architecture. In ISCA, 2015.

[22] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S. Schreiber. Improving System Energy
Efficiency with Memory Rank Subsetting. ACM TACO, 9(1):4:1–4:28, 2012.

[23] J. H. Ahn, J. Leverich, R. Schreiber, and N. P. Jouppi. Multicore DIMM: an Energy Efficient Memory
Module with Independently Controlled DRAMs. IEEE CAL, 2009.

[24] B. Akin, F. Franchetti, and J. C. Hoe. Data Reorganization in Memory Using 3D-stacked DRAM. In
ISCA, 2015.

[25] A. R. Alameldeen and D. A. Wood. Interactions Between Compression and Prefetching in Chip
Multiprocessors. In HPCA, 2007.

[26] J. B. Alex Chen and X. Amatriain. Distributed Neural Networks with GPUs in the AWS cloud. 2014.

[27] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith. The Tera Com-
puter System. In ICS, 1990.

[28] Amazon. Amazon EC2 GPU Instance. http://aws.amazon.com/about-aws/whats-
new/2013/11/04/announcing-new-amazon-ec2-gpu-instance-type/.

[29] Amazon. An Introduction to High Performance Computing on AWS. https://d0.awsstatic.

com/whitepapers/Intro_to_HPC_on_AWS.pdf, 2015.

[30] N. Amit, M. Ben-Yehuda, and B.-A. Yassour. IOMMU: Strategies for Mitigating the IOTLB Bottle-
neck. In ISCA, 2012.

[31] Apple Inc. Huge Page Support in Mac OS X. [Accessed April-2017].

[32] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa, A. Jaleel, and C.-J. Wu. MCM-
GPU: Multi-Chip-Module GPUs for Continued Performance Scalability. In ISCA, 2017.

[33] R. Ausavarungnirun, K. Chang, L. Subramanian, G. Loh, and O. Mutlu. Staged Memory Scheduling:
Achieving High Performance and Scalability in Heterogeneous Systems. In ISCA, 2012.

[34] R. Ausavarungnirun, C. Fallin, X. Yu, K. Chang, G. Nazario, R. Das, G. H. Loh, and O. Mutlu.
Design and Evaluation of Hierarchical Rings with Deflection Routing. In SBAC-PAD, 2014.

159

https://d0.awsstatic.com/whitepapers/Intro_to_HPC_on_AWS.pdf
https://d0.awsstatic.com/whitepapers/Intro_to_HPC_on_AWS.pdf

[35] R. Ausavarungnirun, C. Fallin, X. Yu, K. Chang, G. Nazario, R. Das, G. H. Loh, and O. Mutlu. A
Case for Hierarchical Rings with Deflection Routing. PARCO, 54(C):29–45, May 2016.

[36] R. Ausavarungnirun, S. Ghose, O. Kayran, G. H. Loh, C. R. Das, M. T. Kandemir, and O. Mutlu.
Exploiting Inter-Warp Heterogeneity to Improve GPGPU Performance. In PACT, 2015.

[37] M. Awasthi, D. W. Nellans, K. Sudan, R. Balasubramonian, and A. Davis. Handling the Problems
and Opportunities Posed by Multiple On-chip Memory Controllers. In PACT, 2010.

[38] O. O. Babarinsa and S. Idreos. JAFAR: Near-Data Processing for Databases. In SIGMOD, 2015.

[39] S. Baek, S. Cho, and R. Melhem. Refresh Now and Then. IEEE TC, 63(12):3114–3126, 2014.

[40] J.-L. Baer and T.-F. Chen. Effective Hardware-Based Data Prefetching for High-Performance Pro-
cessors. IEEE TC, 44(5):609–623, 1995.

[41] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt. Analyzing CUDA Workloads Using a
Detailed GPU Simulator. In ISPASS, 2009.

[42] P. Baran. On Distributed Communications Networks. 1964.

[43] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and R. A. Stokes. The Illiac IV
Computer. IEEE TC, 100(8):746–757, 1968.

[44] T. W. Barr, A. L. Cox, and S. Rixner. Translation Caching: Skip, Don’T Walk (the Page Table). In
ISCA, 2010.

[45] T. W. Barr, A. L. Cox, and S. Rixner. SpecTLB: A Mechanism for Speculative Address Translation.
In ISCA, 2011.

[46] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift. Efficient Virtual Memory for Big Memory
Servers. In ISCA, 2013.

[47] I. Bhati, Z. Chishti, S.-L. Lu, and B. Jacob. Flexible Auto-refresh: Enabling Scalable and Energy-
efficient DRAM Refresh Reductions. In ISCA, 2015.

[48] A. Bhattacharjee. Large-reach Memory Management Unit Caches. In MICRO, 2013.

[49] A. Bhattacharjee, D. Lustig, and M. Martonosi. Shared Last-level TLBs for Chip Multiprocessors.
In HPCA, 2011.

[50] A. Bhattacharjee and M. Martonosi. Characterizing the TLB Behavior of Emerging Parallel Work-
loads on Chip Multiprocessors. In PACT, 2009.

[51] A. Bhattacharjee and M. Martonosi. Inter-core Cooperative TLB for Chip Multiprocessors. In ASP-
LOS, 2010.

[52] D. L. Black, R. F. Rashid, D. B. Golub, and C. R. Hill. Translation Lookaside Buffer Consistency: A
Software Approach. In ASPLOS, 1989.

[53] A. Boroumand, S. Ghose, B. Lucia, K. Hsieh, K. Malladi, H. Zheng, and O. Mutlu. LazyPIM: An
Efficient Cache Coherence Mechanism for Processing-in-Memory. IEEE CAL, 2016.

[54] D. Bouvier and B. Sander. Applying AMD’s ”Kaveri” APU for Heterogeneous Computing. 2014.

160

[55] B. Burgess, B. Cohen, J. Dundas, J. Rupley, D. Kaplan, and M. Denman. Bobcat: AMD’s Low-Power
x86 Processor. IEEE Micro, 2011.

[56] M. Burtscher, R. Nasre, and K. Pingali. A Quantitative Study of Irregular Programs on GPUs. In
IISWC, 2012.

[57] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A Study of Integrated Prefetching and Caching Strate-
gies. In SIGMETRICS, 1995.

[58] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand, A. Davis, C.-C. Kuo, R. Ku-
ramkote, M. Parker, L. Schaelicke, and T. Tateyama. Impulse: Building a Smarter Memory Con-
troller. In HPCA, 1999.

[59] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: Compiling an Embedded Data Parallel
Language. In SIGPLAN, 2011.

[60] K. Chandrasekar, S. Goossens, C. Weis, M. Koedam, B. Akesson, N. Wehn, and K. Goossens. Ex-
ploiting Expendable Process-Margins in DRAMs for Run-Time Performance Optimization. In DATE,
2014.

[61] K. Chang, R. Ausavarungnirun, C. Fallin, and O. Mutlu. HAT: Heterogeneous Adaptive Throttling
for On-Chip Networks. In SBAC-PAD, 2012.

[62] K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pekhimenko, S. Khan, and
O. Mutlu. Understanding Latency Variation in Modern DRAM Chips: Experimental Characteriza-
tion, Analysis, and Optimization. In SIGMETRICS, 2016.

[63] K. Chang, D. Lee, Z. Chishti, A. Alameldeen, C. Wilkerson, Y. Kim, and O. Mutlu. Improving
DRAM Performance by Parallelizing Refreshes with Accesses . In HPCA, 2014.

[64] K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu. Low-cost Inter-linked Subarrays
(LISA): Enabling Fast Inter-subarray Data Movement in DRAM. In HPCA, 2016.

[65] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and R. Balasubramonian. Managing DRAM
Latency Divergence in Irregular GPGPU Applications. In SC, 2014.

