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Project Summary

This project proposes manifest security as a new architectural principle for secure extensible systems. Its re-
search objectives are to develop the theoretical foundations for manifestly secure software and to demonstrate
its feasibility in practice.

Manifest security applies to extensible software platforms—software systems that can be customized by
installing third-party extensions. The goal of manifest security is to address two fundamental problems in
this domain, both stemming from the need to protect the platform from untrusted and potentially malicious
extensions. Useful software extensions often require access to system resources or sensitive information,
yet permitting unrestricted access opens the possibility for abuse. It is therefore necessary, first, to specify
policies about what resources an extension may use and how it can handle sensitive data; second, the platform
must also include an effective mechanism for enforcing such policies. The critical components missing from
existing architectures are thus (1) a general, practical means for users to specify security policies about how
extensions are permitted to behave, and (2) a way of determining whether a given extension (which may be
malicious) actually meets the desired policy. Manifest security addresses both of these issues.

Our formulation of manifest security introduces a novel high-level logical specification language, en-
compassing both authorization properties (to deal with access control) and information-flow properties (to
protect confidential information and restrict the use of sensitive data released to the extension). Adherence
to specifications is enforced by a combination of static and dynamic methods, and trustworthiness of the code
is established by the explicit representation and verification of formal proofs. Cryptographic primitives form
the substrate upon which the enforcement mechanisms are implemented, and they are coherently integrated
into the semantics of the programming language used to implement extensions.

The primary research activities to be undertaken during the proposed four-year effort are:

• Developing a formal security logic that permits mathematically precise formulation of security policies,
including access control and information flow properties. This logic can be used to ensure that formal
security policies are consistent with informal security expectations, thereby enabling tools for security
policy analysis and certification.

• Designing, implementing, and disseminating a proof-carrying run-time system and a security-typed
programming language in which to build manifestly secure applications. The run-time system will
be built on the Firefox JavaScript API using proof-carrying authorization to enforce access control
restrictions. The security-type system will incorporate proofs in security logic so that compliance with
the security policy can be ensured by a combination of proof checking and type checking.

• Formalizing and analyzing the metatheory of the security logic and the security-type system for the
programming language using the Twelf logical framework. Metatheoretic properties include the consis-
tency of the security logic, and safety and non-interference properties of the programming language.

• Evaluating the usability of these technologies by constructing and disseminating several extensions, such
as a password manager extension for Firefox, written in the security-typed programming language.
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Intellectual merit. Realizing manifest security requires a novel synthesis of techniques from logic, pro-
gramming languages, and cryptography. The activities outlined above will advance the understanding of
formal security policies and their enforcement, push the boundaries of mechanized reasoning about com-
puter infrastructure, and lead to a new, more secure programming model.

Broader impact. Because extensible systems are in widespread use (e.g., in web browsers, office software,
media players, games, virtual communities, and operating systems) the concept of manifest security has
significant potential for broad impact. Rigorous verification methods based on logic and type theory are
increasingly important to the software industry; the project advances the use of these methods to ensure
security. The participants have an established record of fostering education in the field through writing
textbooks, developing new classes and course materials at their universities, and organizing summer schools
for students throughout the world. The project will also employ undergraduate researchers through direct
funding and the NSF Research Experience for Undergraduates program. Both participating departments
have vibrant organizations supporting and promoting women in computer science, and we will work toward
involving women in our project at both the undergraduate and graduate level.

1 Overview

Extensible software platforms—software systems that can be customized or modified by installing third-party
extensions—are widely used. Familiar examples include web browsers, media players, office software, e-mail
clients, online games, and virtual communities; even operating systems are commonly extensible via device
drivers and custom kernel modules.

Although web browsers, games, and operating systems are substantially different kinds of software,
a common fundamental tension in their design is the need to protect against malicious code while still
allowing third-party developers to contribute useful extensions. The problem is that for an extension to do
useful work, it might need access to resources that can potentially be misused; a malicious extension could
potentially be very dangerous. For example, a password manager extension for a web browser might be given
access to sensitive passwords stored on the local machine and also be permitted to transmit them over the
network. Such an application would have sufficient capabilities to violate privacy restrictions, yet a blanket
prohibition of access to sensitive data or to the network would render it unusable. As another example,
DRM software might require access to both local files and the network to download music while enforcing
usage restrictions.

To protect against malicious extensions, the security architectures for these kinds of extensible systems
have adopted a number of defensive strategies. One defense is the use of bytecode interpreters and virtual
machines to isolate extension code from the rest of the system. Examples include the Java Virtual Machine
(JVM) [76], Microsoft’s Common Language Runtime (CLR) [52], the Firefox JavaScript interface [53], and
scripting languages for virtual communities such as Second Life [72]. Another approach, used by JavaScript
1.1 and Perl, is to enable a “taint checking mode” that tags data from untrusted sources and prevents it from
propagating to security-sensitive operations such as system calls. These techniques protect against low-level
problems like buffer overflows and format string attacks, but they do not address higher-level policy issues
like the access-control problem for the password manager.

Another defense against security violations is to cripple the capabilities of extensions to ensure that
they cannot do anything malicious—for example, by using run-time checks to deny access to file system or
networking services. While this can be a useful strategy in many situations, it also imposes severe limits on
what can be done in an extensible architecture. A better alternative is to identify “trustworthy” extensions
by using cryptographic techniques to authenticate the application code; signed code might be granted more
capabilities than unsigned code, presumably because the signer of the code could (at least in principle) be
held accountable for problems caused by the extension. Both the JVM and the CLR support code signing
for privileged code.

