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Figure 7.11. TLB characteristics of Mosaic.

shared TLBs. Second, we observe an increasing amount of interference in the baseline design

when more applications are running concurrently. This results in a lower TLB hit rate as the

number of applications increases. The shared TLB hit rate drops from 81% in workloads with two

applications to 62% in workloads with five applications.

While Figure 7.10 shows several samples of individual performance comparison between dif-

ferent designs, Figures 7.12a and 7.12b provide the performance comparison for all individual

workload we evaluated from all configurations (235 workloads in total). From Figure 7.12a, we

observe that Mosaic is able to limit the performance impact of address translation to less than 10%

for more than half of the workloads we evaluated. Second, we observe that in cases where both

the GPU-MMU baseline and Mosaic’s performance falls far short of the ideal performance, these

workloads has a significant amount of compulsory misses (up to 5.7% of the total TLB accesses).

These two observations suggest that while Mosaic is effective in increasing the range of TLBs,

reducing the latency of page table walk is an important next step to improve the performance of

these GPGPU applications. Third, we observe from Figure 7.12b that in most cases, Mosaic out-

performs the state-of-the-art GPU-MMU baseline by up to a factor of 6 (clipped from the plot),

mainly due to the improvement in the overall TLB miss reduction as shown in Figure 7.11.
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Figure 7.12. The performance of Mosaic across 235 workloads. (a) shows the performance of
Mosaic relative to the ideal performance with no address translation overhead. (b) shows the
performance of Mosaic relative to previously proposed state-of-the-art TLB design [303]

7.5.3. Fragmentation and Memory Bloat

When multiple concurrent GPGPU programs share the GPU, it is possible that a series of

memory allocation and deallocation requests could create significant data fragmentation. While

we do not observe this trend in any of the workloads we evaluate, as discussed in Section 7.3.2.1,

Mosaic can potentially introduce data fragmentation and memory bloat. In order to perform addi-

tional analyses, we study the effect of pre-fragmenting the physical memory with random data, as

described in Section 7.4, on performance.

In this study, we show the impact of data fragmentation and DRAM contention with Mosaic as a

performance overhead compared to the baseline Mosaic with no pre-fragmented data. Additionally,

we provide the memory footprint in terms of memory bloat after CAC performs all data movements

during the compaction process throughout the execution of the workload. In Table 7.2, we pre-

fragment a percentage of pages in main memory according to the fragmentation index, and within

these fragmented large pages, we pre-allocate a percentage of base pages with some data that

must be moved before coalescing. Then, we evaluate the performance of Mosaic with and without

CAC, and provide the optimized CAC, which utilizes the in-DRAM bulk copy [64, 331]. any data

movement.
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Fragmentation Large Page Memory Performance Improvement
Index Occupancy Bloat (%) Overhead % VS.

(Optimized) no CAC
90% 1% 0.02% 0.03% (0.02%) 46.7%
90% 25% 0.06% 0.7% (0.7%) 45.6%
90% 50% 0.16% 5% (5%) 39.1%
95% 25% 0.39% 9.96% (9.9%) 33.4%
95% 50% 0.54% 12.6% (12.6%) 30.3%
97% 25% 0.75% 14.5% (14.4%) 24.3%
97% 50% 0.45% 17.1% (17.0%) 25.2%

100% 1% 10.66% 12.7% (5.3%) 30.2%
100% 10% 7.56% 26.5% (15.67%) 15.9%
100% 25% 7.20% 29.8% (21.7%) 13.0%
100% 35% 5.22% 30.6% (30.3%) 10.3%
100% 50% 3.37% 32.1% (30.4%) 11.0%
100% 75% 2.22% 33.3% (33.0%) 10.1%

Table 7.2. Performance comparison of Mosaic with various degree of fragmentation.

From Table 7.2, we make four conclusions. First, we conclude that CAC is effective in re-

ducing the memory bloat, limiting the additional memory usage down to within 10.6% on average.