[66] N. Chatterjee, M. Shevgoor, R. Balasubramonian, A. Davis, Z. Fang, R. Illikkal, and R. Iyer. Lever-
aging Heterogeneity in DRAM Main Memories to Accelerate Critical Word Access. In MICRO,
2012.

[67] M. Chaudhuri, J. Gaur, N. Bashyam, S. Subramoney, and J. Nuzman. Introducing Hierarchy-
awareness in Replacement and Bypass Algorithms for Last-level Caches. In PACT, 2012.

[68] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and K. Skadron. Rodinia: A Benchmark
Suite for Heterogeneous Computing. In IISWC, 2009.

[69] X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W. W. Hwu. Adaptive Cache Manage-
ment for Energy-Efficient GPU Computing. In MICRO, 2014.

[70] X. Chen, S. Wu, L.-W. Chang, W.-S. Huang, C. Pearson, Z. Wang, and W. W. Hwu. Adaptive Cache
Bypass and Insertion for Many-Core Accelerators. In MES, 2014.

[71] M. Clark. A New X86 Core Architecture for the Next Generation of Computing. In HotChips, 2016.

161

[72] J. D. Collins and D. M. Tullsen. Hardware Identification of Cache Conflict Misses. In MICRO, 1999.

[73] J. Cong, Z. Fang, Y. Hao, and G. Reinmana. Supporting Address Translation for Accelerator-Centric
Architectures. In HPCA, 2017.

[74] Control Data Corporation. Control Data 7600 Computer Systems Reference Manual, 1972.

[75] R. Cooksey, S. Jourdan, and D. Grunwald. A Stateless, Content-directed Data Prefetching Mecha-
nism. In ASPLOS, 2002.

[76] Couchbase Inc. Often Overlooked Linux OS Tweaks. [Accessed March, 2014].

[77] B. A. Crane and J. A. Githens. Bulk Processing in Distributed Logic Memory. IEEE EC, 14(2):186–
196, April 1965.

[78] F. Dahlgren, M. Dubois, and P. Stenström. Sequential Hardware Prefetching in Shared-Memory
Multiprocessors. IEEE TPDS, 6(7):733–746, 1995.

[79] H. Dai, C. Li, H. Zhou, S. Gupta, C. Kartsaklis, and M. Mantor. A Model-driven Approach to
Warp/thread-block Level GPU Cache Bypassing. In DAC, 2016.

[80] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford, V. Tipparaju, and J. S.
Vetter. The Scalable Heterogeneous Computing (SHOC) benchmark suite. In GPGPU, 2010.

[81] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi. Application-to-core Mapping
Policies to Reduce Memory System Interference in Multi-core Systems. In HPCA, 2013.

[82] R. Das, S. Eachempati, A. K. Mishra, V. Narayanan, and C. R. Das. Design and Evaluation of
Hierarchical On-Chip Network Topologies for Next Generation CMPs. HPCA, 2009.

[83] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das. Application-aware Prioritization Mechanisms for
On-chip Networks. In MICRO, 2009.

[84] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das. Aérgia: Exploiting Packet Latency Slack in On-chip
Networks. In ISCA, 2010.

[85] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki, J. Shin, C. Chen, C. W.
Kang, I. Kim, and G. Daglikoca. The Architecture of the DIVA Processing-in-memory Chip. In ICS,
2002.

[86] Y. Du, M. Zhou, B. Childers, D. Mosse, and R. Melhem. Supporting Superpages in Non-contiguous
Physical Memory. In HPCA, 2015.

[87] J. Duato, A. Pena, F. Silla, R. Mayo, and E. Quintana-Orti. rCUDA: Reducing the Number of GPU-
based Accelerators in High Performance Clusters. In HPCS, 2010.

[88] T. H. Dunigan. Kendall Square Multiprocessor: Early Experiences and Performance. In of the Intel
Paragon, ORNL/TM-12194, 1994.

[89] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V. Veidenbaum. Improving Cache
Management Policies Using Dynamic Reuse Distances. In MICRO, 2012.

[90] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairness via Source Throttling: A Configurable and
High-performance Fairness Substrate for Multi-core Memory Systems. In ASPLOS, 2010.

162

[91] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Prefetch-aware Shared Resource Management for
Multi-core Systems. In ISCA, 2011.

[92] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairness via Source Throttling: A Configurable and
High-Performance Fairness Substrate for Multi-Core Memory Systems. ACM TOCS, 30(7), 2012.

[93] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu, and Y. N. Patt. Parallel
Application Memory Scheduling. In MICRO, 2011.

[94] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt. Coordinated Control of Multiple Prefetchers in
Multi-core Systems. In MICRO, 2009.

[95] E. Ebrahimi, O. Mutlu, and Y. N. Patt. Techniques for Bandwidth-efficient Prefetching of Linked
Data Structures in Hybrid Prefetching Systems. In HPCA, 2009.

[96] Y. Etsion and D. G. Feitelson. Exploiting Core Working Sets to Filter the L1 Cache with Random
Sampling. IEEE TC, 61(11):1535–1550, 2012.

[97] S. Eyerman and L. Eeckhout. System-Level Performance Metrics for Multiprogram Workloads. IEEE
Micro, 28(3), 2008.

[98] S. Eyerman and L. Eeckhout. Restating the Case for Weighted-IPC Metrics to Evaluate Multiprogram
Workload Performance. IEEE CAL, 2014.

[99] C. Fallin, C. Craik, and O. Mutlu. CHIPPER: A Low-complexity bufferless deflection router. In
HPCA, 2011.

[100] C. Fallin, G. Nazario, X. Yu, K. Chang, R. Ausavarungnirun, and O. Mutlu. MinBD: Minimally-
Buffered Deflection Routing for Energy-Efficient Interconnect. In NoCs, 2012.

[101] C. Fallin, G. Nazario, X. Yu, K. Chang, R. Ausavarungnirun, and O. Mutlu. Bufferless and Minimally-
Buffered Deflection Routing, in Routing Algorithms in Networks-on-Chip, pages 241–275. Springer
New York, New York, NY, 2014.

[102] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim. NDA: Near-DRAM Acceleration
Architecture Leveraging Commodity DRAM Devices and Standard Memory Modules. In HPCA,
2015.

[103] M. Fattah et al. A Low-Overhead, Fully-Distributed, Guaranteed-Delivery Routing Algorithm for
Faulty Network-on-Chips. In NOCS, 2015.

[104] M. Feng, C. Tian, and R. Gupta. Enhancing LRU Replacement via Phantom Associativity. In IN-
TERACT, Feb 2012.

[105] J. A. Fisher. Very Long Instruction Word Architectures and the ELI-512. In ISCA, 1983.

[106] M. Flynn. Very High-Speed Computing Systems. Proc. of the IEEE, 54(2), 1966.

[107] A. Fog. The Microarchitecture of Intel, AMD and VIA CPUs.

[108] D. Foley. Ultra-Performance Pascal GPU and NVLink Interconnect. In HotChips.

[109] B. B. Fraguela, J. Renau, P. Feautrier, D. Padua, and J. Torrellas. Programming the FlexRAM Parallel
Intelligent Memory System. In PPoPP, 2003.

163

[110] W. Fung, I. Sham, G. Yuan, and T. Aamodt. Dynamic Warp Formation and Scheduling for Efficient
GPU Control Flow. In MICRO, 2007.

[111] W. W. L. Fung and T. M. Aamodt. Thread Block Compaction for Efficient SIMT Control Flow. In
HPCA, 2011.

[112] J. Gandhi, , M. D. Hill, and M. M. Swift. Exceeding the Best of Nested and Shadow Paging. In ISCA,
2016.

[113] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift. Efficient Memory Virtualization. In MICRO, 2014.