When combined, these methods go a certain distance towards increasing confidence in security applica-
tions, but they are clearly not enough. The Sony DRM fiasco described by Halderman and Felten [36] is
one good example of what can go wrong, and there are numerous other examples of extension vulnerabilities
(in plugins, device drivers, etc.) to be found in the US-CERT Vulnerability Notes Database [79].Even with
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Figure 1: Manifest Security Architecture

the best intentions, extensions developed using the current technology can malfunction, leak private data, or
corrupt resources in ways unanticipated by either the developer or the end user. Moreover, the end user has
little control over security policies—the current means of specifying security policies are ad-hoc and informal
and there is no way to check whether a given extension actually complies with the desired policy, even if the
vendor claims it does! The critical components missing from the security architectures of extensible systems
are (1) a general, practical means for users to specify security policies about how extensions are permitted
to behave, and (2) a way of determining whether a given extension (which may be malicious) actually meets
the desired policy. These fundamental problems are what we intend to address with this research project.

Manifest security. We propose a radically new approach to secure extensible system architectures that
begins instead from high-level logical specifications, encompassing both authorization properties (to deal
with access control) and information-flow properties (to protect confidential information and restrict the
use of sensitive data released to the extension). Adherence to specifications is enforced by a combination of
static and dynamic methods, and trustworthiness of the code is established by the explicit representation
and verification of formal proofs. Cryptographic primitives form the substrate upon which the enforcement
mechanisms are implemented, and they are coherently integrated into the semantics of the programming
language. In our approach, security properties are made manifest in formal proof objects, just as the truth
of a mathematical theorem is manifest in its proof. We therefore refer to our approach as manifest security.

The architecture of a manifestly secure framework is depicted in Figure 1. The central concept is the
security policy, which consists of a collection of axioms written in a formal security logic. Authorization
and information flow properties are expressed by formal proofs in security logic that may be mechanically
checked for validity. Security policies are themselves subject to precise analysis and verification to ensure
that they capture informal security requirements. Reference monitors for security-sensitive resources require
a formal proof that access is permissible; a proof checker for security logic embedded in the resource monitor
ensures the validity of the proof. Programs in a security-typed language contain evidence of compliance with
the security policy in their types, so that they may be verified prior to execution to ensure that the policy
is not violated.

There are many benefits to manifest security. One is a clear separation of policy from implementation,
with an enforceable relationship between the two in an actual running system. Another benefit is scalability
and practicality—just as type-safe languages provide a scalable, practical way for programmers to rule
out buffer overflows and memory errors, the type system used in a manifestly secure language will give
programmers a practical way to construct secure software. Furthermore, the formal, logical expression of
policies provides an easy path towards their mechanical analysis, verifying intended consequences of policy
specification and ruling out unintended ones. Finally, manifest security is expressive, flexible, and open-
ended, inheriting these properties from its foundations in logic and formal proof.

Realizing manifest security requires fundamental advances at the interfaces between logic, cryptography,
and programming languages. The expected contributions are:
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1. We will develop formal security logics that permit mathematically precise formulation of security
policies, including access control and information flow properties. To ensure that formal security
policies are consistent with informal security expectations, we will develop logical techniques for security
policy analysis and certification. Our plans are described in more detail in Section 2.1 below.

2. We will develop a proof-carrying run-time system and a security-typed programming language in which
to build manifestly secure applications. As a testbed for evaluation and dissemination of real extensions,
we will deploy this run-time system and programming language in the context of the Mozilla/Firefox
web browser. The run-time system will be built on the Firefox JavaScript API, using proof-carrying
authorization [10, 12] to enforce access control restrictions. The security-type system will incorporate
proofs in security logic so that compliance with the security policy can be ensured by a combination
of proof checking and type checking. More details are given in Section 2.2.

3. We will formalize and analyze the metatheory of the security logic and the security-type system for the
programming language. This includes properties such as the consistency of the security logic, and safety
and non-interference properties of the programming language. We will use the Twelf logical framework
to formalize the logic and language, and mechanically to verify its metatheory. See Section 2.3.

4. We will evaluate our results by rewriting existing Firefox extensions in our security-typed programming
language and constructing our own from scratch; planned extensions include a password manager and
a “web recorder” and bookmark manager. We will disseminate these extensions and the other software
artifacts we construct (such as the extension platform itself and our security policy analysis tools) under
an open-source license. An additional mode of evaluation will be using our logic and extension platform
in teaching both undergraduates and graduate students from outside the project. See Section 2.4.

We assume, throughout, that we can trust the machine on which our software platform is running (the
hardware and OS, the implementation of the web browser we are extending, etc.). However, we do not trust
the developers or distributors of extensions: we assume that an attacker can present arbitrary programs in
our security-typed language, which we must execute if they pass our verifier. Moreover, we assume that the
attacker controls the network and most remote hosts, but that certain designated hosts can be trusted, as
long as we communicate with them securely. This enables more interesting extensions. Section 2.5 offers
additional comments about the attack model we have in mind and lists some issues that are left outside the
scope of the proposed research.

For the sake of focus, we are concentrating our implementation efforts on developing a secure extension
architecture for a particular web browser; this will allow us to demonstrate and disseminate concrete results
during the four year grant period However, we expect the fundamental contributions of the research will be
broadly applicable to extensible software architectures.

2 Proposed Work

Our approach to building application extensions with manifestly secure access to private information is
founded on logic, type theory, and mechanically verifiable proofs. This section discusses in more detail the
technical challenges we must face in each of these areas and our plans for addressing them. For the sake of
exposition, this section divides the work into several distinct strands, but in practice these strands will be
highly interdependent: we expect to pursue all the strands in parallel, at both project sites, with all of the
PIs contributing (to a greater or lesser extent) to every activity.