Second, we found that the benefit of moving pages always outweighs the cost. Thus, we always ob-

serve performance improvement when CAC is applied, regardless of how fragmented the DRAM

is. Third, we found that applying in-DRAM bulk copy can provide additional performance bene-

fits when the physical DRAM fragmentation is sparse (i.e., high fragmentation index, but low page

occupancy). This improvement comes from the fact that sparse DRAM increases the chance that

CAC-optimized can find a target destination page that is either in the same subarray or in the same

DRAM bank. Fourth, we do not observe any performance when fragmentation drops below 90%.

7.6. Mosaic: Conclusion

This dissertation explores the design space for transparent large page support for GPUs to

sidestep the tradeoffs between TLB reach and demand paging latency. Our design, Mosaic, tracks

temporal and spatial locality to inform policies for transparent coalescing of frequently accessed

base pages and transparent splintering of large pages to reduce fragmentation, increase contiguity,
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or reduce page far-fault latencies. Mosaic relies on techniques to preserve contiguity, allowing it

to minimize synchronization and memory copy in the common case. A novel mechanism called

LAZY-COALESCER allows application-level updates to virtual pages to proceed concurrently with

coalescing or splintering, preserving atomicity for page table updates. Evaluation of a Mosaic

prototype shows that using large pages lowers address translation overhead significantly without

harming demand paging performance. Mosaic improves performance over TLB designs in the

literature by 38.2%.
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Chapter 8

Common Principles and Lesson Learned

This dissertation introduces several techniques that reduce memory interference in GPU-based

systems. In this chapter, we provide a list of common design principles that are used throughout

this dissertation as well as a summary of key lessons learned.

8.1. Common Design Principles

While techniques proposed in this dissertation are applied in different parts of the memory hi-

erarchy, they share several key common principles. In this section, we reiterate over these common

principles.

Identification of the Benefits of Threads from Using Shared Resources. The first common

principle in this dissertation is to give shared resources only to threads that benefit from such shared

resources. In many throughput processors, shared resources throughout the memory hierarchy are

heavily contended due to the parallelism of these throughput processors. As a result, allowing

all threads to freely use these shared resources usually leads to memory interference as we have

analyzed thoroughly in Chapters 4, 5, 6 and 7. We observed that intelligently limiting the number

of threads that use these shared resources often leads to significant performance improvement of

GPU-based systems.

To this end, all mechanisms proposed in this dissertation modify shared resources such that
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they 1) always prioritize threads that benefit from utilizing shared resources and 2) deprioritize

threads that do not benefit from utilizing shared resources to avoid memory interference.

Division of Key Tasks of a Monolithic Structure into Simpler Structures. Another common

principle that is utilized is the decoupling of key tasks on monolithic structures throughout the

memory hierarchy. In MeDiC and MASK (See Chapters 4 and 6), we provide a mechanism that

decouples the monolithic memory request buffer commonly used in modern systems into multiple

queues, where different queues deal with different types of GPU memory requests. We found

that the division of the monolithic request buffer simplifies the design of the memory scheduler.

Specifically, it simplifies memory scheduler logic as the logic can now apply the same scheduling

policy on each queue. A similar technique applies to SMS (See Chapter 5), which is a memory

controller design for heterogeneous CPU-GPU systems.

8.2. Lessons Learned

This dissertation provides several techniques that together attempt to mitigate the performance

impact of memory interference. While our analysis and evaluation have shown that our proposed

techniques are effective in reducing the memory interference on various types of GPU-based sys-

tems, this dissertation also provides two important lessons. In this section, we summarize these

two major lessons learned from our analysis.

Memory Latency is Important for the Performance of Throughput Processors. Typically,

limited off-chip memory bandwidth is the major performance bottleneck of throughput processors.

In this work, we show that the latency of memory requests also plays an important role in increasing

the performance of throughput processors. First, we show that it is possible to reduce the number of

cycles many warps are stalled by prioritizing the slowest thread within each warp. Our techniques

allow these slow threads to benefit from the lower latency of the shared cache.

Second, we show that the memory latency of the page-walk-related requests is very important

to the performance of GPU-based systems. In Chapters 6 and 7, we show that page walks can

significantly reduces the memory hiding capability of GPU-based systems. As a result, it is crucial
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to reduce the latency of these page-walk-related memory requests.