[114] H. Gao and C. Wilkerson. A Dueling Segmented LRU Replacement Algorithm with Adaptive By-
passing. In JWAC, 2010.

[115] M. Gao, G. Ayers, and C. Kozyrakis. Practical Near-Data Processing for In-Memory Analytics
Frameworks. In PACT, 2015.

[116] M. Gao and C. Kozyrakis. HRL: Efficient and Flexible Reconfigurable Logic for Near-data Process-
ing. In HPCA, 2016.

[117] J. Gaur, M. Chaudhuri, and S. Subramoney. Bypass and Insertion Algorithms for Exclusive Last-
Level Caches. In ISCA, 2011.

[118] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally, E. Lindholm, and K. Skadron.
Energy-Efficient Mechanisms for Managing Thread Context in Throughput Processors. In ISCA,
2011.

[119] S. Ghose, H. Lee, and J. F. Martı́nez. Improving Memory Scheduling via Processor-side Load Criti-
cality Information. In ISCA, 2013.

[120] M. Gokhale, B. Holmes, and K. Iobst. Processing in Memory: the Terasys Massively Parallel PIM
Array. Computer, 28(4):23–31, 1995.

[121] C. Gómez, M. Gómez, P. López, and J. Duato. Reducing Packet Dropping in a Bufferless NoC.
EuroPar, 2008.

[122] M. Gorman and P. Healy. Supporting Superpage Allocation Without Additional Hardware Support.
In ISMM, 2008.

[123] M. Gorman and P. Healy. Performance Characteristics of Explicit Superpage Support. In WIOSCA,
2010.

[124] N. Govindaraju, S. Larsen, J. Gray, and D. Manocha. A Memory Model for Scientific Algorithms on
Graphics Processors. In SC, 2006.

[125] J. D. Grimes, L. Kohn, and R. Bharadhwaj. The Intel i860 64-bit Processor: A General-purpose CPU
with 3D Graphics Capabilities. IEEE CGA, 9(4):85–94, 1989.

[126] R. Grindley, T. Abdelrahman, S. Brown, S. Caranci, D. DeVries, B. Gamsa, A. Grbic, M. Gusat,
R. Ho, O. Krieger, et al. The NUMAchine Multiprocessor. In ICPP, 2000.

[127] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. Express Cube Topologies for On-Chip Intercon-
nects. In HPCA, 2009.

164

[128] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. Kilo-NOC: A Heterogeneous Network-on-chip
Architecture for Scalability and Service Guarantees. In ISCA, 2011.

[129] B. Grot, S. Keckler, and O. Mutlu. Topology-aware Quality-of-service Support in Highly Integrated
Chip Multiprocessors. In WIOSCA, 2010.

[130] B. Grot, S. W. Keckler, and O. Mutlu. Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip. In MICRO, 2009.

[131] M. Gschwind. Chip Multiprocessing and the Cell Broadband Engine. In CF, 2006.

[132] J. Gummaraju, M. Erez, J. Coburn, M. Rosenblum, and W. J. Dally. Architectural Support for the
Stream Execution Model on General-Purpose Processors. In PACT, 2007.

[133] Q. Guo, N. Alachiotis, B. Akin, F. Sadi, G. Xu, T.-M. Low, L. Pileggi, J. C. Hoe, and F. Franchetti.
3D-Stacked Memory-Side Acceleration: Accelerator and System Design. In WONDP, 2014.

[134] S. Gupta, H. Gao, and H. Zhou. Adaptive Cache Bypassing for Inclusive Last Level Caches. In
IPDPS, 2013.

[135] D. Gustavson. The Scalable Coherent Interface and Related Standards Projects. IEEE Micro, 1992.

[136] R. H. Halstead and T. Fujita. MASA: A Multithreaded Processor Architecture for Parallel Symbolic
Computing. In ISCA, 1988.

[137] V. C. Hamacher and H. Jiang. Hierarchical Ring Network Configuration and Performance Modeling.
IEEE TC, 2001.

[138] T. D. Han and T. S. Abdelrahman. Reducing Branch Divergence in GPU Programs. In GPGPU,
2011.

[139] C. A. Hart. CDRAM in a Unified Memory Architecture. In Intl. Computer Conference, 1994.

[140] M. Hashemi, Khubaib, E. Ebrahimi, O. Mutlu, and Y. N. Patt. Accelerating Dependent Cache Misses
with an Enhanced Memory Controller. In ISCA, 2016.

[141] M. Hashemi, O. Mutlu, and Y. N. Patt. Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads. In MICRO, 2016.

[142] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Ergin, and O. Mutlu. Charge-
Cache: Reducing DRAM Latency by Exploiting Row Access Locality. In HPCA, 2016.

[143] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko, D. Lee, O. Ergin, and
O. Mutlu. SoftMC: A Flexible and Practical Open-source Infrastructure for Enabling Experimental
DRAM Studies. In HPCA, 2017.

[144] M. Hayenga, N. E. Jerger, and M. Lipasti. SCARAB: A Single Cycle Adaptive Routing and Buffer-
less Network. In MICRO, 2009.

[145] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: A MapReduce Framework on
Graphics Processors. In PACT, 2008.

[146] H. Hellerman. Parallel Processing of Algebraic Expressions. IEEE Transactions on Electronic Com-
puters, EC-15(1):82–91, Feb 1966.

165

[147] A. Herrera. NVIDIA GRID: Graphics Accelerated VDI with the Visual Performance of a Worksta-
tion. May 2014.

[148] H. Hidaka, Y. Matsuda, M. Asakura, and K. Fujishima. The Cache DRAM Architecture. IEEE Micro,
1990.

[149] W. Hillis. The Connection Machine. MIT Press, 1989.

[150] S. Hong and H. Kim. An Analytical Model for a GPU Architecture with Memory-Level and Thread-
Level Parallelism Awareness. In ISCA, 2009.

[151] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar, O. Mutlu, and S. W.
Keckler. Transparent Offloading and Mapping (TOM): Enabling Programmer-transparent Near-data
Processing in GPU Systems. In ISCA, 2016.

[152] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose, and O. Mutlu. Accel-
erating Pointer Chasing in 3D-stacked Memory: Challenges, Mechanisms, Evaluation. In ICCD,
2016.

[153] W.-C. Hsu and J. E. Smith. Performance of Cached DRAM Organizations in Vector Supercomputers.
In ISCA, 1993.

[154] I. Hur and C. Lin. Memory Prefetching Using Adaptive Stream Detection. In MICRO, 2006.

[155] Hybrid Memoty Cube Consortium. High-Bandwidth Memory White Paper.

[156] Hybrid Memoty Cube Consortium. HMC Specification 1.1, 2013.

[157] Hybrid Memoty Cube Consortium. HMC Specification 2.0, 2014.

[158] T. Ikeda and K. Kise. Application Aware DRAM Bank Partitioning in CMP. In ICPADS, 2013.

[159] Intel Corp. Intel®I/O Acceleration Technology. http://www.intel.com/content/www/us/en/
wireless-network/accel-technology.html.

[160] Intel Corporation. Intel virtualization technology for directed i/o.

[161] Intel Corporation. Sandy Bridge Intel Processor Graphics Performance Developer’s Guide.

[162] Intel Corporation. Intel architecture mmx technology in business applications. 1997. http://

download.intel.com/design/PentiumII/papers/24336702.PDF.

[163] Intel Corporation. Products (Formerly Ivy Bridge), 2012.

[164] Intel Corporation. Introduction to intel architecture. 2014. http://www.intel.com/content/

dam/www/public/us/en/documents/white-papers/ia-introduction-basics-paper.

pdf.

[165] Intel Corporation. Intel 64 and ia-32 architectures software developers manual. 2016.
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-software-developer-manual-325462.pdf.