2.1 Security Policies: A Linear Logic of Authorization and Knowledge

The crux of manifest security is the use of a formal security logic to express security policies and verify
compliance with them. The assertions, or judgments, of the logic make claims about principals and resources,
including access control judgments, such as “principal A may access resource R”, and information flow
judgments, such as “principal A may know information I.” (Here principals refer to cryptographic keys
obtained at run time, and resources are references to run-time data structures carrying information.) A

4



security policy consists of a logical theory, a collection of axioms and inferences that specify in declarative
form the conditions under which access control and information flow judgments may be derived. Security
restrictions are enforced by a combination of dynamic and static methods. Dynamically, a reference monitor
embedded in our run-time system requires a formal, mechanically checkable proof of an appropriate assertion
of the security logic. the reference monitor employs a proof checker to verify that the purported proof is
valid according to the security policy. However, as we shall argue in Section 2.2, we can sometimes verify
statically—before the program is executed—that such a proof will exist, in which case we do not need to
check it at run time.

We begin by decomposing the problem into authorization and information flow. Authorization answers
the question of which principals are permitted to access which resources. Information flow specifies the
permissible consequences of properly authorized access.
Authorization policies. We want a logic in which one can reason about whether a principal should
have access to a resource. Logics for reasoning about access control go back to work by Abadi et al. [6, 2].
However, prior work does not completely satisfy our design criteria—in particular, generality and extensibility
are difficult to combine with the ability to reason mechanically about policies as a whole (see the related
work discussion below).

Briefly, a principal K should be granted access to a resource R exactly if there is a proof of may-access(K, R).
We may understand the meaning of this proposition by considering the pertinent judgments and proof
rules [30, 49, 63]. The most basic judgment is that of the truth of a proposition, written as A true. We
furthermore need a judgment of affirmation, written K affirms A, expressing a policy of K. For example,
K affirms may-access(L,R) is a policy statement by principal K that L may access resource R. We say
that K controls resource R if K affirms may-access(L,R) implies the truth of may-access(L,R). Therefore,
control of a resource is expressible as a logical implication. The final ingredient is the standard notion of
hypothetical judgment: Γ =⇒ A true or Γ =⇒ K affirms A, where Γ is a collection of assumptions of the
form B true or K affirms B.

We now sketch a sequent calculus for reasoning about authorization. We begin with the so-called judg-
mental rules, which explain the meaning of the judgments:

Γ, P true =⇒ P true

Γ =⇒ A true

Γ =⇒ K affirms A

The first rule expresses that from the assumption P we can obtain the conclusion P ; the second, that when
A true any principal K is prepared to affirm A. (Since A is true and has an explicit proof, there is no reason
for K to deny it.) Conversely, if K affirms A, then A is true from K’s point of view—i.e., we may assume
that A is true while establishing an affirmation for the same principal K:

Γ, A true =⇒ K affirms C

Γ,K affirms A =⇒ K affirms C

In order to use affirmations within propositions (to form policies that require the conjunction of two
affirmations, for example), the logic must internalize them as propositions. The syntax 〈K〉A packages an
affirmation judgment as a proposition:

Γ =⇒ K affirms A

Γ =⇒ 〈K〉A true

Γ, A true =⇒ K affirms C

Γ, 〈K〉A true =⇒ K affirms C

An authorization policy is now just a set of assumptions Γ. An authorization query is a conclusion,
usually of the form K affirms may-access(L,R) where K controls resource R. Principal L will be granted
access if there is a proof of the query from Γ. Our authorization architecture will follow proof-carrying
authorization [10, 12], wherein L supplies such a proof explicitly for validation by a reference monitor
implemented in the run-time system. At the leaves of these proofs are digitally signed certificates that
witness the policy statements of the principals as collected in Γ.

All this raises several issues, such as how to concretely express policies and proofs, how to assemble
proofs, and how to verify their correctness. Our architecture will use a logical framework [64] that is
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explicitly designed for the representation of logics and proofs. This design makes the architecture inherently
open-ended: we can enrich our logic with further connectives while still using the same implementation.
Furthermore, we can formally reason about the logic and about specific policies using the meta-theoretic
reasoning capabilities of the framework. This is useful, for example, to establish that a security policy is
consistent.
Information-flow policies. Authorization policies govern which principals are allowed to access which
resources, but they do not specify what those principals may do with the data once they have permission to
access it. Information-flow policies, in contrast, restrict the propagation and dissemination of information.
We capture this logically by specifying in the policy what principals may know. In other words, we need to
develop an epistemic logic appropriate for this setting.

It is well-known that, in general, information flow is impossible to accurately verify dynamically, es-
sentially because it is a property of all executions of a program rather than a single one [50]. In the
primary implementation scenario we are envisioning—extensions written in our language for an extensible
web browser platform—we can analyze programs statically to check information flow properties against the
policy specification. This is complemented by some dynamic checking, obtaining overall guarantees from a
combination of the two. For example, in a password manager we may wish to verify that the stored password
P for a given site (represented as a principal S) will only be posted to that particular site. The post request
is accompanied by a formal proof that S may know P .

In order to define a logic of knowledge, we need a new judgment, K knows A, where A is a proposition.
From a policy perspective, it means that K may know A; as an assumption we read it as “if K knows A
then . . .”. What are the intrinsic (that is, policy-independent) logical properties of knowledge? Clearly,
if K knows A, then A should be true. Consequently, any judgement J entailed by A true is entailed by
K knows A (below, left rule):

Γ, A true =⇒ J

Γ,K knows A =⇒ J

Γ|K =⇒ A true

Γ =⇒ K knows A

The converse is false, and this is the very essence of secrecy: there are many true propositions that K does
not (and should not) know. We establish that K may know A by showing that K can infer A using only
its own knowledge. We formalize this using the restriction operator Γ|K , which erases from Γ all hypotheses
not of the form K knows B (above, right rule).