How to Design the GPU Memory Hierarchy to Avoid Memory Interference? This disserta-

tion introduces several techniques across the main memory hierarchy of GPU-based systems. In

this section, we provide recommended modifications for the memory hierarchy for both discrete

GPUs as well as heterogeneous CPU-GPU systems.

The memory hierarchy of a discrete GPU should be designed to provide high throughput on

both single-application and multi-application setups. As a result, the shared L2 data cache, the

off-chip main memory and the shared TLB should be designed to minimize memory interference.

To this end, MeDiC, MASK, and Mosaic (See Chapters 4, 6 and 7 for the detailed designs and

analyses of these mechanisms) can be combined together to improve the efficiency of shared re-

sources (the shared L2 cache, the shared TLB and the main memory). Specifically, we recommend

system designers to modify the shared cache to 1) prioritize to threads that benefit from the shared

L2 cache (e.g., threads from the mostly-hit and all-hit warp types), 2) deprioritize threads that are

less likely to benefit from the shared L2 cache (e.g., threads from the mostly-miss and all-miss

warp types), and 3) only cache page-walk-related data that would only benefit from using the

shared data cache. Additionally, we recommend system designers to decouple the memory con-

troller to perform two tasks hierarchically. The first task is to divide GPU memory request buffer

into three different queues (Golden, Silver and Normal queues) similar to the design of MASK

(See Section 6). To combine MASK with MeDiC, requests from the mostly-hit and all-hit warp

types should be inserted into the Silver Queue to ensure that these requests have more priority than

other data requests. Lastly, system designers should modify the GPU memory allocator to enforce

the soft guarantee as defined in Section 7.3.2, which enables the GPU to provide low-overhead

multi-page-size support.

To integrate our techniques into a CPU-GPU heterogeneous system, additional per-application

FIFO queues can be integrated into the memory hierarchy as described in Section 5.3. This results

in a memory hierarchy design that minimizes all types of memory interference that occur in GPU-

based systems.
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Chapter 9

Conclusions and Future Directions

In summary, the goal of this dissertation is to develop shared resource management mecha-

nisms that can reduce memory interference in current and future throughput processors. To this

end, we analyze memory interference that occurs in Graphics Processing Units, which are the

prime example of throughput processors. Based on our analysis of GPU characteristics and the

source of memory interference, we categorize memory interference into three different types:

intra-application interference, inter-application interference and inter-address-space interference.

We propose changes to the cache management and memory scheduling mechanisms to mitigate

intra-application interference in GPGPU applications. We propose changes to the memory con-

troller design and its scheduling policy to mitigate inter-application interference in heterogeneous

CPU-GPU systems. We redesign the memory management unit and the memory hierarchy in

GPUs to be aware of TLB-related data in order to mitigate the inter-address-space interference that

originates from the address translation process. We introduce a hardware-software cooperative

technique that modifies the memory allocation policy to enable large page support in order to fur-

ther reduce the inter-address-space interference at the shared TLB. Our evaluations show that the

GPU-aware cache and memory management techniques proposed in this dissertation are effective

at mitigating the interference caused by GPUs on current and future GPU-based systems.
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9.1. Future Research Directions

While this dissertation focuses on methods to mitigate memory interference in various GPU-

based systems, this dissertation also uncovers new research topics. In this section, we describe

potential research directions to further increase the performance of GPU-based systems.

9.1.1. Improving the Performance of the Memory Hierarchy in GPU-based Systems

Ways to Exploit Emerging High-Bandwidth Memory Technologies. 3D-stacked

DRAM [155,156,157,170,213,232] is an emerging main memory design that provides high band-

width and high energy efficiency. We believe that analyzing how this new type of DRAM operates

can expose techniques that might benefit modern GPU-based systems.

Aside from 3D-stacked memory, recent proposals provide methods to reduce DRAM la-

tency [63, 199, 214, 215, 216], a method to utilize multi-ported DRAM [217], or methods to

perform some computations within DRAM in order to reduce the amount of DRAM band-

width [64, 151, 330, 331]. We think that these techniques, combined with observations on GPU

applications’ characteristics provided in this dissertation, can be applied to GPUs and should pro-

vide significant performance improvement for GPU-based systems.