[166] Intel Corporation. 6th generation intel core processor family datasheet, vol. 1. 2017.
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/

desktop-6th-gen-core-family-datasheet-vol-1.pdf.

166

http://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
http://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
http://download.intel.com/design/PentiumII/papers/24336702.PDF
http://download.intel.com/design/PentiumII/papers/24336702.PDF
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-introduction-basics-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-introduction-basics-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-introduction-basics-paper.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/desktop-6th-gen-core-family-datasheet-vol-1.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/desktop-6th-gen-core-family-datasheet-vol-1.pdf

[167] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and J. Emer. Adaptive Insertion
Policies for Managing Shared Caches. In PACT, 2008.

[168] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer. High Performance Cache Replacement Using
Re-reference Interval Prediction (RRIP). In ISCA, 2010.

[169] J. Jalminger and P. Stenstrom. A Novel Approach to Cache Block Reuse Predictions. In ICPP, 2003.

[170] JEDEC. High Bandwidth Memory (HBM), 2013.

[171] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver. A QoS-Aware Memory Controller for Dynamically
Balancing GPU and CPU Bandwidth Use in an MPSoC. In DAC, 2012.

[172] W. Jia, K. A. Shaw, and M. Martonosi. MRPB: Memory Request Prioritization for Massively Parallel
Processors. In HPCA, 2014.

[173] X. Jiang, Y. Solihin, L. Zhao, and R. Iyer. Architecture Support for Improving Bulk Memory Copying
and Initialization Performance. In PACT, 2009.

[174] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee, S. W. Keckler, M. T. Kandemir,
and C. R. Das. Anatomy of GPU Memory System for Multi-Application Execution. In MEMSYS,
2015.

[175] A. Jog, O. Kayıran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das. Orchestrated
Scheduling and Prefetching for GPGPUs. In ISCA, 2013.

[176] A. Jog, O. Kayıran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R.
Das. OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving GPGPU Perfor-
mance. In ASPLOS, 2013.

[177] A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das. Exploiting Core
Criticality for Enhanced GPU Performance. In SIGMETRICS, 2016.

[178] L. K. John and A. Subramanian. Design and Performance Evaluation of A Cache Assist to Implement
Selective Caching. In ICCD, 1997.

[179] D. Joseph and D. Grunwald. Prefetching Using Markov Predictors. In ISCA, 1997.

[180] N. P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers. In ISCA, 1990.

[181] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy. Introduction to the
Cell Multiprocessor. IBM JRD, 2005.

[182] G. B. Kandiraju and A. Sivasubramaniam. Going the Distance for TLB Prefetching: An Application-
driven Study. In ISCA, 2002.

[183] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and J. Torrellas. FlexRAM:
Toward an Advanced Intelligent Memory System. In ICCD, 1999.

[184] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley, M. Nemirovsky, M. M.
Swift, and O. Ünsal. Redundant Memory Mappings for Fast Access to Large Memories. In ISCA,
2015.

167

[185] I. Karlin, A. Bhatele, J. Keasler, B. Chamberlain, J. Cohen, Z. DeVito, R. Haque, D. Laney, E. Luke,
F. Wang, D. Richards, M. Schulz, and C. Still. Exploring Traditional and Emerging Parallel Program-
ming Models using a Proxy Application. In IPDPS, 2013.

[186] I. Karlin, J. Keasler, and R. Neely. Lulesh 2.0 Updates and Changes. 2013.

[187] D. Kaseridis, J. Stuecheli, and L. K. John. Minimalist Open-page: A DRAM Page-mode Scheduling
Policy for the Many-core Era. In MICRO, 2011.

[188] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt. Gdev: First-Class GPU Resource Management
in the Operating System. In USENIX ATC, 2012.

[189] O. Kayıran, A. Jog, M. T. Kandemir, and C. R. Das. Neither More Nor Less: Optimizing Thread-
Level Parallelism for GPGPUs. In PACT, 2013.

[190] O. Kayiran, A. Jog, A. Pattnaik, R. Ausavarungnirun, X. Tang, M. T. Kandemir, G. H. Loh, O. Mutlu,
and C. R. Das. uC-States: Fine-grained GPU Datapath Power Management. In PACT, 2016.

[191] O. Kayıran, N. C. Nachiappan, A. Jog, R. Ausavarungnirun, M. T. Kandemir, G. H. Loh, O. Mutlu,
and C. R. Das. Managing GPU Concurrency in Heterogeneous Architectures. In MICRO, 2014.

[192] G. Kedem and R. P. Koganti. WCDRAM: A Fully Associative Integrated Cached-DRAM with Wide
Cache Lines. CS-1997-03, Duke, 1997.

[193] M. Kharbutli and Y. Solihin. Counter-Based Cache Replacement and Bypassing Algorithms. IEEE
TC, 57(4):433–447, Apr. 2008.

[194] Khronos OpenCL Working Group. The OpenCL Specification. http://www.khronos.org/

registry/cl/specs/opencl-1.0.29.pdf, 2008.

[195] J. Kim and M. C. Papaefthymiou. Block-based Multi-period Refresh for Energy Efficient Dynamic
Memory. In ASIC, 2001.

[196] K. Kim and J. Lee. A New Investigation of Data Retention Time in Truly Nanoscaled DRAMs. In
EDL, 2009.

[197] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A Scalable and High-Performance
Scheduling Algorithm for Multiple Memory Controllers. In HPCA, 2010.

[198] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread Cluster Memory Scheduling:
Exploiting Differences in Memory Access Behavior. In MICRO, 2010.

[199] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu. A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM. In ISCA, 2012.

[200] A. K. Kodi, A. Sarathy, and A. Louri. iDEAL: Inter-router Dual-function Energy and Area-efficient
Links for Network-on-chip (NoC) Architectures. In ISCA, 2008.

[201] P. M. Kogge. EXECUBE-A New Architecture for Scaleable MPPs. In ICPP, 1994.

[202] S. Konstantinidou and L. Snyder. Chaos Router: Architecture and Performance. In ISCA, 1991.

[203] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. Evaluating STT-RAM as an energy-
efficient main memory alternative. In ISPASS, 2013.

168

http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf

[204] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel. Coordinated and Efficient Huge Page
Management with Ingens. In OSDI, 2016.

[205] A.-C. Lai, C. Fide, and B. Falsafi. Dead-block Prediction & Dead-block Correlating Prefetchers. In
ISCA, 2001.

[206] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting Phase Change Memory as a Scalable
DRAM Alternative. In ISCA, 2009.

[207] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Phase Change Memory Architecture and the Quest for
Scalability. CACM, 53(7):99–106, 2010.

[208] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger. Phase-Change
Technology and the Future of Main Memory. IEEE Micro, 30(1):143–143, 2010.

[209] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prefetch-aware DRAM Controllers. In MICRO,
2008.

[210] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prefetch-aware Memory Controllers. IEEE TC,
60(10):1406–1430, 2011.

[211] C. J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and Y. N. Patt. DRAM-aware Last-level Cache
Writeback: Reducing Write-caused Interference in Memory Systems. In TR-HPS-2010-002, April,
2010.

[212] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt. Improving Memory Bank-Level Parallelism in the
Presence of Prefetching. In MICRO, 2009.

[213] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu. Simultaneous Multi-layer Access: Im-
proving 3D-stacked Memory Bandwidth at Low Cost. ACM TACO, 12(4):63, 2016.

[214] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko, V. Seshadri, and
O. Mutlu. Design-Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis,
and Latency Reduction Mechanisms. In SIGMETRICS, 2017.

[215] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu. Adaptive-latency
DRAM: Optimizing DRAM Timing for the Common-case. In HPCA, 2015.