As before, we can internalize the judgment K knows A as a proposition, written [[K]]A:

Γ =⇒ K knows A

Γ =⇒ [[K]]A true

Γ,K knows A =⇒ J

Γ, [[K]]A true =⇒ J

State and stateful policies. At this point the logic can specify and reason about authorization and its
information flow consequences. However, the logic as we have described it so far is monotonic: during a proof
we can establish more affirmations and infer additional knowledge for the principals, but we can never take
away knowledge. Consequently, the system can not model consumable resources, nor systems with essential
state changes. In order to capture such systems, it is necessary to move to a linear logic [31]. This has
recently been used in the security domain to represent one-time permissions in various forms [11, 28, 16].

Space permits only the briefest sketch of the logical system with linearity that we have in mind. We
distinguish between persistent assumptions (including all the ones discussed above) and linear assumptions,
which must be used exactly once in a proof. Such assumptions can model either consumable, one-time
certificates (for linear affirmations), modifiable data, or the possession of a resource (for linear knowledge).
For further background and discussion on a linear logic including both affirmations and knowledge, see [28].
An example policy. To illustrate some of these ideas, consider a simplified version of the password
manager example. The principals are the user U , the executing password manager, the sites (URLs) S to
which the passwords apply, and some secure, persistent storage F .

A first version of the policy does not allow the user to change the password:

• If U affirms that its id and password for URL S are I and P , and if the password hint is P ′, then the
filesystem F may know this information (presumably the password is stored in encrypted form, so no
one else can learn this):
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〈U〉id and passwd(S, I, P, P ′) ⊃ [[F ]]〈U〉id and passwd(S, I, P, P ′)

• If the filesystem has stored U ’s password information for site S, then the extension may post this
information to S (presumably along a secure channel):

[[F ]]〈U〉id and passwd(S, I, P, P ′) ⊃ [[S]]password(I, P )

• U can see its id and password hint and the length of the password, but not the password itself:

[[F ]]〈U〉id and passwd(H,N, P, P ′) & length(P,K) ⊃ [[U ]]id and hint(H,N, K,P ′)

Using linearity, we can refine the above policy so that it that permits the user to change passwords. The
policy clause below requires that the user confirm the old password:

[[F ]]〈U〉id and passwd(S, I, P, P ′)⊗ 〈U〉old id and passwd(S, I, P )
⊗ 〈U〉new id and passwd(SN, IN, PN,PN ′) ( [[F ]]〈U〉id and passwd(SN, IN, PN,PN ′)

Policy management. The proposed logic provides considerable expressive power to define appropriate
policies for various types of applications, and the proposed work on policy analysis (Section 2.3) will provide
a rigorous basis by which to analyze the consequences of policies. However, it is unrealistic to expect that a
typical user of the system will be able to utilize these tools directly. In practice, policies will be devised and
analyzed by the cognoscenti, which raises the natural question: how can typical users choose good policies?

We cannot solve this problem through a collection of default policies, for two reasons. First, the universe
of possible extensions is open-ended. Each class of applications (e.g., password manager, tax preparer, etc.)
requires a distinct policy, and and one clearly cannot provide, a priori, an appropriate policy for every such
class that will ever be conceived. Second, for some classes of applications, it may be controversial what the
appropriate policy is. For example, there will likely be considerable controversy over what privileges should
be afforded to DRM software or other “benign spyware.”

We envision a solution reminiscent of PGP’s web of trust model [83]. A user will specify a person whom
he or she trusts to devise appropriate security policies. That person devises a collection of policies and
digitally signs them. When the extension manager needs to know the policy for an application class, it can
automatically fetch the policy and verify its digital signature, before checking that the application satisfies
the policy.

In fact, the web of trust can be represented entirely within the logic, with no need for external mechanisms.
For example, if A trusts B to devise appropriate policies for the application class C, we can state the meta-
policy:

∀P ∈ C. 〈B〉permitted(P ) ⊃ 〈A〉permitted(P )

This meta-policy states that if a program P belongs to the class C, and B affirms it should be permitted to
execute, then A also affirms it is permitted to execute.
Contributions. The main contributions of this thread of research may be summarized as follows: (1)
We will design and implement a policy logic incorporating affirmation (for reasoning about authorization),
knowledge (for reasoning about information flow), and linearity (for consumable authorities and resources),
combining them into a coherent foundation for security policy specification. (2) Following the philosophy of
manifest security, we will formalize the meta-theoretic properties of the policy logic, including cut elimination
and various forms of policy analysis, such as noninterference. In this logic, noninterference theorems take the
form (Γ,K affirms A =⇒ L affirms C) if and only if (Γ =⇒ L affirms C), under various circumstances—for
example, when Γ does not mention K in a negative position and K is distinct from L. This means K cannot
interfere with authorization for L. Part of the novel contribution here will be connecting this characterization
of noninterference to more standard formulations found in the programming languages literature. (3) We will
develop appropriate cryptographic enforcement mechanisms for the linear security logic to account for the
presence of consumable certificates and resources. (The corresponding problem without linearity is relatively
well understood: a statement of the form K affirms A is either directly a digital certificate with contents A
signed by a key corresponding to principal K or else a chain of formal proof steps ultimately relying on such
signed certificates.)
Related Work. Since Abadi et al.’s seminal work [6], there have been numerous proposals for autho-
rization logics [40, 15, 20, 2, 46, 45, 68, 3]. Many of these have different aim and scope from our work
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in that they are designed to capture and reason about existing mechanisms, rather than being based on
purely logical principles. Also, as far as we are aware, none (besides our own preliminary research [29, 28])
have been investigated from the meta-theoretic perspective to prove, for example, cut elimination and the
noninterference theorems that follow from them. Moreover, prior proposals do not integrate reasoning about
knowledge or consumable resources. Another line of related work explores the use of authorization logic for
policy enforcement via explicit proof objects [10, 12, 13, 14] (so-called proof-carrying authorization) with first
steps at exploring the value of linearity to model consumable credentials [11, 28, 16]. Our proposed research
directly builds on this, but takes it significantly further by incorporating knowledge (and thereby information
flow), possession (as linear knowledge), as well as integrating the logic into a complete programming language
as described in the next section. Moreover, much of the past work on proof-carrying authorization has been
carried out in the framework of classical higher-order logic or impredicative type theory, which is inherently
difficult to reason about; our approach will be predicative and constructive. There is also prior research
on using logics of knowledge to specify information-flow policies [60], but that work concentrates mainly on
explaining the relationships among different policies and does not consider the interaction of information
flow and authorization. Another approach is to use a type system for authorization as done, for example,
in the KLAIM system [23]. Manifest security extends this to a much richer and more open-ended policy
language at the cost of more complex enforcement mechanisms.