Other Methods to Exploit Warp-type Heterogeneity and TLB-related Data in GPU-based

system. In this dissertation, we show in Chapter 4 how GPU-based systems exploit warp-type

heterogeneity to reduce intra-application interference and improve the effectiveness of the cache

and the main memory. We also show in Chapter 6 how to design a GPU memory hierarchy that is

aware of TLB data to minimize inter-address-space interference. We believe that it is beneficial

to integrate these warp-type and TLB-awareness characteristics to the memory hierarchy in GPU-

based systems to further improve system performance.

Potential Denial-of-service in Software Managed Shared Memory. Allowing GPU-based

systems to be shared across multiple GPGPU applications potentially introduces new performance

bottlenecks. Concurrently running multiple GPU applications creates a unique resource contention

at GPU’s software-managed Shared Scratchpad Memory. Because this particular resource is man-
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aged by the GPGPU applications (in software), GPGPU applications that share the GPU all con-

tend for this resource. The lack of communication between each GPGPU application prevents one

application to inform its demand for the Shared Scratchpad Memory to other applications. As

a result, one application can completely block other applications by using all Shared Scratchpad

Memory.

It is possible to solve this unique problem through modifications in the hypervisor. For exam-

ple, additional kernel scheduling techniques can be applied to 1) probe how much Shared Scratch-

pad Memory is needed by each application and 2) enforce a proper policy that only grants each

application a portion of the Shared Scratchpad Memory.

Interference Management in GPUs for Emerging Applications. The emergence of embed-

ded applications introduces a new requirement: real-time deadlines. Traditionally, these applica-

tions run on an embedded device which contains multiple application-specific integrated circuits

(ASICs) to handle most of the computations. However, the rise of integrated GPUs in modern

System-on-Chips (e.g., [71, 249, 268, 269]) as well as better GPU support in several cloud infras-

tructures (e.g., [28, 29, 368, 381]) allow these applications to perform these computations on the

GPUs. While the GPUs can provide good IPC throughput due to their parallelism, the GPUs and

the GPUs’ memory hierarchy, also need to provide a low response time, or in many cases enforce

hard performance guarantees (i.e., an application must finish its execution within a certain time

limit).

Even though mechanisms proposed in this dissertation aim to minimize the slowdown caused

by interference, these mechanisms do not provide actual performance guarantees. However, we

believe it is possible to use observations in this dissertation to aid in designing mechanisms to

provide a hard performance guarantee and limit the amount of memory interference when multiple

of these new embedded applications are concurrently sharing GPU-based systems.
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9.1.2. Low-overhead Virtualization Support in GPU-based Systems

While this dissertation proposes mechanisms to minimize inter-address-space interference in

GPU-based systems, there are several open-ended research questions on how to efficiently virtual-

ize GPU-based systems and how to efficiently shared other non-memory resources across multiple

applications.

Maintaining Virtual Address Space Contiguity. While Chapter 7 provides a mechanism that

maintains contiguous physical address, Mosaic does not perform compaction in the virtual address

space as this dissertation does not observe virtual address space fragmentation in current GPGPU

applications. However, it might be possible that a long chain of small size memory allocations and

deallocations can break contiguity within the virtual address space. In this case, the virtual address

space has to be remapped in order to create a contiguous chunk of unallocated virtual memory.

This can lower the performance of GPU-based systems.

Utilizing High-bandwidth Interconnects to Transfer Data between CPU Memory and GPU

Memory. As shown in Chapter 7, demand paging can be costly, especially when a large amount

of data has to be transferred to the GPU. The long latency of demand paging can lead to signifi-

cant stall time for GPU cores. Methods to improve the performance of demand paging remain a

potential research problem. Emerging technologies such as NVIDIA’s NVLink [108] and AMD’s

Infinity [71] can improve the data transfer rate between the CPUs and the GPUs. However, there is

a lack of details on how to integrate these high-bandwidth interconnects to existing GPU hardware.