[216] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu. Tiered-latency DRAM: A Low
Latency and Low Cost DRAM Architecture. In HPCA, 2013.

[217] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu. Decoupled Direct Memory
Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM. In PACT, 2015.

[218] S.-Y. Lee and C.-J. Wu. Characterizing GPU Latency Hiding Ability. In ISPASS, 2014.

[219] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and V. J. Reddi.
GPUWattch: Enabling Energy Optimizations in GPGPUs. In ISCA, 2013.

[220] A. Li, G.-J. van den Braak, A. Kumar, and H. Corporaal. Adaptive and Transparent Cache Bypassing
for GPUs. In SC, 2015.

[221] C. Li, S. L. Song, H. Dai, A. Sidelnik, S. K. S. Hari, and H. Zhou. Locality-Driven Dynamic GPU
Cache Bypassing. In ICS, 2015.

169

[222] D. Li, M. Rhu, D. Johnson, M. O’Connor, M. Erez, D. Burger, D. Fussell, and S. Redder. Priority-
Based Cache Allocation in Throughput Processors. In HPCA, 2015.

[223] T. Li, V. K. Narayana, and T. El-Ghazawi. Symbiotic Scheduling of Concurrent GPU Kernels for
Performance and Energy Optimizations. In CF, 2014.

[224] Huge Pages Part 2 (Interfaces). https://lwn.net/Articles/375096/. [February, 2010].

[225] C. H. Lin, D. Y. Shen, Y. J. Chen, C. L. Yang, and M. Wang. SECRET: Selective Error Correction
for Refresh Energy Reduction in DRAMs. In ICCD, 2012.

[226] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A Unified Graphics and
Computing Architecture. IEEE Micro, 28(2), 2008.

[227] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache Bursts: A New Approach for Eliminating Dead
Blocks and Increasing Cache Efficiency. In MICRO, 2008.

[228] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu. RAIDR: Retention-aware Intelligent DRAM Refresh. In
ISCA, 2012.

[229] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A Software Memory Partition Approach for
Eliminating Bank-level Interference in Multicore Systems. In PACT, 2012.

[230] W. Liu, P. Huang, T. Kun, T. Lu, K. Zhou, C. Li, and X. He. LAMS: A Latency-aware Memory
Scheduling Policy for Modern DRAM Systems. In IPCCC, 2016.

[231] W. Liu, W. Muller-Wittig, and B. Schmidt. Performance Predictions for General-Purpose Computa-
tion on GPUs. In ICPP, 2007.

[232] G. H. Loh. 3D-stacked Memory Architectures for Multi-core Processors. In ISCA, 2008.

[233] S.-L. Lu, Y.-C. Lin, and C.-L. Yang. Improving DRAM Latency with Dynamic Asymmetric Subarray.
In MICRO, 2015.

[234] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazel-
wood. Pin: Building Customized Program Analysis Tools with Dynamic Instrumentation. In PLDI,
2005.

[235] Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal, J. Liu, B. Khessib, K. Vaid, and
O. Mutlu. Characterizing Application Memory Error Vulnerability to Optimize Datacenter Cost via
Heterogeneous-Reliability Memory. In DSN, 2014.

[236] D. Lustig, A. Bhattacharjee, and M. Martonosi. TLB Improvements for Chip Multiprocessors: Inter-
Core Cooperative Prefetchers and Shared Last-Level TLBs. ACM TACO, 2013.

[237] L. Ma and R. Chamberlain. A Performance Model for Memory Bandwidth Constrained Applications
on Graphics Engines. In ASAP, 2012.

[238] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart Memories: A Modular
Reconfigurable Architecture. In ISCA, 2000.

[239] M. Mao, W. Wen, X. Liu, J. Hu, D. Wang, Y. Chen, and H. Li. TEMP: Thread Batch Enabled Memory
Partitioning for GPU. In DAC, 2016.

170

https://lwn.net/Articles/375096/

[240] C. McNairy and D. Soltis. Itanium 2 Processor Microarchitecture. IEEE Micro, 23(2):44–55, 2003.

[241] X. Mei and X. Chu. Dissecting GPU Memory Hierarchy Through Microbenchmarking. IEEE TPDS,
28(1):72–86, Jan 2017.

[242] V. Mekkat, A. Holey, P.-C. Yew, and A. Zhai. Managing Shared Last-Level Cache in a Heterogeneous
Multicore Processor. In PACT, 2013.

[243] J. Meng, D. Tarjan, and K. Skadron. Dynamic Warp Subdivision for Integrated Branch and Memory
Divergence Tolerance. In ISCA, 2010.

[244] J. Menon, M. de Kruijf, and K. Sankaralingam. iGPU: Exception Support and Speculative Execution
on GPUs. In ISCA, 2012.

[245] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan. Enabling Efficient and Scalable Hybrid
Memories Using Fine-Granularity DRAM Cache Management. IEEE CAL, 2012.

[246] J. Meza, Y. Luo, S. Khan, J. Zhao, Y. Xie, and O. Mutlu. A Case for Efficient Hardware/Software
Cooperative Management of Storage and Memory. In WEED, 2013.

[247] Micron Technology, Inc. 576Mb: x18, x36 RLDRAM3, 2011.

[248] Microsoft Corporation. Large-Page Support in Windows. [Accessed April-2017].

[249] R. Mijat. Take GPU Processing Power Beyond Graphics with Mali GPU Computing, 2012.

[250] A. K. Mishra, O. Mutlu, and C. R. Das. A Heterogeneous Multiple Network-on-chip Design: An
Application-aware Approach. In DAC, 2013.

[251] MongoDB Inc. Disable Transparent Huge Pages (THP). [Accessed April, 2016].

[252] T. Moscibroda and O. Mutlu. Memory Performance Attacks: Denial of Memory Service in Multi-
core Systems. In USENIX Security, 2007.

[253] T. Moscibroda and O. Mutlu. Distributed Order Scheduling and Its Application to Multi-core DRAM
Controllers. In PODC, 2008.

[254] T. Moscibroda and O. Mutlu. A Case for Bufferless Routing in On-Chip Networks. In ISCA, 2009.

[255] J. Mukundan and J. F. Martinez. MORSE: Multi-objective Reconfigurable Self-optimizing Memory
Scheduler. In HPCA, 2012.

[256] R. Mullins, A. West, and S. Moore. Low-latency Virtual-channel Routers for On-chip Networks. In
ISCA, 2004.

[257] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T. Moscibroda. Reducing Memory
Interference in Multicore Systems via Application-Aware Memory Channel Partitioning. In MICRO,
2011.

[258] O. Mutlu, H. Kim, and Y. N. Patt. Address-value Delta (AVD) Prediction: Increasing the Effective-
ness of Runahead Execution by Exploiting Regular Memory Allocation Patterns. In MICRO, 2005.

[259] O. Mutlu, H. Kim, and Y. N. Patt. Techniques for Efficient Processing in Runahead Execution En-
gines. In ISCA, 2005.

171

[260] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors.
In MICRO, 2007.

[261] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: Enhancing Both Performance
and Fairness of Shared DRAM Systems. In ISCA, 2008.

[262] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-Order Processors. In HPCA, 2003.

[263] P. J. Nair, D.-H. Kim, and M. K. Qureshi. ArchShield: Architectural Framework for Assisting DRAM
Scaling by Tolerating High Error Rates. In ISCA, 2013.

[264] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N. Patt. Improving GPU
Performance via Large Warps and Two-Level Warp Scheduling. In MICRO, 2011.

[265] J. Navarro, S. Iyer, P. Druschel, and A. Cox. Practical, Transparent Operating System Support for
Superpages. In OSDI, 2002.

[266] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith. AC/DC: An Adaptive Data Cache Prefetcher. In
PACT, 2004.