2.2 A Programming Language for Manifest Security

As a concrete demonstration of manifest security, we propose to build a secure extension architecture consist-
ing of two major components: a proof-carrying run-time system and a security-typed programming language.
Proof-carrying run-time system. As suggested in Figure 1, the run-time system uses proof-carrying
authorization (PCA) [10, 12] to control access to sensitive resources such as files and communication channels.
Access control to such resources is based on the presentation of a formal proof of authority according to
the security policy (as described in Section 2.1). The reference monitor uses a proof checker—which can be
shared among all resources—that is parameterized by the governing security policy to verify the validity of the
proof. For example, a reference monitor for a file F may require of a principal K a proof of may-access(K, F )
as a condition for satisfying a read request.

To permit construction of useful applications, we will build the secure run-time system as a layer on top of
the Firefox JavaScript API. Doing so provides access to the browser context (including cookies, caches, and
passwords), as well as access to a user interface, the ambient file system, and the network. Importantly, the
JavaScript API also provides standard cryptographic services, such as signed digital certificate management,
which are essential for our work. Augmenting this API with proof-carrying authorization provides us with an
access control mechanism that is parameterized by a declarative security policy written in our security logic.
This permits us to experiment with a variety of applications and policies without changing the underlying run-
time. We plan to develop a JavaScript library for the proof-carrying API so that we can build proof-concept
applications at an early stage, and to support development of a security-typed programming language.
Security-typed programming language. The proof-carrying run-time system is sufficient to build
extensions that respect the access control restrictions imposed by the security policy. However, this means
that proofs must be constructed at run-time, and that any errors in the application will only be noted at
execution time, rather than development time. We would prefer to have a language that permits tracking of
dynamic proof obligations at compile time to the extent possible. We may also wish to assign confidentiality
or integrity levels to resources and principals, and impose the requirement that confidential data cannot reach
untrusted principals. Such a restriction amounts to a proof of the absence of a flow of knowledge from one
principal to another. A static approach to policy enforcement is now necessary, because run-time methods
cannot, in general, be used to enforce information-flow restrictions—information flow is a property of the
set of all possible executions of a program [50], and aborting an access may itself reveal information. These
considerations motivate the development of a security-typed programming language that tracks at compile
time the information flow and access control obligations of application code. This language will be executed
on the secure run-time system, either by interpreting it or by compiling it to JavaScript with calls to the
proof-carrying API.

To reconcile static policy enforcement with dynamic authorization and policy manipulation, the type
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system of our language must statically guarantee that run-time authorization proofs are correctly assembled
and supplied. For example, programs written for the extensible architecture may construct proofs in the
security logic at run-time in order to access sensitive resources. These proofs are presented to a reference
monitor as evidence of authority to perform a sensitive operation. However, the consequences of such
sensitive operations must be statically tracked to enforce information-flow policies. Furthermore, access to
additional resources with the same authorization policy should be allowed without dynamic reauthorization.
To verify statically that these programs comply with host policies requires that the construction of proofs
in the security logic be reflected into the static type system, so that type checking involves proof checking.
Consequently, type checking ensures that the run-time checks required to implement the security policy are
properly performed.

The interplay between static and dynamic methods in the security-typed programming language may be
illustrated by two key examples. First, suppose that the reference monitor for a resource, R, requires of a
principal, K, a proof of the proposition may-access(K, R), in order for K to access R. To track the run-time
requirement of the reference monitor in the type system, we assign the following type to the read primitive
associated with resource R:

∀K::Principal.∀P ::Proof(may-access(K, R)).string @K

This type states that for a principal K to access R it must present the required proof, and that the resulting
string (say) is controlled by the principal K. This means that the string was computed on behalf of K, and
may only be used by K, or those K ′ authorized to act on K’s behalf. Assigning “control” of a value permits
us to track and enforce information flow constraints. For example, principal hierarchies can be expressed
by logical implications of the form may-access(K, R) ⊃ may-access(K ′, R). Possession of a proof of such a
proposition amounts to delegation of authority to access R from K to K ′. Similar methods may also be used
to model robust declassification schemes [82, 56].

The proofs required by the type system are constructed from the security policy, together with “primitive
proofs” that arise from the acquisition of credentials at run time. This can be neatly modeled in the security-
typed language by a primitive of the form

case dynamicallyAuthorized may-access(K, R) {
ok(u :: may-access(K, R)) ⇒ e1

| fail ⇒ e2

}

which, at run-time, seeks authority for K to access R using a conventional security protocol, such as a
password check. If the attempt succeeds, control passes to e1 in the scope of a variable u representing a
proof that K may access R. This proof may be used in e1 to validate calls to a reference monitor for R,
as described above. If the attempt fails, control passes to e2 without such a proof, which must somehow
recover from the failure. In this manner dynamic checks based on conventional cryptographic methods give
rise to proofs that are used in our security-typed programming language.