Analyzing how these technologies operate, and providing a detailed study of their potential benefits

and limitations is crucial for the integration of these new technologies in GPU-based systems.

Aside from techniques that utilize new technologies, architectural techniques can also mitigate

the long data transfer latency between CPU memory and GPU memory. We believe that methods

such as preemptively fetching the data of potential pages or proactively evicting potentially unused

data in GPU memory can be effective in reducing the performance impact of demand paging.
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9.1.3. Providing an Optimal Method to Concurrently Execute GPGPU Applications

While this dissertation allows applications to share the GPUs more efficiently by limiting the

memory interference, how to schedule kernels and how to map these kernels to GPU cores remain

an open research problem. In this work, we assume 1) an equal partitioning of GPU cores for

each GPGPU application, and 2) every application is scheduled to start at the same time. Because

applications have a different amount of parallelism as well as bandwidth demand, the optimal

number of GPU cores that should be assigned to each application varies not only across different

applications, but also across different workload setups.

As a result, providing an optimal method to manage the execution of GPGPU applications on

GPU-based systems is a very complex problem. However, we believe that using the knowledge of

the resource demand of each application between system software and the GPU hardware can sig-

nificantly reduce the complexity of the scheduler. Information such as the amount of thread-level

parallelism, the expected amount of data parallelism, the expected memory usage, cache locality,

memory locality, etc. can be used as hints to assist in providing desirable application-to-GPU-core

mappings and kernel scheduling decisions. In this dissertation, we provide several observations

regarding GPGPU applications’ characteristics that might be useful for assisting the system soft-

ware to provide better mapping and scheduling decisions (e.g., memory allocation behavior, warp

characteristics).

9.2. Final Summary

We conclude and hope that this dissertation, with the analyses of memory interference and

mechanisms to mitigate this memory interference, enables many new research directions that fur-

ther improve the capability of GPU-based systems.
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Other Contributions by the Author

During my Ph.D., I had opportunities to be involved in many other research projects. While

these projects do not fit into the theme of this dissertation, they have helped me tremendously in

learning an in-depth knowledge about the memory hierarchy as well as the GPU architecture. I

would like to acknowledge these projects as well as my early works on Network-on-Chip (NoCs)

that kicked start my Ph.D.

My interest in studying memory interference in the memory hierarchy starts from the interests

in Network-on-Chip. I have an opportunity in collaborating with Kevin Chang and Chris Fallin on

two power-efficient network-on-chip designs that focus on bufferless network-on-chip: HAT [61]

and MinBD [100]. In addition, I have authored another work on a hierarchical bufferless network-

on-chip design called HiRD [34, 35] and have released NOCulator, which is the simulation infras-

tructure for both MinBD and HiRD [1]. All these works focus on mechanisms to improve power

efficiency and simplifying the design of NoCs without sacrificing system performance. I also have

an opportunity collaborating with Reetuparna Das on another work called A2C [81], which studies

the placement of applications to cores in NoCs. A2C allows operating systems to be able to place

applications to cores in a way that minimize interference, which is also the main theme in this

thesis.

In collaboration with Vivek Seshadri, I have worked on techniques to allow in-DRAM bulk

copy called RowClone [331].

In collaboration with Donghyuk Lee, I have worked on a study that characterizes latency vari-

ation in DRAM cells and provides techniques to improve the performance of DRAM by incorpo-
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rating latency variation [214]

In collaboration with Justin Meza and Hanbin Yoon, I have worked on techniques to manage

resources for hybrid memory that consists of DRAM and Phased changed memory (PCM) [394].

In collaboration with Nandita Vijaykumar, I have worked on a technique that allows better

utilization of GPU cores called CABA [378]. CABA uses a technique similar to helper threads in

order to improve the utilization of GPUs.

In collaboration with Onur Kayiran and Gabriel H. Loh, I have worked on a technique that

manages GPU concurrency in a heterogeneous architecture in order to reduce interference [191].

In addition, I also worked on a GPU power management technique that turns down datapath com-

ponents that are not in the bottleneck [190].
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