[267] NuoDB Inc. Linux Transparent Huge Pages, JEMalloc and NuoDB. [Accessed May, 2014].

[268] NVIDIA Corporation. NVIDIA Tegra K1.

[269] NVIDIA Corporation. NVIDIA Tegra X1.

[270] NVIDIA Corporation. CUDA C/C++ SDK Code Samples. http://developer.nvidia.com/

cuda-cc-sdk-code-samples, 2011.

[271] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi.
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_

architecture_whitepaper.pdf, 2011.

[272] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute Archi-
tecture: Kepler GK110. http://www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf, 2012.

[273] NVIDIA Corporation. NVIDIA GeForce GTX 750 Ti. 2014.

[274] NVIDIA Corporation. CUDA C Programming Guide. http://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html, 2015.

[275] NVIDIA Corporation. Multi-Process Service. https://docs.nvidia.com/deploy/pdf/CUDA_

Multi_Process_Service_Overview.pdf, 2015.

[276] NVIDIA Corporation. NVIDIA Tesla P100. https://images.nvidia.com/content/pdf/

tesla/whitepaper/pascal-architecture-whitepaper.pdf, 2016.

[277] NVIDIA Corporation. Parallel Thread Execution ISA Version 5.0. 2017.

[278] NVIDIA Corporation. Tuning CUDA Applications for Maxwell. 2017.

[279] G. Nychis, C. Fallin, T. Moscibroda, and O. Mutlu. Next Generation On-Chip Networks: What Kind
of Congestion Control Do We Need? In Hotnets, 2010.

172

http://developer.nvidia.com/cuda-cc-sdk-code-samples
http://developer.nvidia.com/cuda-cc-sdk-code-samples
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

[280] G. Nychis, C. Fallin, T. Moscibroda, O. Mutlu, and S. Seshan. On-chip Networks from a Networking
Perspective: Congestion and Scalability in Many-core Interconnects. In SIGCOMM, 2012.

[281] S. O, Y. H. Son, N. S. Kim, and J. H. Ahn. Row-Buffer Decoupling: A Case for Low-Latency DRAM
Microarchitecture. In ISCA, 2014.

[282] T. Ohsawa, K. Kai, and K. Murakami. Optimizing the DRAM Refresh Count for Merged
DRAM/Logic LSIs. In ISLPED, 1998.

[283] M. Oskin, F. T. Chong, and T. Sherwood. Active Pages: A Computation Model for Intelligent Mem-
ory. In ISCA, 1998.

[284] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan. Improving GPGPU Concurrency with Elastic
Kernels. In ASPLOS, 2013.

[285] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective Superscalar Processors. In ISCA,
1997.

[286] M.-M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos. Prediction-based Superpage-friendly
TLB Designs. In HPCA, 2015.

[287] J. Park, R. M. Yoo, D. S. Khudia, C. J. Hughes, and D. Kim. Location-aware Cache Management for
Many-core Processors with Deep Cache Hierarchy. In SC, 2013.

[288] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. Pinpointing Representative
Portions of Large Intel Itanium Programs with Dynamic Instrumentation. In MICRO, 2004.

[289] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas, and
K. Yelick. A Case for Intelligent RAM. IEEE Micro, 17(2):34–44, 1997.

[290] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, and C. R. Das.
Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities. In PACT,
2016.

[291] PCI-SIG. PCI Express Base Specification Revision 3.1a, 2015.

[292] G. Pekhimenko, E. Bolotin, N. Vijaykumar, O. Mutlu, T. C. Mowry, and S. W. Keckler. A Case for
Toggle-aware Compression for GPU Systems. In HPCA, 2016.

[293] G. Pekhimenko, T. Huberty, R. Cai, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry.
Exploiting Compressed Block Size as an Indicator of Future Reuse. In HPCA, 2015.

[294] G. Pekhimenko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, M. A. Kozuch, P. B. Gibbons, and T. C.
Mowry. Linearly Compressed Pages: A Main Memory Compression Framework with Low Com-
plexity and Low Latency. In MICRO, 2013.

[295] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry. Base-delta-
immediate Compression: Practical Data Compression for On-chip Caches. In PACT, 2012.

[296] A. Peleg and U. Weiser. MMX Technology Extension to the Intel Architecture. IEEE Micro,
16(4):51–59, August 1996.

[297] Percona. Why TokuDB Hates Transparent HugePages. [Accessed July, 2014].

173

[298] S. Phadke and S. Narayanasamy. MLP Aware Heterogeneous Memory System. In DATE, 2011.

[299] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh. Increasing TLB Reach by Exploiting Clustering
in Page Translations. In HPCA, 2014.

[300] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee. CoLT: Coalesced Large-Reach TLBs. In
MICRO, 2012.

[301] B. Pham, J. Vesely, G. Loh, and A. Bhattacharjee. Large Pages and Lightweight Memory Manage-
ment in Virtualized Systems: Can You Have it Both Ways? In MICRO, 2015.

[302] B. Pichai, L. Hsu, and A. Bhattacharjee. Architectural Support for Address Translation on GPUs:
Designing Memory Management Units for CPU/GPUs with Unified Address Spaces. In ASPLOS,
2014.

[303] J. Power, M. D. Hill, and D. A. Wood. Supporting x86-64 Address Translation for 100s of GPU
Lanes. In HPCA, 2014.

[304] PowerVR. PowerVR Hardware Architecture Overview for Developers. 2016. http:

//cdn.imgtec.com/sdk-documentation/PowerVR+Hardware.Architecture+Overview+

for+Developers.pdf.

[305] T. Preis, P. Virnau, W. Paul, and J. J. Schneider. Accelerated Fluctuation Analysis by Graphic Cards
and Complex Pattern Formation in Financial Markets. New Journal of Physics, 11, 2009.

[306] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan, A. Buyuktosunoglu, A. Davis,
and F. Li. NDC: Analyzing the Impact of 3D-stacked Memory+logic Devices on MapReduce Work-
loads. In ISPASS, 2014.

[307] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adaptive Insertion Policies for High
Performance Caching. In ISCA, 2007.

[308] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali. Enhancing
Lifetime and Security of PCM-based Main Memory with Start-gap Wear Leveling. In MICRO, 2009.

[309] M. K. Qureshi, D. H. Kim, S. Khan, P. J. Nair, and O. Mutlu. AVATAR: A Variable-Retention-Time
(VRT) Aware Refresh for DRAM Systems. In DSN, 2015.

[310] M. K. Qureshi and Y. N. Patt. Utility-based Cache Partitioning: A Low-overhead, High-performance,
Runtime Mechanism to Partition Shared Caches. In MICRO, 2006.

[311] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable High Performance Main Memory System
Using Phase-change Memory Technology. In ISCA, 2009.

[312] B. R. Rau. Pseudo-randomly Interleaved Memory. In ISCA, 1991.

[313] G. Ravindran and M. Stumm. A Performance Comparison of Hierarchical Ring- and Mesh-connected
Multiprocessor Networks. In HPCA, 1997.

[314] G. Ravindran and M. Stumm. On Topology and Bisection Bandwidth for Hierarchical-ring Networks
for Shared Memory Multiprocessors. In HPCA, 1998.

[315] V. J. Reddi, A. Settle, D. A. Connors, and R. S. Cohn. PIN: A Binary Instrumentation Tool for
Computer Architecture Research and Education. In WCAE, 2004.

174

http://cdn.imgtec.com/sdk-documentation/PowerVR+Hardware.Architecture+Overview+for+Developers.pdf
http://cdn.imgtec.com/sdk-documentation/PowerVR+Hardware.Architecture+Overview+for+Developers.pdf
http://cdn.imgtec.com/sdk-documentation/PowerVR+Hardware.Architecture+Overview+for+Developers.pdf

[316] Redis Labs. Redis Latency Problems Troubleshooting. [Accessed April, 2016].