What makes the design of such a language challenging, is that, for such policy queries to be useful, the
static analysis of the program must take into account the results of the query. Thus, dynamicallyAuthorized
cannot simply be a library routine: it interacts with typechecking in nontrivial ways, as the branch e1 above
is type checked under the (static) assumption may-access(K, R). There is a large design space here that
trades off flexibility of the language with feasibility of typechecking. One issue is how “first-class” the
query arguments, like may-access(K, R), should be. Another question is whether programs should be able
to issue new policy statements, and, if so, how to represent and control this dynamic variation of authority.
Finally, we need to ensure that these dynamic checks themselves cannot be used as information channels
for implicit flows. We have already begun to explore this design space; see, for example, the work by Tse
and Zdancewic [77, 78], which addresses some of these concerns in a domain where the security policy logic
is quite restricted. The authorization logic proposed here can be seen as a natural generalization of that
special case.

Proofs in the security logic are, in this manner, integrated with types, so that type checking involves proof
checking. This means, however, that the programmer is responsible for constructing the required proofs,
which may be tedious in practical situations. For this reason we anticipate that it will be necessary to
develop a type inference algorithm that integrates some forms of proof search so that proofs may, in simple
cases, be found automatically.
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To complete the story, we must connect the type system of the programming language to the poli-
cies expressed in the logic described in Section 2.1. In previous work on security type systems [70], the
information-flow policy that programs satisfy is embedded in the types of the program itself: One must
examine types of the top-level program, APIs, global variables and other forms of I/O to determine what
sort of information-flows are permitted or prohibited.

In our approach, we propose to use the logic of knowledge described previously to specify information-
flow policies separately from the source code of an extension. We do so by ensuring that the type of each
computation describes the information-flows effects that may occur during its execution. If only permissible
information flows appear in the effects of an extension, i.e. if the information-flow policy entails all of the
effects that may be caused by the extension, then we know that the extension is secure.

To compute these effects, we ascribe a type signature to the proof-carrying API that mentions statements
drawn from the security logic. These types must accurately describe any information flows that occur.
Returning to the password manager example from before, we might have a post function corresponding
to the HTTP “post” command that sends data to a server at site S. Its type schema might be: post :

Data(p)
[[S]]p−→ unit. This type says that post is parameterized by a site S and that the data being sent to

S carries information about the proposition p. The function type includes in its effect that the site S now
knows p, as indicated by the notation [[S]]p. In particular, if the proposition p is password(I,P), then the
type of post indicates that S has learned the password as a result of its execution. In this manner, type
checking can be used to ensure that a program conforms to restrictions on the flow of knowledge specified
in the security protocol.

One challenge with respect to this aspect of the language design is sharing names of objects between the
policy and program interface. Another challenge is tracking the correspondence between propositions (like p
in the example above) and the data in the type system. A third challenge is dealing with implicit information
flows—some care must be taken to ensure that information about the calling context of the function doesn’t
leak inappropriately.
Contributions To summarize: (1) We will develop a Proof-Carrying Authorization API for JavaScript
and the accompanying run-time infrastructure necessary to implement the API. (2) We will develop a pro-
gramming language whose information-flow policies are specified in a way compatible with the authorization
logic, following the ideas sketched above. (3) We will develop techniques to reconcile the static parts of the
information-flow policy specified in the program text itself with the dynamic authorization policies that are
enforced by the run-time system. The connection between static and dynamic policies will take the form
of programming language constructs (like the dynamicallyAuthorized operation described above) whose
static typing rules reflect the results of dynamic checks. In particular, such operations are likely to return
proofs witnessing the authority so obtained. (4) We will develop type- and proof-inference algorithms for this
language, to reduce the amount of explicit proofs that programmers need to deal with directly. Section 2.4
describes our implementation plans.
Related work Language-based security has a long history [70]; here we survey only the most closely
related work. A good deal of recent research tackles the problem of making language-based information
flow enforcement more practical [69, 18, 48, 71]. Our own work on declassification [82, 81, 47, 56] and
dynamic security policies [77, 37, 78] will certainly influence the design of the proposed language; the novel
contributions proposed here involve the use of mechanical theorem provers (see Section 2.3 below) and the
use of a much more general policy logic. With respect to combining programming language type systems
with authorization logic, Chaudhuri and Abadi’s recent work on combining file-system access controls with
typechecking [17] is similar in spirit to our combination of static and dynamic enforcement. Abadi has also
studied access control in the dependency core calculus [4], which is closely related to our own authorization
logic [29]. However, his work considers only the “affirmation” components of the logic we have proposed—the
novel contributions here are linearity and the “may know” modality. Two prominent implementations of
languages with support for information-flow policies are Jif [55, 54] (based on Java), and FlowCaml [66, 73]
(based on OCaml). Both languages support fairly rich label models, but neither is as general as the logical
approach proposed here. Of the two, Jif supports some limited forms of dynamic policy queries through its
actsFor tests. We are not aware of any implementations that carry our idea of manifest security through
all levels of the system, though several other projects have applied combinations of programming language
tools or logical specifications to achieve high-assurance implementations of secure systems. Chothia, Duggan,
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and Vitek’s KDLM system [19] provides a programming language that synthesizes cryptographic protocols
based on the policy specified in the language. Fournet, Gordon, and Maffeis [27] designed and implemented
a variant of the spi-calculus [1] with a type system capable of enforcing high-level authorization policies
described as simple logic programs. Their language extends earlier work by Gordon and Jeffrey [33, 32, 34].

2.3 Reasoning About Policies and Languages

All the proposed work discussed thus far relies on the soundness of a logic or language. Compliance with
a formal security policy is meaningful only to the extent to which the policy actually means what it seems
to mean. If the basic logic is inconsistent, or if the policy is defective in some manner (either by saying too
much, thereby preventing useful work, or too little, thereby permitting an attack), the fact that a program
complies with the policy becomes useless. Therefore, it is necessary to prove that the logic is consistent, and
that a policy of interest is coherent. Similarly, that a program passes the type checker for a security-typed
programming language is meaningful only if the type system is sound, and therefore it is necessary to prove
the soundness of our languages’ type systems.

Thus, an essential component of the work will be the formal analysis of the metatheory of the logic,
policies, and programming languages we develop. For the logic, the principal metatheoretic results we will
obtain are the cut elimination property, and, largely as a corollary, the logic’s soundness relative to a formal
semantics. Similarly, for the programming language(s), the principal metatheoretic results will be soundness
of the type system and non-interference. For policies, the metatheory will consist of the analysis of policies
(using the logic’s cut elimination property) to show exactly what they entail.

Experience has shown that formal metatheory for full-scale, fully featured languages (or logics) are
infeasible without machine assistance. This difficulty arises for two related reasons. First, distinct language
features that are usually studied in isolation rarely turn out to be truly orthogonal, resulting in pervasive
complexity. For example, even so simple a feature as a mutable store interacts in some manner with nearly
every construct in the language. Second, the sheer number of cases for each lemma is unmanageable for a
full-scale language. Even if a hero theorist were able to develop such a soundness proof, and do it correctly,
it would be vanishingly unlikely that anyone else would ever read and verify the entire proof. It is therefore
our aim that our proofs of the metatheoretic properties of logics, policies, and languages be done in machine-
checkable form to the greatest extent possible.

Moreover, there is an additional advantage that we can realize by proving the soundness of our security-
typed languages in machine-checkable form. By doing so, we can allow the automatic integration of new
programming languages into our architecture. If a software developer is unsatisfied with the standard
programming languages available, she can invent her own and give a machine-checkable proof of its soundness.
Our architecture can check that proof automatically, and (assuming it passes) add the new language to its
set of acceptable languages.

To carry out this mechanized metatheory, we propose to use an automatic proof assistant to formalize
languages, policies, and the underlying logic and to verify their security properties to the greatest extent
possible. The tool that seems most promising for this purpose is Twelf [64], which has already been used
in a number of similar, large-scale experiments such as Foundational Proof-Carrying Code [51, 9, 8], Typed
Assembly Language [21, 22], and Standard ML [43]. We propose to investigate how Twelf can be used to
verify the meta-theory of our languages, which may in some cases require us to develop new, more syntactic
and scalable proof methods or to enrich the framework, for example, to include linearity.
Contributions There are four essential components to making the meta-properties of our logics and
languages manifest: (1) We will formalize our logics and languages, including their rules of proof and
computations. Such formalization, besides forming the basis of our mechanical development, will also serve
to precisely specify the semantics our logics, languages and security model. The necessary science for
such formalizations is fairly well-understood for languages with sequential semantics and hygienic binding
structure. (2) We will develop and mechanically validate proofs that the semantics of our languages satisfy
the type soundness property. As discussed below, the technology to do so in general is now entering the
state of the art. In our setting there exist several new challenges that will require new contributions.
The first is scale; mechanical verification has yet to be applied in to any language as large as proposed
here. (The largest existing application, to Standard ML [43], involves none of the complexity of security-
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type languages.) Beyond addressing scale, we must develop proof techniques that are effective for linear
and other substructural type systems, and also ones appropriate to any new representation techniques we
develop. We envision not only new strategies for using existing tools, but also new tools, such as a proof
assistant based on CLF [80]. (3) We will develop and mechanically validate proofs about the consistency of
our logics, such as cut elimination and strengthening. In this area we will face challenges similar to those for
type soundness. (4) We will develop and mechanically validate proofs that our languages’ type system imply
security policies about distributed information, such as noninterference. This area poses special challenges;
part of the proposed research will be to determine the best way to set up such proofs. There are two
established techniques for showing noninterference properties. The first, based on logical relations [74, 5],
does not scale well to full programming languages, which include features such as mutable state. Furthermore,
proofs using this technique cannot be naturally represented in some proof assistants. The second, based on
a non-standard operational semantics [67, 57], is more compatible with programming language features, but
leads to a large number of cases and syntactic complications. At present, this second method seems to be
the more promising approach, but we will need to investigate automation techniques to make it feasible.
Related Work There is a growing body of literature on using mechanized theorem provers for verifying
the metatheory of programming languages. The principal tools in active use for this purpose are Coq [38],
Isabelle/HOL [59], Twelf [64], HOL [35], ACL2 [41], and PVS [61]. All of these tools, with the exception
of Twelf, are fully general theorem proving systems capable of formalizing a broad body of mathematics,
including the mathematics needed for programming language metatheory. Twelf, by contrast, is specifically
tailored to the definition and mechanized analysis of formal systems, including logical systems and program-
ming languages. Considerable successes have been achieved using both approaches. As a recent benchmark
of the capabilities of these systems it is useful to mention the solutions to the POPLmark Challenge posed by
Pierce, Weirich, Zdancewic, and their collaborators. These solutions are all available from the POPLmark
web site [65], and include submissions and by Harper, Crary, and Ashley-Rollman, using Twelf; by Leroy and
Vouillon, using Coq; and by Berghofer, using Isabelle/HOL. Beyond POPLmark, researchers have achieved
substantial successes in the verification of safety and security properties of programming languages, notably
Nipkow, et al.’s work on Java and Jinja [58, 42], and Lee, Crary, and Harper’s work on Standard ML [43].
Appel’s Foundational PCC Project at Princeton [51, 9, 8] has achieved substantial progress on developing
the metatheory of low-level assembly languages suitable as target languages for certifying compilers, as has
Crary’s work on the TALT framework developed at Carnegie Mellon [21]. More recently, Leroy has mechani-
cally verified a back-end for a C compiler [44]. Noninterference results for security type systems and analyses
have also been mechanically verified before: David Naumann verified a secure information flow analyzer
for a fragment of the Java language [57] and Jacobs, Pieters and Warnier [39] showed noninterference for a
simple imperative language in the PVS theorem prover. Also Strecker showed noninterference for MicroJava
in Isabelle/HOL [75]. These results differ from our project in terms of scale—we intend to formalize the
properties of a much larger programming language with a much richer policy logic.