[317] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory Access Scheduling. In
ISCA, 2000.

[318] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Cache-Conscious Wavefront Scheduling. In MICRO,
2012.

[319] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Divergence-Aware Warp Scheduling. In MICRO,
2013.

[320] B. F. Romanescu, A. R. Lebeck, D. J. Sorin, and A. Bracy. UNified Instruction/Translation/Data
(UNITD) Coherence: One Protocol to Rule them All. In HPCA, 2010.

[321] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel. PTask: Operating System Abstrac-
tions to Manage GPUs as Compute Devices. In SOSP, 2011.

[322] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly. Dandelion: A Compiler and Runtime
for Heterogeneous Systems. In SIGOPS, 2013.

[323] R. M. Russell. The CRAY-1 Computer System. CACM, 21(1):63–72, 1978.

[324] Y. Sato, T. Suzuki, T. Aikawa, S. Fujioka, W. Fujieda, H. Kobayashi, H. Ikeda, T. Nagasawa,
A. Funyu, Y. Fuji, K. Kawasaki, M. Yamazaki, and M. Taguchi. Fast cycle RAM (FCRAM): A
20-ns Random Row Access, Pipe-Lined Operating DRAM. In VLSIC, 1998.

[325] A. Saulsbury, F. Dahlgren, and P. Stenström. Recency-based TLB Preloading. In ISCA, 2000.

[326] P. B. Schneck. The CDC STAR-100, pages 99–117. Springer US, Boston, MA, 1987.

[327] D. N. Senzig and R. V. Smith. Computer Organization for Array Processing. In AFIPS, 1965.

[328] S.-Y. Seo. Methods of Copying a Page in a Memory Device and Methods of Managing Pages in a
Memory System. U.S. Patent Application 20140185395, 2014.

[329] V. Seshadri, A. Bhowmick, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry. The Dirty-
Block Index. In ISCA, 2014.

[330] V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. Kozuch, O. Mutlu, P. Gibbons, and T. Mowry. Fast
Bulk Bitwise AND and OR in DRAM. IEEE CAL, 2015.

[331] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo, O. Mutlu, P. B.
Gibbons, M. A. Kozuch, et al. RowClone: Fast and Energy-efficient in-DRAM Bulk Data Copy and
Initialization. In ISCA, 2013.

[332] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch, O. Mutlu, P. B.
Gibbons, and T. C. Mowry. Buddy-RAM: Improving the Performance and Efficiency of Bulk Bitwise
Operations Using DRAM. In arXiv CoRR, 2016.

[333] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry.
Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-Unit
Strided Accesses. In MICRO, 2015.

175

[334] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry. The Evicted-Address Filter: A Unified
Mechanism to Address Both Cache Pollution and Thrashing. In PACT, 2012.

[335] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry. Mitigating
Prefetcher-Caused Pollution Using Informed Caching Policies for Prefetched Blocks. ACM TACO,
11(4):51:1–51:22, 2015.

[336] T. Shanley. Pentium Pro Processor System Architecture. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1st edition, 1996.

[337] W. Shin, J. Yang, J. Choi, and L.-S. Kim. NUAT: A Non-Uniform Access Time Memory Controller.
In HPCA, 2014.

[338] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc. A Performance Analysis Framework for Identifying
Potential Benefits in GPGPU Applications. In PPoPP, 2012.

[339] J. Sim, G. H. Loh, H. Kim, M. O’Connor, and M. Thottethodi. A Mostly-Clean DRAM Cache for
Effective Hit Speculation and Self-Balancing Dispatch. In MICRO, 2012.

[340] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M. Aamodt. Cache Coherence for GPU
Architectures. In HPCA, 2013.

[341] SiSoftware. Benchmarks : Measuring GP (GPU/APU) Cache and Memory Latencies. http://www.
sisoftware.net, 2014.

[342] R. L. Sites and R. T. Witek. ALPHA Architecture Reference Manual. Digital Press, Boston, Oxford,
Melbourne, 1998.

[343] D. L. Slotnick, W. C. Borck, and R. C. McReynolds. The Solomon Computer – A Preliminary Report.
In Workshop on Computer Organization, 1962.

[344] B. Smith. Architecture and Applications of the HEP Multiprocessor Computer System. SPIE, 1981.

[345] B. J. Smith. A Pipelined, Shared Resource MIMD Computer. In ICPP, 1978.

[346] Y. H. Son, S. O, Y. Ro, J. W. Lee, and J. H. Ahn. Reducing Memory Access Latency with Asymmetric
DRAM Bank Organizations. In ISCA, 2013.

[347] Splunk Inc. Transparent Huge Memory Pages and Splunk Performance. [Accessed December, 2013].

[348] S. Srikantaiah and M. Kandemir. Synergistic TLBs for High Performance Address Translation in
Chip Multiprocessors. In MICRO, 2010.

[349] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback Directed Prefetching: Improving the Perfor-
mance and Bandwidth-Efficiency of Hardware Prefetchers. In HPCA, 2007.

[350] H. S. Stone. A Logic-in-Memory Computer. IEEE TC, C-19(1):73–78, 1970.

[351] J. A. Stratton, C. Rodrigrues, I.-J. Sung, N. Obeid, L. Chang, G. Liu, and W.-M. W. Hwu. Parboil: A
Revised Benchmark Suite for Scientific and Commercial Throughput Computing. Technical Report
IMPACT-12-01, University of Illinois at Urbana-Champaign, Urbana, Mar. 2012.

[352] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L. K. John. The Virtual Write Queue: Coordi-
nating DRAM and Last-level Cache Policies. In ISCA, 2010.

176

http://www.sisoftware.net
http://www.sisoftware.net

[353] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu. The Blacklisting Memory Scheduler:
Achieving high performance and fairness at low cost. In ICCD, 2014.

[354] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu. The Blacklisting Memory Scheduler:
Balancing Performance, Fairness and Complexity. arXiv CoRR, 2015.

[355] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu. BLISS: Balancing Performance,
Fairness and Complexity in Memory Access Scheduling. In IEEE TPDS, 2016.

[356] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu. The Application Slowdown Model:
Quantifying and Controlling the Impact of Inter-application Interference at Shared Caches and Main
Memory. In MICRO, 2015.

[357] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu. MISE: Providing Performance Pre-
dictability and Improving Fairness in Shared Main Memory Systems. In HPCA, 2013.

[358] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky, and K. Olukotun. Delite: A
Compiler Architecture for Performance-oriented Embedded Domain-specific Languages. In TECS,
2014.

[359] Z. Sura, A. Jacob, T. Chen, B. Rosenburg, O. Sallenave, C. Bertolli, S. Antao, J. Brunheroto, Y. Park,
K. O’Brien, and R. Nair. Data Access Optimization in a Processing-in-memory System. In CF, 2015.

[360] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction, volume 1.

[361] Y. Suzuki, S. Kato, H. Yamada, and K. Kono. GPUvm: Why Not Virtualizing GPUs at the Hypervi-
sor? In USENIX ATC, 2014.

[362] Sybase Inc. SAP IQ and Linux Hugepages/Transparent Hugepages. [Accessed May, 2014].

[363] M. Talluri and M. D. Hill. Surpassing the TLB Performance of Superpages with Less Operating
System Support. In ASPLOS, 1994.

[364] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero. Enabling Preemptive
Multiprogramming on GPUs. In ISCA, 2014.

[365] J. E. Thornton. Parallel Operation in the Control Data 6600. AFIPS FJCC, 1964.

[366] J. E. Thornton. Design of a Computerthe Control Data 6600. 1970.

[367] Transparent Hugepages. https://lwn.net/Articles/359158/. [October, 2009].