2.4 Evaluation and Dissemination

Our aim in this project is to develop all necessary mathematical and logical foundations and supporting
implementation techniques to create manifestly secure extension platforms in a range of different settings.
To demonstrate success, we must show several things. First, the security logic and associated programming
language must be internally consistent and have good meta-theoretic properties (such as cut elimination
and focusing for the logic, type-soundness and non-interference for the language). Second, the programming
language must be rich enough to build a range of applications and easy enough to use in practice that
such applications can be built by ordinary developers, not just trained logicians or programming language
researchers. Third, the security policy language must be expressive enough to capture sensible policies for
these applications and easy enough to use for the people that write these policies. (As discussed above,
these will not necessarily be end users, but rather developers and expert policy analysts, supported by the
policy analysis tools that we will write.) And fourth, there must be no insurmountable engineering problems
involved in deploying this technology in realistic settings.

The first of these criteria—good meta-theoretic properties—will be evaluated by constructing mechani-
cally verified proofs in Twelf as described in Section 2.3. For the others, a concrete demonstration is required.
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To this end, we will (1) construct a concrete instance—a manifestly secure extension framework for the Fire-
fox browser—as described in Section 2.2; (2) use this framework ourselves to build several demonstration
extensions; and (3) train both graduate and undergraduate students from outside the project to use the
framework themselves. In addition we will build a toolkit for establishing properties of policies (such as
noninterference), which can used independently of the specific extension framework since it refers only to
the security logic itself. We will disseminate all these software artifacts under an open-source license.

Firefox should make an excellent testbed for the concepts and technologies of manifest security:it has
an active community of developers implementing a wide variety of extensions—there are dozens available,
providing functionality ranging from streamlining blog edits to managing web-site passwords [26].

Our first concrete goal is to reimplement several of these extensions. Reimplementing existing extensions
gives us both a clear starting point—a well worked-out design serving an established practical need with
real users—and a clear metric of success: whether we can build a new implementation with the same
functionality as the original and with formally specified and verified security properties. These extensions
are fairly complex pieces of code (typically thousands of lines, using hooks into many parts of Firefox’s
core functionality and user interface) and have quite sophisticated authorization and/or and information-
flow requirements. Success in this domain should therefore give us confidence that our techniques can be
transferred to other extensible software platforms.

Each of the extensions we build will consist of two parts: a security policy expressed in our logic and
a program implementing the extension itself, carrying with it enough type information for our verifier to
certify its compliance with the policy. One specific example that we have already discussed is a secure
re-implementation of the default password manager functionality (see Section 2.1 in particular). A more
sophisticated demo in the same domain could be based on the Password Hasher extension [62], which
generates strong passwords for multiple websites, using a single master key, and automatically supplies them
when these sites are visited. The vulnerabilities are much the same as for the ordinary password manager,
but the policy will have to be more complex because of the common master key used in the hashing. Another
extension that we plan to reimplement is Deja Click [24], a “web recorder” and bookmarking utility that
can record sequences of actions (following links, filling in forms, etc.) and replay them when requested. This
functionality opens the door to many security vulnerabilities: the extension must have access to browsing
history and even passwords, and it must be able to send this information to more or less arbitrary sites.
A useful security policy would say, for example, that the URL sequences and form inputs generated by the
extension must match prior user inputs (to the same sites), and that no data at all should be given to any
other sites. We also plan to implement some extensions with completely new functionality such as support
for Digital Rights Management policies, which intrinsically require linearity and fair atomic exchange.

Next, we must demonstrate that others can write (a) security policies and (b) programs in our language.
Our primary plan for doing this is by presenting our tools in classes (undergraduate and graduate classes
at Penn and CMU and the annual Summer School on Software Security held at the University of Oregon)
and getting students to write policies and programs using them. This strategy gives us a good-sized pool of
intelligent but relatively unsophisticated (in security policy, fancy type systems, etc.) developers, providing
a good test of the technology’s ease of use under relatively controlled conditions.

Finally, we will disseminate our software artifacts to the Firefox developer community (and others). A
critical aspect of this process will be providing a number of different applications together with their security
policies—many more applications are created by modifying others than from scratch, and more languages
are learned by reading code than by reading papers!

2.5 Assumptions, Limitations, and Non-Goals

Here, as with any proposed technique for enforcing security policies, it is necessary to make some assumptions
about the context in which the system will be deployed. These assumptions help to delimit the scope
and provide traction on the issues at the heart of the project. Our work is based on combining standard
cryptographic techniques (such as digital signatures) with novel methods in formal logic and type theory to
implement a manifestly secure extension architecture. The primary assumptions, limitations, and explicit
non-goals are as follows.

First, we assume that the implementation of the extensible platform on which we build the runtime is
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trustworthy. We do not propose to verify the correctness of the run-time system, and, for the purposes of this
research, we propose to trust the compiler or interpreter that implements the security-typed programming
language. (In future work we hope to permit construction of certifying compilers so as to eliminate this
assumption, but we consider this direction to be outside the scope of the present work.)

Second, we employ standard cryptographic techniques to ensure confidential and authenticated commu-
nication between hosts in the network. For the purposes of mechanical verification, we make the standard
Dolev-Yao assumptions [25] and treat encryption operations as perfect. We trust the correctness of the
implementation of standard cryptographic techniques such as public-key cryptography and cryptographic
hashing and signing methods.

Third, for the sake of practicality and tractability, some parts of the implementation behavior will not
be modeled by the security logic. For example, low-level details about caching and timing effects will be
omitted, and we will assume that it is intractable for the attacker to perform complete network traffic analysis.
Consequently, information-flow security may be circumvented through attacks at a lower level of abstraction
than provided by the trusted extensible platform. Existing work on preventing low-level timing [7] and
network traffic analysis attacks could in principle be applied in our context.
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