[368] K. Tian, Y. Dong, and D. Cowperthwaite. A Full GPU Virtualization Solution with Mediated Pass-
Through. In USENIX ATC, 2014.

[369] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. A Modified Approach to Data Cache Man-
agement. In MICRO, 1995.

[370] Univ. of British Columbia. GPGPU-Sim GTX 480 Configuration. http://dev.ece.ubc.ca/

projects/gpgpu-sim/browser/v3.x/configs/GTX480.

[371] H. Usui, L. Subramanian, K. Chang, and O. Mutlu. SQUASH: Simple qos-aware high-performance
memory scheduler for heterogeneous systems with hardware accelerators. arXiv CoRR, 2015.

177

https://lwn.net/Articles/359158/
http://dev.ece.ubc.ca/projects/gpgpu-sim/browser/v3.x/configs/GTX480
http://dev.ece.ubc.ca/projects/gpgpu-sim/browser/v3.x/configs/GTX480

[372] H. Usui, L. Subramanian, K. Chang, and O. Mutlu. DASH: Deadline-Aware High-Performance
Memory Scheduler for Heterogeneous Systems with Hardware Accelerators. ACM TACO, 12(4),
Jan. 2016.

[373] H. Vandierendonck and A. Seznec. Fairness Metrics for Multi-threaded Processors. IEEE CAL, Feb
2011.

[374] R. Venkatesan, S. Herr, and E. Rotenberg. Retention-aware Placement in DRAM (RAPID): Software
Methods for Quasi-non-volatile DRAM. In HPCA, 2006.

[375] J. Vesely, A. Basu, M. Oskin, G. H. Loh, and A. Bhattacharjee. Observations and Opportunities in
Architecting Shared Virtual Memory for Heterogeneous Systems. In ISPASS, 2016.

[376] T. Vijayaraghavany, Y. Eckert, G. H. Loh, M. J. Schulte, M. Ignatowski, B. M. Beckmann, W. C.
Brantley, J. L. Greathouse, W. Huang, A. Karunanithi, O. Kayiran, M. Meswani, I. Paul, M. Poremba,
S. Raasch, S. K. Reinhardt, G. Sadowski, and V. Sridharan. Design and Analysis of an APU for
Exascale Computing. In HPCA, 2017.

[377] N. Vijaykumar, K. Hsieh, G. Pekhimenko, S. Khan, A. Shrestha, S. Ghose, A. Jog, P. B. Gibbons,
and O. Mutlu. Zorua: A Holistic Approach to Resource Virtualization in GPUs. In MICRO, 2016.

[378] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarungnirun, C. Das, M. Kandemir,
T. C. Mowry, and O. Mutlu. A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling
Flexible Data Compression with Assist Warps. In ISCA, 2015.

[379] Vivante. Vivante Vega GPGPU Technology. 2016. http://www.vivantecorp.com/index.php/
en/technology/gpgpu.html.

[380] VoltDB Inc. VoltDB Documentation. [Accessed April, 2016].

[381] L. Vu, H. Sivaraman, and R. Bidarkar. GPU Virtualization for High Performance General Purpose
Computing on the ESX Hypervisor. In HPC, 2014.

[382] Z. Wang, J. Yang, R. Melhem, B. R. Childers, Y. Zhang, and M. Guo. Simultaneous Multikernel
GPU: Multi-tasking Throughput Processors via Fine-Grained Sharing. In HPCA, 2016.

[383] F. A. Ware and C. Hampel. Improving Power and Data Efficiency with Threaded Memory Modules.
In ICCD, 2006.

[384] S. Wasson. AMD’s A8-3800 Fusion APU., Oct. 2011.

[385] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. Demystifying GPU Mi-
croarchitecture Through Microbenchmarking. In ISPASS, 2010.

[386] Y. Wu, R. Rakvic, L.-L. Chen, C.-C. Miao, G. Chrysos, and J. Fang. Compiler Managed Micro-cache
Bypassing for High Performance EPIC Processors. In MICRO, 2002.

[387] L. Xiang, T. Chen, Q. Shi, and W. Hu. Less Reused Filter: Improving L2 Cache Performance via
Filtering Less Reused Lines. In ICS, 2009.

[388] P. Xiang, Y. Yang, and H. Zhou. Warp-Level Divergence in GPUs: Characterization, Impact, and
Mitigation. In HPCA, 2014.

178

http://www.vivantecorp.com/index.php/en/technology/gpgpu.html
http://www.vivantecorp.com/index.php/en/technology/gpgpu.html

[389] M. Xie, D. Tong, K. Huang, and X. Cheng. Improving System Throughput and Fairness Simultane-
ously in Shared Memory CMP Systems via Dynamic Bank Partitioning. In HPCA, 2014.

[390] X. Xie, Y. Liang, G. Sun, and D. Chen. An Efficient Compiler Framework for Cache Bypassing on
GPUs. In ICCAD, 2013.

[391] X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang. Coordinated Static and Dynamic Cache Bypassing
for GPUs. In HPCA, 2015.

[392] D. Xiong, K. Huang, X. Jiang, and X. Yan. Memory Access Scheduling Based on Dynamic Multilevel
Priority in Shared DRAM Systems. ACM TACO, 13(4), Dec. 2016.

[393] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram. Warped-Slicer: Efficient Intra-SM Slicing
through Dynamic Resource Partitioning for GPU Multiprogramming. In ISCA, 2016.

[394] H. Yoon, R. A. J. Meza, R. Harding, and O. Mutlu. Row Buffer Locality Aware Caching Policies for
Hybrid Memories. In ICCD, 2012.

[395] H. Yoon, J. Meza, R. Ausavarungnirun, R. Harding, and O. Mutlu. Row Buffer Locality Aware
Caching Policies for Hybrid Memories. In ICCD, 2012.

[396] B. Yu, J. Ma, T. Chen, and M. Wu. Global Priority Table for Last-Level Caches. In DASC, 2011.

[397] G. Yuan, A. Bakhoda, and T. Aamodt. Complexity Effective Memory Access Scheduling for Many-
Core Accelerator Architectures. In MICRO, 2009.

[398] C. Zhang, G. Sun, P. Li, T. Wang, D. Niu, and Y. Chen. SBAC: A Statistics Based Cache Bypassing
Method for Asymmetric-access Caches. In ISPLED, 2014.

[399] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Ignatowski. TOP-PIM:
Throughput-oriented Programmable Processing in Memory. In HPDC, 2014.

[400] L. Zhang, Z. Fang, M. Parker, B. K. Mathew, L. Schaelicke, J. B. Carter, W. C. Hsieh, and S. A.
McKee. The Impulse Memory Controller. IEEE TC, 50(11):1117–1132, 2001.

[401] X. Zhang and Y. Yan. Comparative Modeling and Evaluation of CC-NUMA and COMA on Hierar-
chical Ring Architectures. IEEE TPDS, 1995.

[402] J. Zhao, O. Mutlu, and Y. Xie. FIRM: Fair and High-Performance Memory Control for Persistent
Memory Systems. In MICRO, 2014.

[403] L. Zhao, R. Iyer, S. Makineni, L. Bhuyan, and D. Newell. Hardware Support for Bulk Data Movement
in Server Platforms. In ICCD, 2005.

[404] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu. Mini-rank: Adaptive DRAM Archi-
tecture for Improving Memory Power Efficiency. In MICRO, 2008.

[405] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, and S. W. Keckler. Towards High Performance
Paged Memory for GPUs. In HPCA, 2016.

[406] W. K. Zuravleff and T. Robinson. Controller for a Synchronous DRAM That Maximizes Throughput
by Allowing Memory Requests and Commands to Be Issued Out of Order. In US Patent Number
5,630,096, 1997.

179

